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In the dissertation, I propose a theory of phonological agreement called φ-

Correspondence that is a formal extension of Correspondence Theory (McCarthy & 

Prince 1995). The theory is distinguished from Agreement By Correspondence (ABC, 

Rose & Walker 2004, Hansson 2001/2010, Bennett 2013/2015) in that correspondence is 

defined as a head-dependent relation between feature nodes, as opposed to a 

homogeneous relation among consonants. As such, the theory satisfies the following 

conditions:  

Hypothesis I (correspondence relation).  

I/O-Correspondence and φ-Correspondence relations are the same kind of formal 

relations. 
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Hypothesis II (Constraints).  

I/O-Correspondence and φ-Correspondence constraints have the same definitions. 

By analyzing three case studies in Chumash, Kalabari, and Basque, I show that φ-

Correspondence solves several empirical and theoretical problems that have been recently 

pointed out in the literature on harmony, such as the problem of directionality (Bennett 

2013/2015), Overlapping harmony (Walker 2016), and Agreement By Proxy (Hansson 

and McMullin 2016). Counterfeeding opacity is also correctly predicted to arise from the 

interaction between markedness and faithfulness constraints on heads (Falk 2014). 

In the dissertation, I also formulate a generalization on the directionality of dominant-

regressive consonant harmonies (Baković 2000, Hansson 2001/2010) and show that in φ-

Correspondence it can be analyzed as an effect of the Preservation of the Marked (de 

Lacy 2002/2006). 

Finally, the theory establishes a parallel between feature heads and prosodic heads by 

showing that they adhere to the same axioms, that they tend to be aligned to right 

morpho-phonological edges and that they are a target of positional faithfulness 

constraints.  
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1 Introduction 

1.1 Overview 

The goal of the dissertation is to outline a theory of phonological agreement called φ-

Correspondence that is a formal extension of Correspondence Theory (McCarthy & 

Prince 1995). The theory is inspired by Agreement By Correspondence (ABC, Rose & 

Walker 2004, Hansson 2001/2010, Bennett 2013/2015), but it is distinguished from it in 

that it satisfies the following two hypotheses. 

Hypothesis I (correspondence relation).  

I/O-Correspondence and φ-Correspondence relations are the same kind of formal 

relations. 

Hypothesis II (correspondence constraints).  

I/O-Correspondence and φ-Correspondence constraints have the same definitions. 

I argue that the relations that govern agreement in φ-Correspondence occur between a 

head and a set of dependent feature nodes on the same feature tier. The diagram below 

represents an example structure in the model. φ-Correspondence is indicated by a double-

headed arrow. 
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(1) Sibilant feature nodes in φ-Correspondence. 

 

In the representation, the root nodes in the first tier are ordered by a precedence 

relation, and they are not related by the correspondence relation. The φ-Correspondence 

relation is instead established between the three sibilants nodes, in particular between the 

rightmost sibilant (the head) and the other two [+sibilant] feature nodes in the tier. 

Alignment constraints (among others) determine the position of the feature head, while 

the (positional) faithfulness constraints determine the outcome of the assimilation.  

φ-Correspondence solves several empirical and theoretical problems that have been 

recently pointed out in the literature on harmony. First, the problem of directionality in 

ABC is elegantly solved through the use of standard faithfulness constraints on φ-heads 

(Bennett 2013/2015). Overlapping harmony (Walker 2016) and Agreement By Proxy 

(Hansson and McMullin 2016) effects are eliminated by moving the correspondence 

relation to the feature tier. And finally, counterfeeding is correctly predicted to arise from 

the interaction between markedness and faithfulness constraints on head (Falk 2014). 

Another advantage of φ-Correspondence is that it allows us to analyze the 

generalization that states that in dominant-regressive consonant harmonies the outcome 

of the harmony is always the marked segment (Baković 2000, Hansson 2001/2010) as an 
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effect of the Preservation of the Marked (de Lacy 2002/2006), while avoiding majority 

rule effects (Lombardi, 1990, Hansson & McMullin 2016). 

Finally, the theory establishes a parallel between feature and prosodic heads: it shows 

that they adhere to the same axioms, that they tend to be aligned to right morpho-

phonological edges, and that they are a target of positional faithfulness constraints.  

1.2 Theoretical background 

φ-Correspondence is based on three theories: Correspondence Theory (McCarthy & 

Prince 1995), Agreement By Correspondence (ABC, Rose & Walker 2004, Hansson 

2001/2010, Bennett 2013/2015), and headed theories of agreement, such as Span Theory 

(McCarthy 2004).  

This literature review is organized around these theories. φ-Correspondence is an 

extension of Correspondence Theory. Accordingly, I start in section 1.2.1 by introducing 

the key concepts of the theory. In section 1.2.2, I introduce ABC and show that despite 

the obvious similarities, neither its relation nor its correspondence constraints are the 

same as those of Correspondence Theory. Finally, in section 1.2.3, I compare φ-

Correspondence with Span Theory, a theory of agreement that, together with ABC, is the 

most similar to φ-Correspondence. 

Autosegmental theories (Goldsmith 1990, Clements & Hume 1995, Jurgec 2011, 

among others) will not be discussed in detail, since the main arguments made with 

reference to ABC also apply to φ-Correspondence (Hansson 2001/2010, Rose & Walker 

2004, Jurgec 2011).  
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1.2.1 Correspondence Theory 

Correspondence Theory is based on the definition of a relation and a set of constraints 

that by applying them to different elements of the phonological representation yield 

different phonological effects. Correspondence is generally defined as a “special relation 

between two structures.” The authors say: 

Here I will assume that the structural elements in question are just (tokens of) 

segments but it is a straightforward matter to generalize the approach to higher 

order units of prosodic structure such as moras, syllables, feet, heads of feet, as 

well as tones and even distinctive features or feature nodes [emphasis added], in 

support of theories of quantitative transfer, compensatory lengthening, and the 

effects of floating features (McCarthy & Prince 1995:14). 

Much work has been done in Correspondence Theory, such as in its application to 

other domains such as transderivational identity (Benua 1997), feature nodes (Akinlabi 

19961), and reduplication (Inkelas 2008), as well as on the analysis of some specific 

formal properties of correspondence constraints and relations (Casali 1997, Potts & 

Pullum 2002, Payne et al. 2017). 

In all cases, correspondence relate elements of the same “nature,” but with some 

different “properties”2 (e.g., input–output or base–reduplicant segments, tone–TBUs, 

etc.). For this reason, a crucial axiom of correspondence relations is heterogeneity. In this 

                                                
1 The suggested relations refer to correspondence between feature nodes and root nodes as opposed to φ-
Correspondence, which instead acts on feature node heads and dependents. 
2 These concepts are hard to formulate precisely outside of a formal system (which is one why I adopt one). 
Clearer and more precise definitions are given in chapter 2.  
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dissertation, I demonstrate that φ-Correspondence relations have the same formal 

properties of I/O-Correspondence relations, including heterogeneity. 

φ-Correspondence does not have all the properties that heterogenous relations have. 

However, some of these axioms appear as important constraints on φ-Correspondence 

relation. For example, an important property of some heterogeneous relations—but not of 

correspondence—is totality. Totality demands that given two disjoint sets of elements X, 

Y, all elements in X are connected to some elements in Y. Totality is not an axiom of 

correspondence, but it is implemented as the violable constraints MAX and DEP, defined 

below.  

MAX definition. McCarthy and Prince (1995:16) 

Every segment of S1 has a correspondent in S2. 

MAX is a definition that contains two unbound variables S1 and S2. The constraint 

schema is instantiated as a set of constraints where the value of the two variables is 

replaced with the domain and the codomain of the correspondence relation (e.g., Input–

Output, Base–Reduplicant, etc.). For example, MAX-IO is simply defined as follows: 

MAX-IO definition. 

Every segment in the input has a correspondent in the output 

1.2.2 Agreement By Correspondence  

Agreement By Correspondence (ABC) is a theory developed primarily to deal with 

consonant (parasitic) harmonies and dissimilation (Walker 2000a, Walker 200b; Rose & 

Walker 2004; Hansson 2001/2010, Bennett 2013/2015, among others). The theory 
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consists of three main components: a relation called Surface Correspondence, which acts 

on segments in the output, a set of constraints (CORR) that penalize similar segments that 

are not in correspondence, and a set of constraints (IDENT-CC) that penalize segments in 

surface correspondence that differ for some features. 

When both some CORR and some IDENT-CC constraints are ranked above the relevant 

faithfulness constraints, harmony is enforced by the grammar. The tableau below shows a 

mini-typology of the basic interactions in ABC.  

(2) Basic constraints interaction in ABC 

Input Output 

ID-IO
(+sib) 

ID-C
C

(ant) 

C
O

R
R-(+sib) 

ID -IO
(ant) 

Comments 

ʃ…s a. ʃx…sx  *   Correspondence 

 b. ʃx…sy   *  No 

correspondence  d. ʃx…ʃx    * Harmony 

 e. sx…sx    * Harmony 

 

In candidate (2a), the two sibilants correspond but do not harmonize, with the result 

that the constraint that requires identity of the feature anterior ID-CC(ant) is violated. 

Candidate (2b) is another faithful output obtained by not having the two sibilants in 

correspondence. Finally, the last two candidates (2c, d) correspond and harmonize, so 

they do not violate any of the ABC constraints.  

It is unclear whether in the original papers (Walker 2000ab, Rose & Walker 2004, 

Hansson 2001) the authors actually intend for Agreement By Correspondence to be an 
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extension of Correspondence Theory. Hansson (2001) often draws some important 

parallels between the two theories, specifically in section 4.2.1.2 (Hansson 2001:300). 

However, the author never makes the claim that the elements of the two theories are 

formally the same.  

Rose and Walker (2004) explicitly establish the relation between the two theories 

with respect to their constraints in the following passage “IDENT-CC constraints are 

formulated in accordance with the general IDENT(F) schema given in McCarthy & Prince 

1995. But CORR-C↔C constraints are not part of Correspondence Theory.”3 In terms of 

the correspondence relation, the claim is indirect and perhaps weaker. The authors say 

(p. 32): “Following the definition given by McCarthy and Prince (1995:262), two 

structures are in correspondence if a relation is established between their component 

elements.” 

This passage, though, expresses a terminological notation rather than a formal 

equivalence. I take it that the authors are simply stating that they call two segments in 

correspondence if they are related, not that the relation they use is formally the same 

correspondence relation as in McCarthy and Prince (1995).  

A first formal analysis of Surface Correspondence is in Bennett (2013/2015). 

Although Bennett (2013/2015) is not proving that any of the properties of Surface 

Correspondence relations are the same as the ones in Correspondence Theory, the 

                                                
3 Although this is formally true only for certain formulations of IDENT-CC, namely for those that do not 
encode any reference to the directionality of assimilation. See 3.4.1 for a discussion.  
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analysis is fundamental in that it is the first of its kind to highlight the importance of 

formally expressing the correspondence relation in ABC.  

One property that surface correspondence relations have in common is that they are 

“homogenous” relations. Correspondence Theory and φ-Correspondence are instead 

heterogenous relations and have a different set of properties (axioms) than the ones 

commonly assumed in ABC (see chapter 2). 

The latest indication of the absence of references to the original Correspondence 

Theory in ABC is found in Shih and Inkelas (2017). The authors claim to extend ABC 

(i.e., one of its possible formulations) to tone–TBU association. The resulting theory, 

however, is very different from Correspondence Theory applied to tones.4  

As the examples above show, prose is perhaps the main culprit for the confusion 

regarding the identity between Agreement By Correspondence and Correspondence 

Theory, and more generally regarding certain theoretical assertions concerning the 

definition of (correspondence) relations. 

For this reason, I provide a semi-formal axiomatic definition of phonological 

structures. Similar formalizations have been used for various goals in phonology such as 

to account for specific properties of a theory (e.g., Coleman & Local 1991, Tesar 2013), 

to analyze the computational complexity of (part of) phonology (e.g., Eisner 1997, Graf 

2010, Rogers et al. 2013, Jardine 2016), or as a tool to provide rigorous descriptions of 

the components of a theory (e.g., Kornai 1995, Potts & Pullum 2002). 

                                                
4 See section 7.1.3 for a brief discussion. 
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In this dissertation, I use similar tools to define Correspondence Theory and φ-

Correspondence to show that they include the same relation and the same set of 

correspondence constraints in a more rigorous way. 

1.2.3 Span Theory 

A crucial element that permits the characterization of φ-Correspondence as heterogenous 

relations and that distinguishes φ-Correspondence from ABC is the φ-head. Headed 

constituents are pervasive in linguistics. The concept of head is applied to syllable 

structure (Murray 2006, Smith 2002), element theory (Kaye et al. 1985; and others), 

stress/tone interaction (de Lacy 2002), and autosegmental assimilation (Halle & 

Vergnaud 1990, Jurgec 2011), as well as being a central concept in the theory of stress 

(Prince & Smolensky, 1993/2004) and in syntax (Chomsky, 1965). 

McCarthy (2004) is a theory of headed agreement that together with ABC most 

resembles φ-Correspondence. Span theory is very similar to φ-Correspondence in that the 

harmonizing feature of these domains is determined by a head, which is freely assigned 

to some elements by GEN. Nevertheless, two important differences concern the definition 

of the elements in the agreement relation and the mechanisms that govern the distribution 

of the heads in the output. 

Following Hansson (2001/2010), Span Theory can be subcategorized as a “strict 

locality” theory of assimilation (Flemming 1995, Gafos 1999). Strict locality theories are 

defined by two characteristics: a linear span that defines the domain of harmony and the 

spreading of the harmonizing features to all the segments in the span. 
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Spans consist of a contiguous segmental string, but in surface correspondence, there 

is no such strict requirement. Segments in the same domain may be separated by other 

segments, which can even belong to other correspondence relations (e.g., if there are 

multiple harmonies). Strict locality has in fact been criticized because all segments 

between the trigger and the target of assimilation must be permeated by the spreading 

feature (Hansson 2001/2010: 20–23, 210–221).5 

Another property of span theory is that all segments in a span are pronounced with 

the feature value of the head. In contrast, in φ-Correspondence, harmony is only favored 

by the fact that there are constraints that favor feature identity and that there is a 

faithfulness constraint that protects the featural content of the head. The head, per se, 

does not impose any restriction on its domain, it just favors it (more closely resembling 

O’Keefe 2007). 

The other important difference between Span Theory and φ-Correspondence concerns 

the constraints that determine the head selection. φ-head constraints follow the template 

of classic positional and alignment constraints. Span theory uses specific constraint 

schemas.  

For example, an important constraint in Span Theory is HEAD([βG, γH, ...], [αF]), 

which favors [αF] heads, with the set of feature values [βG, γH, ...]. For example, the 

constraint HEAD([−cont, -son], [−nas]) is violated when a [−continuant, −sonorant] 

segment does not head a [−nasal] span. HEAD([βG, γH, ...], [αF]) applies only to a subset 

of segments [βG, γH, ...] with a particular head [αF]. For instance, HEAD([−cont, −son], 

                                                
5 Locality is a well-known issue in autosegmental theories, where it has been circumvented using a variety 
of strategies (Clements & Hume 1995, Jurgec 2011, among others). 
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[−nas]) contains two conditions: that the segment is an obstruent and that the segment 

heads an oral span.  

In φ-Correspondence, φ-head selection is determined by a positional faithfulness 

constraint and by an alignment constraint. This approach mimics the head selection 

mechanisms used to explain other phenomena, such as stress, neutralization, and tones 

(McCarthy & Prince 1995, Murray 2006, de Lacy 2002) and permits the formulation of 

simple and well-known constraints. Furthermore, φ-Correspondence constraints penalize 

unfaithfulness or non-alignment, rather than favoring the presence of a head in a context. 

1.3 Outline of the dissertation 

The dissertation is roughly organized as follows. In chapter 2, I start with a definition of 

the theory and establish the equivalence between I/O-Correspondence and φ-

Correspondence relations and constraints. I then move on to analyze three case studies, 

each illustrating a particular aspect of the theory. Chapter 3 deals with directional 

harmony and focuses on head alignment, chapter 4 concerns feature correspondence in 

overlapping harmonies, and chapter 5 deals with the interaction of markedness 

constraints with φ-head faithfulness constraints in counterfeeding patterns. Finally, 

chapter 6 contains a typology of the theory and a discussion of the empirical 

generalizations of consonant harmony. A more detailed description of the chapters 

follows. 
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1.3.1 Chapter 2 – Theory 

In chapter 2, the core chapter of the dissertation, I provide a definition of the elements 

and properties of the theory. These constitute the fundamental blocks that allow me to 

formalize correspondence relations and constraints. I then define the correspondence 

relations and show that I/O-Correspondence and φ-Correspondence both adhere to the 

same set of axioms. Since no other axiom exists for either I/O-Correspondence or φ-

Correspondence, I conclude that the two relations are identical. 

I then move to define the φ-Correspondence constraints. I introduced the four 

constraint schemas RELATE-X, UNIQUE-X, CONTIGUOUS-X, and IDENT-XY and argue that 

the same definitions apply to both I/O-Correspondence and φ-Correspondence 

constraints. 

A crucial component of φ-Correspondence is the φ-head. I demonstrate that there is 

only one axiom that defines φ-heads, which is also assumed for phonological heads. I 

also demonstrate how some theorems derived from this axiom limit the range of φ-

Correspondence relations, and I account for its limited generative power compared to 

I/O-Correspondence. 

Finally, I argue that the distribution of heads is governed by two families of 

constraints that are independently motivated and related to the distribution of other 

phonological heads, namely Generalized Alignment (§ 2.4.2.1) and Positional 

Faithfulness constraints (§ 2.4.2.2).  
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The chapter concludes with a brief exposition of the axioms of other phonological 

relations (precedence and dominance) and their relevance with respect to 

Correspondence. 

1.3.2 Chapter 3 – Directional harmony in Chumash 

In chapter 3, I go through the first analysis of the dissertation. I start with a well-known 

case of consonant harmony in (Ineseño) Chumash. In Chumash, all sibilants in a word 

agree in anteriority. The value of the feature [anterior] is determined by the value of the 

rightmost sibilant in the word. In the example below, the input form /ha-s-xintila-waʃ/ 

‘his former Indian name’ harmonizes for the feature [−ant] giving [haʃxintila-waʃ] based 

on the fact that the rightmost sibilant in the form is /ʃ/. 

(3) Sibilant harmony in Chumash, basic pattern.  

a. /ha-s-xintila-waʃ/ → [haʃxintila-waʃ] ‘his former Indian name’ 

cf. /ha-s-xintila/ → [hasxintila] ‘his former name’ 

φ-Correspondence elegantly captures this pattern because of the constraints on φ-head 

alignment and φ-head faithfulness. The analysis follows from the basic assumptions of 

the theory. RELATE-[+sib] establishes the correspondence relation among sibilant nodes; 

ALIGN(φ-head, R) demands alignment of the head to the right edge of the sibilant tier and 

IDENT-IO(+sib-head) protects the [−ant] sibilant from changing, thus causing the other 

(non-head) sibilants in the input to harmonize.  
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This approach is then contrasted with other theories of directionality, where such a 

pattern requires the formulation of complex constraints, as opposed to the definition of 

standard positional faithfulness and alignment constraints.  

1.3.3 Chapter 4 – Partial overlapping in Kalabari 

It is common for multiple harmonies to coexist in the same language. Chapter 4 discusses 

Kalabari, one language in which multiple harmonies end up targeting overlapping sets of 

segments.  

The language has three different harmony patterns: a directional, parasitic back harmony 

for [+high] vowels, a non-directional parasitic back harmony for [−high] vowels, and a 

non-parasitic (aka system-wide) ATR harmony. 

This pattern is unproblematic in φ-Correspondence. Since the correspondence relation 

occurs at the feature level, the different harmonies are independent one from another. 

One correspondence relation connects the [+vocalic] node, where ATR harmony is 

instantiated, while two other different relations are in effect for the [−high] and [+high] 

tier, as shown in (47a). In theories where the agreement relation is established at the 

segmental level (47b), the pattern is problematic because the theory predicts that all 

segments in the relation participate in the harmony. This kind of problem is known as 

overlapping harmony or (Walker 2016) and is very similar to Agreement By Proxy 

(Hansson 2010, McMullin & Hansson 2016).  
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(4) Two kinds of correspondence 

a. Featural correspondence    b. Segmental correspondence 

 

 

1.3.4 Chapter 5 – Derived environment effect in Basque 

IDENT(φ-head) constraints are standard faithfulness constraints. Even though their 

predominant function is in establishing directionality of harmony, the constraints interact 

with standard markedness constraints and predict counterbleeding effects between 

neutralization and harmonies. In chapter 5, I discuss one of these cases.  

In some varieties of Basque, sibilants in most roots agree on the distributed feature. 

For example, /es̻-ets̺i/ → [es̺-ets̺i] ‘persist’, as compared with /es/ ‘no’, /ets̺i/ ‘consider’. 

In addition to harmony, Basque has another process of local assimilation, where laminal 

sibilants become apical before another consonant.  

Derived apicals, however, do not cause other sibilants to harmonize. For example, 

/s̻is̻ku/ ‘bag’ maps to disharmonic [s̻is̺ku] and not to [s̺is̺ku]. A simplified analysis of the 

phenomenon goes as follows: φ-heads on apical sibilants normally act as triggers6 of 

                                                
6 Here trigger and target do not refer to the original meaning of the word. No element ‘triggers’ a process in 
OT. In φ-Correspondence, the term refers to an element with the head property for which there is at least 
one correspondent that is mapped unfaithfully in order to achieve harmony. This is not a formal, precise 
definition, but it is good enough since I only use the term for the sake of exposition.  
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sibilant harmony in Basque. However, when the apical sibilant appears before a 

consonant, a conflict arises. The element either becomes a target of long-distance 

assimilation or a target of local assimilation.  

Neutralization wants to change the second sibilant, while harmony wants the sibilant 

to remain faithful in order to act as a trigger of harmony. In Basque the conflict is 

resolved in favor of neutralization, which counterbleeds harmony. The pattern is 

predicted to occur in φ-Correspondence since heads function as “turbid” elements of the 

representation (Goldrick, 2000) and interact with other markedness and positional 

faithfulness constraints.  

1.3.5 Chapters 6 and 7 – Typologies and conclusions 

In chapter 6, I outline the basic typology of φ-Correspondence. I show that the theory 

predicts the existence of six directionality patterns, which arise from the combination of 

three basic directionality types: dominant, directional, and root control. 

I then argue that there are three generalizations that restrict the typology of predicted 

patterns for each of these types. In dominant harmony, the trigger is the marked value, in 

directional harmony, the trigger is aligned to the right edge of a word (or of the root), and 

in root control harmony the trigger is in the root. In mixed harmonies, these restrictions 

apply conjointly.  

The last section of chapter 6 focuses on the markedness generalization. I demonstrate 

that φ-Correspondence is an agnostic theory of directionality and that the markedness 

generalization can therefore be captured by the theory of faithfulness constraints. In this 

respect, I provide a general formulation of the theory of faithfulness that accounts for 
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both the markedness generalization and avoid majority rule effects. Finally, chapter 7 

concludes, with indications for future work. 
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2 Theory 

In chapter 1, I gave a brief description of φ-Correspondence theory. I showed that the 

theory includes a head-dependent relation among feature nodes and a set of constraints 

that define the elements participating in the relation, how heads are assigned, and how 

harmony is obtained.  

In this chapter, I define the theory more rigorously, offer some background and 

justification of the assumptions made in its formulation, and demonstrate how the identity 

between I/O and φ-Correspondence is achieved.  

The chapter is organized as follows. Section 2.1 starts with a definition of the model, 

including its elements and relations. Section 2.2 looks more closely at the properties of 

correspondence relations, while section 2.3 concludes with a definition of correspondence 

constraints.  

In section 2.3.1, I define φ-heads. I introduce the axiom that defines φ heads and 

show that it applies to other phonological heads (2.4.1). Section 2.4.2 contains the 

definitions of φ-head constraints. 

2.1 Fundamentals 

I start with a definition of elements and properties. These definitions are fundamental for 

arguing for the identity of I/O and φ-Correspondence, and more generally in construing 

the set of permitted and ill-formed candidates. 
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2.1.1 Elements 

To define a relation, I first need to define the entities the relation acts on. The basic units 

of representation are the elements. 

Definition (element). An element is a unique entity in a model. (i) 

Like in Autosegmental Phonology (AP henceforth), an element corresponds to a node 

in a graph. Each node in the model is a distinct and unique identity, which is by itself 

devoid of any property or interpretation. Typographically, each node is assigned a 

number which uniquely identifies it, and it is represented in text as a bullet followed by a 

number •₁. 

To be well formed, an element needs to have some properties. A complete set of 

properties for an element, for example, tells us whether the element is in the input or in 

the output, if it is a syllable or a feature, and so on. 

In the example below, the representation has two nodes, a node with the properties 

output and root node, and a node with the property output, [+sib], and Head. More details 

are provided in the next section. 

(5) A root node connected to a [+sib] head node 

  

 •1 = Output, Root  

 •2 = Output, [+sib], Head 
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2.1.2 Properties 

A property is a unary relation (or a set) that defines the interactions of an element with 

respect to relations and constraints, and possibly the interpretation of that element at the 

interfaces. I distinguish three classes of properties: derivational, interpretable, and 

cumulative. 

The derivational class specifies whether an element is in the input or in the output. 

Every element must necessarily be in either one. 

An interpretable property specifies what type of phonological constituent an element 

is. In the theory, I postulate the interpretable properties Foot (F), Syllable (σ), Prosodic 

Word (ω), Root (⊙), and features (one for each feature value, such as [+sib], [−ant], 

etc.). 

Notice that the feature properties specify the feature type and the value of an element. 

For example, [+sib] is a single property of a node, while [−sib] is another distinct 

property.  

I assume that a root node cannot dominate two feature nodes of the same type (e.g., 

two [+sib] or a [−sib] and a [+sib] node), and that each root node is fully specified for 

each feature type (thus also excluding privative features).7 

                                                
7 In other words, there is no feature underspecification, and complex segments (e.g., affricates, clicks, 
prenasalized obstruents, etc.) have a dedicated feature value (e.g., delayed_release). None of the 
assumptions are fundamental for the goal of this dissertation, but they are useful for a concise definition of 
IDENT constraints.  
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Finally, cumulative properties do not impose any requirement on the presence of any 

other property in their class.8 They include the properties H(ead),9 for head nodes and 

R(oot) for nodes contained in a morphological root. 

The following table contains a list of all properties used in the model: 

Property Element is… Type 

I in the input derivational 

O in the output derivational 

ω a prosodic word interpretable 

F a foot interpretable 

σ a syllable interpretable 

⊙  a root node interpretable 

[+sib] a feature node [+sib] interpretable 

φ a feature node φ  interpretable 

H a head cumulative 

R in the root cumulative 

   

Now that I defined the elements and the properties of the representation, I can 

introduce the first axiom of the theory. 

 

 

                                                
8 In this dissertation, I assume that root nodes are not in φ-Correspondence and therefore cannot have the 
property Head. I briefly discuss the implications of allowing root node correspondence in section 7.1.1. 
9 I call the sets of non-heads 𝐻	(dependents). 𝐻 is not a canonical property, since there is no axiom that 
refers to it, and it does not constitute a cohesive set of elements. Nevertheless, it is a useful label that makes 
some of the definitions and the prose clearer. 
 
𝐻 := {x | x ∉ H}  
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Axiom I (of properties).  

An element must have one and only derivation property, one and only one 

interpretable property, and any number of cumulative properties. (ii) 

2.1.3 Relations 

I now move on to explain how elements are connected through relations. I start with an 

example illustrating the notation used (§ 2.1.3.1) and then move on to define relations 

and to distinguish between kind, type, and instance (§ 2.1.3.2). Finally, I reformulate 

Hypothesis I in light of these new definitions to lay the foundation for the analysis of 

correspondence relations that is conducted in section 2.2. 

2.1.3.1 Notation 

For the notation, consider the simple representation in (6a), represented as a diagram in 

(6b). It contains the set of six elements (universe), indicated by the symbol ⅅ. Three 

elements are in the input, and three are in the output. Four elements are root nodes; two 

are [+sib] feature nodes. 

The symbols ℛ and < indicate correspondence and precedence, the Symbol ↓ 

indicates dominance.10 Subscripts are used to indicate the sets of elements a relation acts 

on. For example, ℛ⌼-[+sib] indicates a relation between root nodes and [+sib] nodes, while 

<O, ⊙ indicates a relation among output root nodes. 

                                                
10 This notation is redundant because the domain and the codomain of any relation never coincide with the 
codomain and range of another relation. Consequently, given any non-empty set of pairs, it is always 
possible to determine the type and kind of relation it represents. For example, a relation between I and O or 
between a feature and a feature head is necessarily a correspondence relation, while a relation among 
output root nodes is necessarily a precedence relation. 
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(6) Elements and relations 

a. Logic form 

ⅅ = {•1, •2, •3, •4, •5, •6} 

⊙ = {1, •2, •3, •4, •5, •6} 

I = {•4, •5, •6} 

O = {•1, •2, •3} 

[+sib] = {•5, •6} 

ℛI-O = {⟨•1, •3⟩} 

ℛO-I = {⟨•3, •1⟩}11 

<I, ⊙ = {⟨•1, •2⟩} 

<O, ⊙ = {⟨•3, •4⟩} 

↓⌼-[+sib] = {⟨•3, •5⟩} 

 

b. Diagram 

 

Since φ-Correspondence is always between a head and a dependent of two identical 

features, I indicate it as ℛ[φ], where φ is the name of the feature value of the elements in 

correspondence. 

 

 

                                                
11 ℛI-O and ℛO-I are always the symmetric inverse of one another (see section 2.2). Postulating two distinct 
relations is required for the axiom II (heterogeneity, see 2.2.1) and for the definition of the constraint 
RELATE (see 2.3.1.1).  
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In diagrams, I adopt the following notation: 

• Precedence is indicated by an arrow, correspondence by a double-headed arrow, 

and dominance by a single line. 

• Head elements are represented as enclosed in a square ⌼.  

• Root nodes almost always include an indication of their segmental interpretation, 

although they do not represent a string.  

• Derivational properties are omitted from the diagrams because they are either 

self-evident in the representation or they are indicated in the example description. 

2.1.3.2 Kind, type, and instance 

A binary relation (just relation henceforth) is commonly defined as follow. 

Definition (relation). A relation is a set of ordered pairs. (iii) 

In the discussion of the properties of relations, I need to refer to three levels of 

abstraction: kind, type, and instance. The least abstract “relations” are called instances. 

Whenever in a candidate (or a structure) two or more elements are connected, we say that 

they are an instance of a relation.  

Definition (instance of a relation). An instance of a relation is a pair of elements. (iv) 

The most abstract characterization is the kind. A kind is defined exclusively by the 

axioms that govern a relation. It defines the set of specific properties that apply to all 

instances of a relation. This is a fundamental concept because I prove the formal identity 

of the φ-Correspondence and I/O-Correspondence by showing that they are of the same 

kind, that is, that they adhere to the same set of properties.  
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Definition (kind of a relation). Two relations are of the same kind of relation if they 

adhere to the same set of axioms. (v) 

In the representation given in (6), there are all three kinds of relations precedence: 

dominance, and correspondence. No matter what the instances of a relation are for a 

specific structure, each instance must respect the axioms of the kind it belongs to.  

Finally, I distinguish different types of relations. Types are something between kind 

and instances, as they are defined by a kind and the specification of the domain and the 

range of the function (i.e., the properties of the elements that participate in the relation).  

Definition (type of a relation). Two relations are of the same type if they adhere to 

the same set of axioms and they have the same domain and codomain. (vi) 

To give an example, I/O, O/I, B/R, and φ-Correspondence are all different types of 

the same kind (correspondence) of relation.  

In (6), there are two types of correspondence (ℛI-O and ℛO-I), two types of precedence 

(<O, ⊙ and <I, ⊙), and one type of dominance (↓⊙-[+sib]).  

2.1.3.3 Hypothesis I (final definition) 

Given the definitions above, I can now be more precise with the definition of φ-

Correspondence and of Hypothesis I. The first point to make is that φ-Correspondence is 

not a kind of relation per se. Instead, φ-Correspondence indicates a set of types of 

correspondence relations. More specifically, the types of correspondence relations 

between a head and a dependent with the same interpretable property φ in {[+sib], [−sib], 

[+voc], …}. 
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The terms φ-Correspondence thus indicates the types of correspondence relations 

extensionally defined as follows: 

φ-Correspondence := {ℛ[+sib], ℛ[+ant], ℛ[+voc],…}. (vii) 

Crucially, this set of relation types do not have any property (or axioms) that refer 

specifically to it, but it is indeed a useful terminology. I thus reformulate Hypothesis I as 

follows. 

Hypothesis I (correspondence relation).  

I/O Correspondence, O/I Correspondence, and all φ-Correspondence relations are 

different types of the same kind of correspondence relation. (viii) 

2.1.4 Interim summary 

In this section, I introduce the building blocks of the model. I define a representation as 

constituted by a set of unique elements with some properties and their axioms, optionally 

connected by at least one of three relations: precedence, correspondence, or dominance. 

I also show that a representation represents a full OT candidate, since it includes input 

and output elements, as well as the relation between the two sets of elements.  

 Finally, I distinguish between instance, type, and kind of relations. This allows us to 

formulate Hypothesis I more precisely in terms of identity of types among 

correspondence relations. 
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2.2 Axioms concerning correspondence 

In the previous section, I defined a relation as a set of ordered pairs that adhere to some 

axioms and illustrated that kinds of relations are distinguished entirely by their set of 

axioms. In this section, I define the axioms that define correspondence to show that the 

same axioms apply to both I/O-Correspondence and φ-Correspondence. By doing so I 

demonstrate that the two sets of relation types belong to the same kind of relation 

(Hypothesis I). 

Since most readers are familiar with I/O-Correspondence, I start each subsection with 

a semi-formal definition of an axiom of I/O-Correspondence and then show that it 

extends to φ-Correspondence relations. Although I do not provide formal a treatment of 

Base-Reduplicant and Input-Reduplicant Correspondence, the same definitions apply to 

these types of correspondence as well, as it was the original intent of McCarthy and 

Prince (1995) to define a unified theory. Surface Correspondence is discussed with 

reference to φ-Correspondence whenever relevant, while other less adopted theories 

based on correspondence, such as transderivational correspondence (Benua 1997) or 

feature correspondence (Akinlabi 1996), are not discussed. 

2.2.1 Heterogeneity 

The first axiom is based on the property heterogeneity, which is defined as follows:  

Definition (heterogeneous relation).  

 A relation ℛ: X → Y is heterogeneous if the intersection of its domain X with its 

codomain Y is the empty set (X ∩Y = ∅). (ix) 
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A heterogeneous relation (like a function) is thus defined by two sets: a domain and a 

codomain, which never overlap. Consider a function that maps a student to a seat in a 

classroom. The domain of the relation is the set of all students, while the codomain is the 

set of all seats. The set of students does not contain any seat, and the set of seats does not 

contain any student. Heterogeneous relations thus connect elements that are different in 

nature (i.e., that have different properties). Correspondence is such a relation.  

Axiom II (of correspondence). Correspondence relations are heterogeneous.  

This axiom is particularly important because it distinguishes φ-Correspondence 

theory from ABC (§ 1.2.2), it imposes significant restrictions on other properties of the 

relation, and it restricts the space of the candidate set (§ 2.4.1.2). 

In the next section, I show how this axiom applies to the classic formulation of I/O-

Correspondence. 

2.2.1.1 I/O-Correspondence 

In Correspondence Theory, I/O-Correspondence holds between input and output root 

nodes. In notation, ℛI-O: X → Y, where X is the set of all elements with the property ⊙ 

and O, and Y is the set of all elements with the properties ⊙ and I. 

X = {x | x ∈ ⊙ ∧ x ∈ I} 

Y = {x | x ∈ ⊙ ∧ x ∈ O} 

Because of Axiom I, we know that each element must have one and only derivational 

property: an element is either an input element or an output element. As a consequence, 
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the intersection of X and Y of ℛI-O is the empty set, which makes I/O correspondence a 

heterogeneous relation. Mutatis mutandis, O/I correspondence is heterogeneous as well. 

This property of correspondence extends to other classic correspondence relations, 

such as Base/Reduplicant correspondence. For instance, the domain of ℛB-R is the set of 

output root nodes in the base, and the codomain consists of output root nodes in the 

reduplicant.12 An element cannot be in the base and in the reduplicant in the same 

representation, and so the two sets are non-intersecting.  

2.2.1.2 Heterogeneity in φ-Correspondence 

I now move on to φ-Correspondence and show that the relation is also heterogeneous. 

The argument is straightforward. φ-Correspondence occurs between head feature nodes 

and non-head feature nodes. An element is either a head or a dependent: it cannot be 

both, and it cannot be neither (see footnote 9). For this reason, for any φ-Correspondence 

relation ℛφ, the intersection of the domain X of ℛφ, and of the codomain Y of ℛφ is always 

empty. 

X = {x | x ∈ φ ∧ x ∈ O ∧ x ∈ H} 

Y = {x | x ∈ φ ∧ x ∈ O ∧ x ∈ 𝐻}, where φ ∈ Φ. 

In fact, φ-Correspondence is very similar to B/R-Correspondence. Both relations act 

on elements in the output. In the case of B/R-Correspondence, they are output root nodes, 

in the case of φ-Correspondence they are output feature nodes. In both cases, there is an 

optional, cumulative, phonetically silent property that creates an asymmetry and allows 

                                                
12 Base and Reduplicant are not properties of our model. However, they can be easily formalized as 
cumulative properties, much alike H and 𝐻. 
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us to distinguish the two sets. In B/R-Correspondence it is the property of being in the 

base (or in the reduplicant); in φ-Correspondence it is property of being a head. 

Heterogeneity is one of the axioms that allow us to establish that φ-Correspondence 

and I/O-Correspondence are the same kind of relations. In the next two sections, I discuss 

two further restrictions that heterogeneity imposes on the theory: a reduction on the space 

of candidates and the constraints correspondence can have on the type of axioms. 

2.2.1.3 Candidate space 

Heterogeneity reduces the number of possible candidates in GEN.13 From Axiom II, I can 

derive the following two theorems of φ-Correspondence: 

Theorem I (head correspondence).  

  A head cannot be in correspondence with another head. (x) 

Theorem II (dependent correspondence).  

  A dependent cannot be in correspondence with another dependent. (xi) 

In addition to trivial candidates with just two heads or two dependents in 

correspondence, candidates with “iterative” spreading of dependents, as represented in 

the figure below, are also ill-formed. In the structure, •6 and •7 are in correspondence, but 

neither one is a head.14  

                                                
13 Heterogeneity also defines the properties the relation can have. For example, common properties in the 
Surface Correspondence literature, such as transitivity, reflexivity, and symmetry, are properties that apply 
(or can only exist) for non-heterogeneous relations. In other words, a heterogeneous relation can never be 
transitive, reflexive, or symmetric because the domain and the codomain do not overlap. Some other 
properties of heterogeneous relations such as interrelational, transitivity, totality, and bijectivity are 
mentioned in this chapter whenever relevant. 
14 These are only the candidates ruled out by heterogeneity. Other candidates are banned because of the 
axioms on heads defined in section 2.4.1. 
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(7) Ill-formed φ-Correspondence relations 

 

The two theorems are easy to prove. φ-Correspondence occurs among feature nodes 

in the output. Two of the three possible properties (the value of the feature node and 

output) are already fixed by the definition of the set of relation types themselves.  

The only property left is headedness, which distinguishes the sets of non-heads from 

the set of heads as the domain and range of the relation. As such, any instance of head-to-

head and dependent-to-dependent correspondence violates heterogeneity. 

Notice that given the current definitions, a head can be in correspondence with 

multiple dependents, and a dependent can be in correspondence with multiple heads. In 

section 2.4.1.1, I show that because of an axiom on headedness, the former configuration 

is possible, while the latter is illicit. 

2.2.1.4 Domain and codomain of dominance 

In the next two sections, I briefly discuss heterogeneity with respect to dominance and 

precedence. Of the other two relations in the model, only dominance is heterogeneous. As 

in the case of φ-Correspondence, dominance is established between pairs of properties 

that define the domain and the codomain of the relation. Such pairs (excluding the 
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transitively derived ones15) are {⟨ω, F⟩, ⟨F, σ⟩, ⟨σ, ⊙⟩, ⟨⊙, φ⟩}, which resembles but 

never overlaps with correspondence pairs {⟨I, O⟩, ⟨B, R⟩, ⟨φH, φ⟩, …}. 

The pair of domain sets that dominance acts on varies across interpretable elements. 

An input node cannot dominate an output node, and a head element cannot dominate a 

non-head element with the same interpretable property. A hierarchy is instead established 

among interpretable properties. 

Crucially, the relation is established only among elements with different interpretable 

properties (i.e., I adopt the Strict Layering Hypothesis, Selkirk 1984: 24). Feet dominate 

syllables, they do not dominate other feet; root nodes dominate feature nodes, not other 

root nodes.16 Consider the dominance relation ↓F-σ between feet and syllables. We have: 

X = {x | x ∈ F ∧ x ∈ O} 

Y = {x | x ∈ σ ∧ x ∈ O} 

Like the correspondence example, Axiom I prevents an element from having two or 

more interpretable features, and X and Y never overlap because F ∩ σ = ∅. The same is 

true for all the pairs in the domain/codomain set, which makes dominance heterogeneous. 

2.2.1.5 Domain and codomain of precedence 

Unlike dominance and correspondence (and alike surface correspondence in ABC), 

precedence is a homogeneous relation. This means that only elements from the same set 

                                                
15 Dominance relations are “cross-relationally” transitive (but not themselves transitive). If a foot Fx 
dominates a syllable σy in ↓F-σ, and the syllable σy dominates a root node ⊙z in ↓σ-⊙, then the relation ↓σ-⊙ 

must exist and ⟨Fx, ⊙z⟩ ∈ ↓F-⊙. Simply put, if a foot dominates a syllable σx, then the foot also dominates 
all the root nodes ⊙y dominated by σx, and all the features dominated by ⊙y. 
16 The only exception is in the theories with prosodic node recursion, where a node can dominate another 
node with the same interpretable properties. In those cases, the different levels are usually distinguished by 
some labels (Ito & Mester 1992, 2003, Kager 2012, among others). 
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can participate in the relation. The set of all elements that can participate in a precedence 

relation is defined by the following axiom. 

Axiom III (precedence).  

If a pair of elements ⟨x, y⟩ are in a precedence relation, then x and y have the 

same derivational property and the same interpretable property. (xii) 

This axiom delimits the definition of ALIGN-H and CONTIGUOUS constraints, which 

are both crucial components of φ-Correspondence. I discuss this issue in § 2.3.2.2 and § 

2.4.2.1. 

In the model, I do not need to impose any other restriction on the sets of elements that 

can participate in a precedence relation, as the choice is inconsequential. What is 

important for the present analysis is that precedence acts on input root nodes, output root 

nodes, and among like feature nodes.  

Precedence among root nodes is necessary for the definition of I/O constraints that 

refer to the order of the elements in correspondence. I/O-Correspondence occurs among 

root nodes, and since both CONTIGUITY and LINEARITY (McCarthy & Prince 1995) refer 

to the order of elements in correspondence, precedence on both input and output root 

nodes is commonly assumed. 

Notice that precedence only exists among feature nodes with the same feature value, 

as opposed to AP where tiers may contain feature with different values.  

Such a relation is incompatible with the proposed model. Since segments have no 

internal geometry, precedence on feature nodes with different feature values (e.g., [+sib] 
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and [−sib]) would simply replicate the precedence relation at the root node level. Most 

importantly, such a definition would violate Axiom III (and homogeneity), since there is 

no interpretable property that relates like features with different values. 

2.2.2 Other Properties of Correspondence 

I now move to introduce the other two axioms of correspondence, namely Maximal 

Distance (§ 2.2.2.1) and Symmetric Inverse (§ 2.2.2.2). 

2.2.2.1 Maximal Distance 

The property of Maximal Distance is an interesting generalization that holds in the 

theory. 

Axiom IV (Maximal Distance)17 

 If x corresponds to y then x differs from y for one and only one property.18 (xiii) 

For instance, I/O-Correspondence is instantiated between root nodes in the input and 

root nodes in the output. The elements differ for one and only one property: I or O. For 

ℛI-O, I have: 

I = {x | x ∈ ⊙ ∧ x ∈ I} 

O = {x | x ∈ ⊙ ∧ x ∈ O} 

Likewise, for two elements to be in φ-Correspondence, they must differ for only one and 

only one property: headedness. A head feature node [+sib] cannot correspond to a 

dependent [−sib] or [+voc], because the property difference would be higher than one.  

                                                
17 In fact, this axiom expresses both the maximal and minimal distance. 
18 The minimal distance is one since the relation is heterogeneous. 
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The axiom of Maximal Distance provides an important piece of phonological insight. 

Correspondence is empirically manifested in input/output domain phenomena, in 

reduplication, and in agreement. Although apparently different, all these processes can be 

traced back to one requirement: correspondence is about wanting similar elements to be 

maximally identical (within the limits imposed by the axioms). The Maximal Distance 

axiom ensures that only elements that are sufficiently similar can be in correspondence.  

The axiom intuitively extends to other types of correspondence relations. In B/R-

Correspondence, the elements in correspondence are root nodes in the output, and the 

property that differs concern whether the element is in the reduplicant or not. In 

Tone/TBU-Correspondence, both elements are in the output, but they differ for their 

derivational property (tones vs. TBUs).19  

2.2.2.2 Symmetric Inverse 

The other property of correspondence is Symmetric Inverse, which is defined as follows: 

Axiom V (Symmetric Inverse).  

If x corresponds to y in ℛX-Y, then y corresponds to x in ℛY-X. (xiv) 

Symmetric inverse is similar to the definition of the symmetric property of 

homogeneous relations, which states that if x relates to y in ℛ, then y relates to x in ℛ. 

The difference between the two axioms is that the inverses are not part of the same 

                                                
19 The axioms discussed here are necessary and sufficient to describe the current theory in the most 
restrictive way. Although this characterization of the theory is compatible with some of the fundamental 
concepts in the field, the aim is not to provide an axiomatic description of the entire phonological module. 
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relation in correspondence. Instead, pairs of relation types exist that are the inverse of one 

another. 

(8) Symmetric Inverse vs. a symmetric relation 

(a) Symmetric Inverse in I/O  (b) A homogeneous symmetric relation 

ℛI-O = {⟨•1, •2⟩, ⟨•3, •4⟩, ⟨•5, •6⟩}  ℛ1 = {⟨•1, •2⟩, ⟨•2, •1⟩, ⟨•2, •3⟩, ⟨•3, •4⟩} 

ℛO-I = {⟨•2, •1⟩, ⟨•4, •3⟩, ⟨•6, •5⟩} 

The property is straightforward and uncontroversial for I/O-Correspondence. Without 

symmetric inverse, the theory would predict the existence of candidates where •1 

corresponds to •2, but •2 does not correspond to •1.  

Likewise, each φ-Correspondence relation entails the existence of an instance of the 

relation that maps a head to a dependent as well as a relation instance that maps a 

dependent to a head. Symmetric inverse in φ-Correspondence is not fully realized 

because of the constraints imposed by the heads on the candidate set and because of 

Maximal Distance. I further discuss this issue in section 2.3.1. 

2.2.3 Interim summary 

In this section, I introduced some common axioms that apply to relations. In particular, I 

argue that I/O-Correspondence and φ-Correspondence are both heterogenous relations 

that adhere to the axioms of symmetric inverse and minimum distance.  

In section 2.1.3.2, I argue that two types of relations are of the same kind if and only 

if they share the exact same set of axioms. Since I/O-Correspondence and φ-

Correspondence adhere to the same set of axioms, and no other axiom exists for either 
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I/O-Correspondence or φ-Correspondence, I conclude that the model satisfies Hypothesis 

I, reproduced here: 

Hypothesis I (correspondence relation). 

I/O Correspondence, O/I Correspondence, and all φ-Correspondence relations are 

different types of the same kind of correspondence relation. 

This is a true, but purely theoretical statement that applies to the model defined so far. 

From chapter 3 on, I show that the proposed theory is empirically adequate and 

phonologically sound.  

2.3 Correspondence constraints 

Hypothesis I is about the axioms of correspondence, the purely representational aspects 

of the relations. In this section, I prove Hypothesis II, which concerns the violable 

constraints that govern correspondence relations. I define four correspondence constraint 

schemas RELATE-X (§ 2.3.1.1), UNIQUE-X (§ 2.3.2.1), CONTIGUOUS-X (§ 2.3.2.2), and 

IDENT-XY (§ 2.3.1.3) and demonstrate that the same constraint definitions apply to 

Input/Output and φ-Correspondence alike.  

I start with the two most important constraints—RELATE-X and IDENT-XY—in 

section 2.3.1 and then move on to discuss the remaining constraints in section 2.3.2.  
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2.3.1 RELATE and IDENT 

2.3.1.1 RELATE-X 

The first constraint schema corresponds to MAX and DEP (and replaces CORR in ABC). 

Since I extend the definition to feature nodes, and in order to highlight the templatic 

nature of its definition, I refer to it with the more general name RELATE-X.  

A RELATE-X constraint is satisfied when all elements in the domain of a 

correspondence relation (e.g., the set of input root nodes) are in a correspondence relation 

with at least one element in the range (e.g., the set of output root node). It is defined as 

follows. 

RELATE-X definition.  

Given a correspondence relation ℛX-Y, assign a violation for each element in X 

that is not in ℛX-Y. 

RELATE-X considers a single tier of elements connected by a precedence relation (root 

nodes or feature nodes) and assigns a violation for each element not in a correspondence 

relation.  

Because of symmetric inverse, correspondence relation types always come in 

symmetric pairs. Applying the definition of RELATE-X to a pair of correspondence 

relations thus results in two constraints: RELATE-I, which corresponds to MAX, and 

RELATE-O, which corresponds to DEP.  
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The same constraints exist for φ-Correspondence. The only parts of the constraint 

definition that varies are the variables that refer to the range and to the domain of the 

relation (i.e., the distinguishing factors of the relation types themselves). 

Let us start by considering only the φ-Correspondence relations with the dependent as 

the domain. Because of Hypothesis II, for each φ-Correspondence type there must be a 

correspondence constraint named RELATE-φ, where φ is the name of the feature nodes in 

the relation (e.g., RELATE-[+sib], RELATE-[+voc], etc.). 

These constraints all impose the same requirement: totality is instantiated at the 

feature node level.20 In each case, the domain is the set of non-head feature nodes in the 

output and the requirement is that each of these nodes corresponds to a head. Examples of 

RELATE-[+sib] and RELATE-I constraint definitions are given below. 

(9) Definition of two RELATE-X constraints. 

RELATE-[+sib]  

Given the correspondence relation ℛ[+sib], assign a violation for each element in 

the set of output [+sib] that is not in ℛ[+sib]. 

RELATE-I 

Given the correspondence relation ℛI-O, assign a violation for each element in the 

set of input root nodes that is not in ℛI-O. 

                                                
20 Totality means that all elements in the domain or codomain of a relation are in a relation. See section 2.5 
for more details.  
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Recall that ℛ[+sib] is a shorthand notation that indicates a relation between the two sets 

[+sib] non-heads and [+sib] heads (ℛ[+sib]-[+sib-head]), so the two definitions are equivalent 

except for the domain of the correspondence relation.  

Notice that a tier φ with no φ-heads still violates RELATE-φ, since the constraint only 

considers one element at a time. This is the expected behavior for RELATE-I (or MAX) as 

well. A candidate may still violate RELATE-I even when there are no output root nodes. 

Because of symmetric inverse, I also predict the existence of a constraint RELATE-

[+sib-head], where the domain is constituted by φ-heads. Such a constraint, however, is 

always vacuously satisfied. Simply put, a φ-head is always part of a correspondence 

domain because of the axiom on the head (xi). I better illustrate this point in § 2.4.1.1. 

2.3.1.2 Differences with CORR constraints 

A CORR constraint parses each consonant, and once it finds a consonant X with the 

desired feature [αf], it parses each other consonant to check whether (i) it also has the 

desired feature [αf]; (ii) it is in correspondence with X.  

The most elegant formulation is probably in Bennett (2013/2015), reproduced below 

without the additional restriction on the domain of correspondence, which is irrelevant 

for the current discussion (other definitions may include more complications, such as the 

directionality of the relations).  

(10) Simplified definition of CORR in Bennett (2013:55) 

For each distinct pair of output consonants, X & Y, assign a violation if:  

a. X & Y both have the feature specification [F], and […] 
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b. X & Y are not in the same surface correspondence class. […] 

RELATE constraints are simpler than CORR constraints, in that the constraint only 

refers to a specific feature tier, and so they refer to a smaller (or equal) set of elements, 

and do not check for segment similarity. In other words, RELATE simply scans each 

element with a specific property and checks whether it is in a φ-Correspondence relation.  

Additionally, the constraint definition of RELATE constraints only refers to one 

variable at the time (a feature node), instead of four (the two root nodes and the two 

feature nodes associated with them),21 and the number of operations is linear on the size 

of the domain of the relation.  

Another difference between the definitions of the two constraints relates to similarity, 

a central concept in ABC (Rose & Walker 2004; Hansson 2010). Although the two 

constraints achieve the same effect of inducing similar segments to interact, in segmental 

correspondence the similarity effect is due to a conditional statement in the constraint 

definition (correspond if you share a feature value). In contrast, feature correspondence, 

the similarity effect is more fundamental, since it is the product of the specification of the 

relation itself (that is, of its domain). 

                                                
21 One way of formally determining the complexity of a constraint is to refer to the number of bound 
variables the constraint refers to. The variables range over nodes on a structure, and the number of nodes a 
constraint refers to measures the complexity of that constraint (McNaughton & Papert 1971, Jardine 2015). 
There are CORR constraints that have additional requirements, for example, agreement for an additional 
feature, or being in the same morphological domain. However, the feature correspondence complexity will 
always be higher, since it will also have to encode the basic similarity condition and to operate on the set of 
all segments.  
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Most importantly, CORR constraint definitions are different from MAX and DEP 

constraints, while RELATE constraints form a uniform family of constraints that 

encompasses both I/O- and φ-Correspondence.  

2.3.1.3 IDENT-XY[φ] 

The second correspondence constraint is IDENT-XY[φ], which is defined as follows: 

IDENT-XY(φ) definition. 

For each element x in X assign a violation if: 

a. x dominates a feature node y in φ or it is dominated by a root node that 

dominates a feature node y in φ,22 and 

b. for any of x’s correspondents x′, x′ does not dominate an element in φ. 

Let us take for example the constraint IDENT-IO[+sib]. This constraint is violated 

when an input root node that dominates a sibilant [+sib] corresponds to an output root 

node that does not dominate a feature [+sib].  

Now, let us consider the φ-Correspondence IDENT constraint. In the case of IDENT-IO, 

the definition assigns a violation for each element in I that is unfaithfully mapped. The set 

over which φ-Correspondence constraints iterate is instead the set of all non-head 

features in a tier, such as [+sib]. 

Non-heads are either not in correspondence—in which case they vacuously satisfy 

condition (b)—or they correspond to a head. The constraint thus demands that every pair 

                                                
22 The first disjoint applie to IO-Correspondence while the second disjoint applies to φ-Correspondence. 
They express two similar, complementary conditions, but because of the restrictions in the theory they 
cannot be unified under a single statement. A simplified definition is possible under certain assumptions, as 
discussed at the end of this section.  
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of head-dependent in φ-correspondence be dominated by a root node that dominates the 

same feature φ (i.e., that they agree for a feature φ). For example, the constraint IDENT-

[+sib](+ant) is defined as follows: 

IDENT-[+sib](+ant) definition. 

For each non-head feature node x in (the set of feature nodes) [+sib], assign a 

violation if: 

a. x dominates a feature node y in [+ant] or it is dominated by a root 

node that dominates a feature node y in [+ant], and 

b. for any of x’s correspondents x′, x′ does not dominate an element 

[+ant]. 

Simply speaking, the constraint demands that elements in correspondence agree for a 

specific feature value. φ-Correspondence IDENT constraints are more numerous than I/O-

Correspondence IDENT constraints. In the case of I/O-Correspondence, there is only one 

relation type, which connects input to output root nodes, while for φ-Correspondence, 

there is an IDENT constraint for each feature for which a φ-Correspondence can be 

instantiated (e.g., IDENT-[+ant], IDENT-IO[+sib], IDENT-IO[+voc], and so on).  

For each of these IDENT classes, the IDENT constraint may demand identity for any 

specific feature (e.g., IDENT[+sib](ant), IDENT[+sib](retroflex), etc.). Empirically, there is 

an evident correlation between elements in correspondence and the outcome of the 

harmony (the X and [φ] in the IDENT-XY[φ] schema). [+sib] features most often agree on 

[+ant], but the opposite never occurs; it is common for obstruents to agree in voicing, 

while the opposite is unattested.  
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In a geometry where, for example, [+sib] nodes dominate [ant] nodes, one could 

replace condition (a) of the definition with one that is simply satisfied when elements in 

correspondence dominate the same node. In addition to constituting a more elegant 

definition of IDENT, this assumption would predict the relation between features 

determining which segments agree and their outcome in harmony. However, the 

introduction of such a geometry would require assumptions and empirical justifications 

that are irrelevant for the goal of this dissertation.  

2.3.2 Other correspondence constraints 

This dissertation focuses on RELATE-X and IDENT-XY constraints. However, 

Correspondence Theory establishes a series of other constraints that encode basic 

properties of formal relations, such as injection/surjection (UNIQUE-X) and linear 

ordering among elements in relations (CONTIGUOUS-X).  

While I do not discuss any of these constraints in depth, in the following section I 

provide a definition of the constraints and a description of their empirical effect. In 

section 7.1, I discuss a series of patterns where these constraints play a fundamental role.  

2.3.2.1 UNIQUE-X 

While RELATE-X favors elements that are in correspondence, UNIQUE-X is the first of a 

series of constraints that instead limits correspondence relations. UNIQUE-X penalizes 

one-to-many correspondence relations and corresponds to UNIFORMITY and INTEGRITY 

(McCarthy & Prince 1995). 
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Like RELATE-X, I define UNIQUE-X as a single constraint schema with two variables 

that ranges over the domain and range of correspondence types. The constraint schema 

penalizes one-to-many relations (e.g., non-injective relation), and I define it as follows. 

UNIQUE-X definition. 

Given the correspondence relation ℛX-Y, assign a violation for each element x in X 

that corresponds to an element y in Y if there is another element z in Y that also 

corresponds to x. 

The same constraint schema applies to φ-Correspondence, and as in the case of 

RELATE-X, a constraint exists for each φ-Correspondence type. An example of a UNIQUE-

X constraint applied to φ-Correspondence is given below. I have slightly reworded the 

formulation to make it clearer for φ-Correspondence, but the constraint definition 

obtained from the schema above is the same. 

UNIQUE-[+sib] definition. 

Given the correspondence relation ℛ[+sib], assign a violation for each head h in 

[+sib-head] (x in X) that corresponds to a non-head y in [+sib] (y in Y) if there is 

another non-head z in [+sib] (z in Y) that also corresponds to h. 

In other words, the constraint penalizes heads with multiple dependents. Empirically, 

UNIQUE-X constraints limit “feature spreading,” as in the case of non-iterative 

assimilation (see Kaplan 2008 and section 7.1).  

The three structures in (11) show how UNIQUE-[+sib] is evaluated. In (11), a head is 

in correspondence with just one dependent (with the first sibilant not being in any φ-
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Correspondence relation). The candidate does not violate UNIQUE-[+sib] since there is no 

other element in addition to •7 that corresponds to the head •8. Empirically, the structure 

represents a phenomenon of spreading that is limited to a single target and then stops (see 

193 for an example). 

(11) One-to-one correspondence satisfies UNIQUE-X 

 

The constraint assigns “a violation for each head h in [+sib-head] (x in X),” and so it 

is vacuously satisfied when no element is in correspondence, since feature heads only 

exist as part of φ-Correspondence relation.  

Finally, a candidate in correspondence with three dependents violates UNIQUE-X only 

once. The definition could be modified by assigning a constraint for each dependent in 

addition to the first. However, because of the high number of elements required to create 

such configurations, it is hard to find a language where such a candidate plays a 

significant role, and therefore I assume this simpler definition. 

As in the case of RELATE-X, we do not observe the presence of two constraints 

UNIQUE-X that refer to head and non-head feature nodes, and the reason is the same: 

because of the axiom on heads, a dependent cannot correspond to two heads (see section 

2.4.1.1), so no candidate is ever generated that violates UNIQUE-φ constraints.  
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2.3.2.2  CONTIGUOUS-X 

CONTIGUOUS-X corresponds to CONTIGUITY constraints (McCarthy & Prince 1995), 

although they have a slightly different definition to adapt them to φ-Correspondence. The 

concept behind them is the same though: elements in correspondence must form a 

contiguous sequence. In other words, no gaps between elements in correspondence are 

allowed. The definition is the following. 

CONTIGUOUS-X definition. 

For each x and y in the set of all elements ⋃ℛX-Y23 in ℛX-Y, if x precedes y, assign a 

violation for each element w not in ⋃ℛX-Y that follows x but precedes y. 

The constraint looks at the set of all elements in a relation (not at the set of ordered 

pairs of the relation). Then, for each pair of elements, it assigns a violation if there is an 

intervening element (within the precedence chain of elements with the same properties) 

that does not participate in that type of correspondence relation.  

To exemplify, consider the definition of CONTIGUOUS-[+sib] constraint applied to the 

structure in (13). 

CONTIGUOUS-[+sib] definition. 

For each x and y in the set of all elements ⋃ℛ [+sib] in ⋃ℛ [+sib], if x precedes y, 

assign a violation for each element w not in ⋃ℛ[+sib] that follows x but precedes y. 

                                                
23 I use the notation ⋃ℛX-Y to indicate the set obtained from the union of each x, y in the set of 
pairs <xn, yn> in ℛX-Y. In notation: ∀p ∈ ℛX-Y, π1(p) ∪ π2(p), where π1 indicates the first coordinate 
of the pair, and π2 the second coordinate.  
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The constraint first iterates over the set of all elements that participate in the relation 

ℛ [+sib], namely •6, •8. When x = •6 and y = •8, the constraint assigns a violation mark 

because there is an element w = •7 that follows x (= •6), precedes y (= •8), and does not 

belong to ⋃ℛ [+sib] (= {•6, •8}). Notice that if •7 were in correspondence with •8, the 

constraint would not be violated. 

(12) CONTIGUOUS-[+sib] violations. 

  

The constraint favors spreading to the nearest target and plays a fundamental role in 

cases where harmony is limited because of blocking, in non-iterative harmonies and in 

strictly local spreading (see section 7.1 for a discussion). 

Let us now consider the two cases of I/O-Correspondence relations represented below 

and show how the same definition applies to I/O pairs. 

In (13a), the set of elements that participate in the I/O-Correspondence relation 

includes the three elements {•1, •2, •4}. The constraint binds the variables x and y to each 

element in this set. Crucially, when one of the variables is •1, the constraint is vacuously 

satisfied, since there is no precedence relation between •1 and the two other elements •2 

and •4. The condition “follows x but precedes y” cannot be satisfied.  
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(13) CONTIGUOUS in I/O-Correspondence 

a. One violation by 2, 4 

 

b. No violation 

 

However, the constraint is violated when x = •2 and y = •4. Like in the case of 

CONTIGUOUS-[+sib] above, there is an element w = •3 that follows x (= •2), precedes y (= 

•4), and does not belong to ⋃ℛ [+sib] (= {•1, •2, •4}), so the constraint is violated.  

In (13b), there is no precedence relation between 1 and elements 2 and 3. 2 and 3 are 

related by a precedence relation, but there is no element intervening, and so the constraint 

is not violated. 

2.3.3 Interim summary 

In this section, I introduce the four constraint schemas RELATE-X, UNIQUE-X, 

CONTIGUOUS-X, and IDENT-XY. I argue that the same definitions apply to both I/O-

Correspondence and φ-Correspondence constraints, and that different effect on the 

representation is entirely due to the effects contingent the properties of the elements they 

act on. 

Given these definitions, I conclude that φ-Correspondence also satisfies Hypothesis 

II, reproduced below.  

 



50 
 

 
 

Hypothesis II (correspondence constraints).  

For each relation type I/O Correspondence, O/I Correspondence, and all φ-

Correspondence, there is a proper set of constraints that adhere to the same set 

of correspondence constraint schemas. (xv) 

2.4 φ-heads 

A crucial component that distinguishes φ-Correspondence from ABC and I/O-

Correspondence is φ-heads. In this section, I define φ-heads with more precision.  

I start by looking at the axiom that subsumes all phonological heads and show that it 

is the only axiom required to define φ-heads (§ 2.4.1.1). I demonstrate how some 

theorems derived from this axiom limit the range of φ-Correspondence relations and 

explain its limited generative power as compared to I/O-Correspondence (§ 2.4.1.2).  

Finally, in § 2.4.2, I demonstrate that the two constraint classes that govern the 

distribution of φ-heads in the output are both derived by two well-attested classes of 

constraints, namely Generalized Alignment (§ 2.4.2.1) and Positional Faithfulness 

constraints (§ 2.4.2.2). 

2.4.1 The property of φ-heads 

2.4.1.1 The head axiom 

In section 2.1.1, I defined headedness as a cumulative property of an element. Unlike 

derivational and interpretable properties, the presence of the head property on an element 

does not impose any restrictions on the other properties of that element. Nevertheless, the 
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distribution of heads is still governed by a single axiom, which applies to all phonological 

heads in the theory. I define it as follows: 

Axiom VI (unique headedness).  

A head defines a unique element among a set of elements with the same 

interpretable properties connected by a binary relation ℛ. (xvi) 

Head elements are parasitic on another heterogeneous binary relation (dominance or 

correspondence). The relation defines a field where the head operates. In other words, a 

head is always a head of a set of elements, a field, which is defined by a binary relation. 

This definition is commonly assumed in definitions of headedness in the literature. 

Let us consider prosodic heads as an example. A head foot is a foot that is a head of the 

domain defined by the dominance relation of its dominating node (let us say, the prosodic 

word). Its status as head is defined with respect to other feet that are non-heads and that 

are dominated by the same node (i.e., are in the same domain).  

The same goes with syllables. A head syllable exists as a special syllable in the 

domain defined by all the syllables dominated by the same foot. There cannot be two 

head feet dominated by the same prosodic word (i.e., two primary stresses), and there 

cannot be two head syllables dominated by the same foot.  

In the case of φ-Correspondence, the field is defined by correspondence relations. In 

particular, a φ-head is the head of a correspondence field, which is defined by the set of 

elements in φ-correspondence. In (14), the head •3 is the head of the field {•2, •3}[+sib] 

defined by the correspondence relation ℛ[+sib] = {{⟨•3, •1⟩, {⟨•3, •2⟩}. 
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(14) Domain of the φ-head •3 

 

Notice that the axiom does not state which elements can be heads. In fact, I assume 

that only output feature nodes and output prosodic nodes can have the properties of 

headedness. Having heads in the input unnecessarily complicates the theory without any 

evident advantage. The possibility of having head root nodes is instead discussed in 

section 7.1.1.  

Finally, I can derive three theorems (or generalizations) from the axiom on heads. 

The first one is defined below.  

Theorem III (split head). A dependent can be headed by at most one element.24 (xvii) 

The generalization states that a feature node can be headed by one and only one element. 

In other words, a dependent cannot correspond to two different heads. If that were to 

occur, the field of the relation would include two heads, which is a violation of the 

condition on the axiom that states that a head is a “unique” element in the set.  

The other theorem states that φ-heads can only exist if they correspond to another 

feature. To prove it, I introduce the following lemma, which is a reformulation of Axiom 

VI applied to φ-Correspondence. 

                                                
24 I could specify “for each relation type ℛX-Y.” but it is unnecessary to do so in our model. Because of the 
distribution of dominance and correspondence relation types, no element can be headed or can be head of 
two different types of domain. In other words, the domains defined by prosodic heads never overlap with 
the domains defined by φ-heads. 
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Lemma (unique headedness).  

A φ-head defines a unique element among a set of elements connected by a φ-

Correspondence relation.  (xviii) 

The argument to prove Theorems VI below goes as follows. To have a head, you need a 

binary relation. To have a φ-head, you need a φ-Correspondence relation. A φ-

Correspondence relation can only exist between a head and a dependent. Therefore, 

having a head entails having a correspondent. This theorem is fundamental in the case 

studies, since it allows us to exclude all the problematic candidates that contain heads 

with no dependents.  

Theorem IV (no stranded heads). A φ-head must correspond to a dependent.  (xix) 

2.4.1.2 Examples 

To summarize, a candidate is well formed if and only if: 

1. Each instance of a φ-Correspondence relation occurs among nodes with the same 

feature value, and 

2. Each instance of a φ-Correspondence relation occurs between one head and one 

or more dependent (a non-head feature node in a φ-Correspondence relation), and 

3. Each feature node is in at most one φ-Correspondence relation. 

Two dependents in correspondence or two heads in correspondence violate the axiom 

of heterogeneity of Correspondence and therefore they are not generated as output form 

of a candidate. 
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Elements in φ-Correspondence must also be feature nodes of the same value. For 

instance, the form in (15a) violates the maximal distance axiom, which requires that two 

elements in correspondence have the same interpretable properties.  

Finally, (15b) violates the split headedness theorem, since a single dependent is 

related to two heads. 

(15) Some examples of ill-formed φ-Correspondence relations 

a. An ill-formed structure violates the minimal distance axiom 

 

b. An ill-formed structure violates the split-headedness theorem 

 

2.4.1.3 Cumulativity 

Before concluding this section, I briefly discuss why headedness is a cumulative property. 

Headedness is cumulative in the sense that it only adds to the existing properties of an 

element. A foot head has all the properties of a foot, in addition to the property of being a 

head, and the same applies to syllable heads in prosodic theories and to feature heads. 
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Being a head cannot deprive an element from its other properties, nor does it create a new 

“constituent.”  

This is a fundamental assumption of φ-Correspondence. To make heads constituents, 

I would have to postulate a different (interpretable) property for each of the properties 

compatible with headedness (e.g., [+sib]+H vs. [+sib]-H, σ+H vs. σ-H, and so on.).  

In addition to basically doubling up on the number of interpretable properties, such a 

theory would have several other consequences: constraints that refer to an element with 

an interpretable property (e.g., feet or a feature node) refer to all elements with those 

properties, regardless of their head status. For example, IDENT-IO([+sib]) is violated by 

heads and non-heads alike. Precedence is also blind to headedness because heads are 

ordered with respect to elements with the same interpretable and derivational property.  

2.4.2 Constraints on φ-heads 

2.4.2.1 ALIGN(φ-head) 

Now that I have defined where heads can be assigned, I can proceed to define the 

constraints that determine the distribution of heads in the candidates. Head status is 

assigned freely to feature nodes in the output within the limit of well-formedness 

specified in the previous two sections.  

I start with ALIGN(φ-head). In chapter 3, I show that in Chumash, the harmonizing 

feature is always determined by the rightmost sibilant in the word. In Optimality Theory, 

references to constituents’ edges and directionality are predominantly analyzed as an 

effect of Generalized Alignment constraints. McCarthy and Prince (1993:2) provide the 

following generalized schema. 
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(16) ALIGN(Cat1, Edge1, Cat2, Edge2) definition (McCarthy & Prince 1993) 

∀ Cat1 ∃ Cat2 such that Edge1 of Cat1 and Edge2 of Cat2 coincide, 

where: 

Cat1, Cat2 ∈ PCat ∪ GCat 

Edge1, Edge2 ∈ {Right, Left} 

The schema defines the set of possible constraints that can be obtained by replacing 

the variables GCat with morphophological categories (root, stem, reduplicant, etc.), the 

variable PCat with phonological constituents (syllable, foot, etc.), and the variables 

Edge1 and Edge2 with the right or left edge of these constituents. An example of an 

alignment constraint is the following: 

(17) Align-PrWd ≔ Align(Ft, R, PrWd, R) 

The constraint requires that the two phonological constituents—PrWd (prosodic 

word) and Ft (foot)—be aligned at their respective right edges. 

The φ -head alignment constraint in (14) follows the same schema of Align-PrWd, 

the only difference being that in ALIGN(φ-head, R), the second PCat variable refers to the 

φ-head instead of the foot. Using McCarthy and Prince’s (1993) notation, we have: 

ALIGN(φ-head, R) ≔ ALIGN(φ-head, R, PrWd, R). 
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For example, ALIGN([+sib-head], R) is violated once in the output [(ʃ)atyas]ω, since 

the sibilant head feature node is separated from the right edge of the prosodic word by the 

only other sibilant node.25 

The generalized alignment constraint definition refers to properties not introduced in 

the theory. The following definition follows the Generalized Alignment schema but uses 

the formalism of the current theory.26 For example, the constraint that refers to [+sib] 

nodes can be paraphrased as follows. 

ALIGN([+sib-head], R, ω, R) := Align([+sib], R) definition. 

For each [+sib-head] feature node x in the output, assign a violation if there is 

another [+sib] feature27 node that follows x and it is part of the same prosodic 

word.  

For example, in the form [sxo(ʃ)xas]ω the three [+sib] nodes are all dominated by the 

same ω. The head (ʃ), which represents a [+sib] head, is not aligned to the right edge of 

the word, and therefore ALIGN([+sib-head], R) is violated once. Notice that it does not 

matter whether or not the intervening [+sib] feature node is in correspondence with the 

head. A precedence relation is established on the [+sib] tier regardless of correspondence. 

Instead, the form [ʃxo(s)xat]ω does not violate the alignment constraint. The head 

sibilant feature node is the rightmost feature node in the word, even though it is not the 

rightmost segment. The constraint evaluates feature nodes in the precedence relation, and 

                                                
25 Recall that only feature nodes with the same feature value are in the precedence relation.  
26 Notice that the constraint is categorial. It is violated only once, regardless of the number of intervening 
elements. In my knowledge, there is no theoretical or empirical reason to prefer the gradient or the 
categorial definition in φ-Correspondence, and so I just assume the simpler categorial formulation.  
27 Or simply an element, since only [+sib] feature nodes can follow a [+sib-head]. 
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only feature nodes with the same value are in the relation. The word-final [t] does not 

have [+sib] feature node and therefore does not intervene between the second sibilant and 

the right edge of the word. 

2.4.2.2 Ident-IO(φ-head) 

The second class of φ-head constraints is comprised by the positional faithfulness 

constraints of the type IDENT-IO(φ-head). IDENT-IO(φ-head) is violated when a head 

feature node is not faithful to its input I/O correspondent. More specifically, the 

constraint is violated by any output node that dominates a head φ-feature and has an input 

correspondent that does not dominate a matching φ-feature. 

(18) IDENT-IO(φ-head) definition.  

Assign a violation for each output root node x that dominates a head feature h if: 

a. x dominates an element φ, and 

b. any correspondent of x does not dominate an element φ′, 

…where φ and φ′ have the same interpretable property. 

Positional faithfulness constraints are IDENT-IO faithfulness constraints that refer to 

specific prosodic positions (e.g., IDENT-IO(Head-σ), in Alderete 1995:14), morphological 

positions (e.g., IDENT-IO(root), in McCarthy & Prince 1995; Beckman 2013) or 

phonological constituents (e.g., IDENT-IO(onset), Lombardi 1999; Padgett 2002). IDENT-

IO(φ-head) is then a positional faithfulness constraint that refers to a phonological 

constituent, of the same kind as IDENT-IO(onset).  
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(19) IDENT-IO(root) definition. 

 Assign a violation for each output node x that has the root property if: 

a. x dominates an element φ, and 

b. any of its x′ correspondents do not dominate an element φ′, 

…where φ and φ′ have the same interpretable property. 

Tableau (20) shows how IDENT-IO(φ-head) and the other φ-head constraints are 

evaluated. Candidates (20a–b) have their φ-heads aligned to the right edge of the word 

and therefore do not violate ALIGN(+sib-head, R).  

In both candidates, the head is the rightmost segment in correspondence, and the two 

segments harmonize. The difference is that in candidate (20a), the φ-head is mapped 

faithfully, while in (20b) the φ-head is changed to [−anterior] and thus violates IDENT-

IO(φ-head).  

The output of candidate (20c) is phonetically identical to the output of candidate 

(20b), since correspondence relations are not phonetically realized. The conditions under 

which the two candidates are optimal are not the same, though. Candidate (20b) is 

favored by ALIGN(+sib-head, R), while candidate (20c) is favored IDENT-IO(φ-head) and 

IDENT-IO(−ant).  
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(20) Constraints on φ-heads 

Input Output 

ID
EN

T-IO
(+sib) 

R
ELA

TE-[+sib]  

ID
EN

T-[+sib](ant) 

ID
EN

T-IO
(φ-head) 

A
LIG

N([+sib-head], R
) 

ID
EN

T-IO
(−ant) 

ID
EN

T -IO
(+ant)  

ʃ…s a. sx…(s)x      *  

 b. ʃx…(ʃ)x    *   * 

 c. (ʃ)x…ʃx     *  * 

 Nd. (s)x…sx    * * *  

Candidate (20d) is harmonically bounded by candidate (20a). The φ-head is not 

aligned to the right edge of the prosodic word, and it is not faithful. The candidate thus 

violates both φ-head constraints ALIGN(+sib-head, R) and IDENT-IO(φ-head), as well as 

the faithfulness constraint IDENT-IO(−ant). 

(21) Harmonically bounded candidates for harmonic inputs 

Input Output 

 ID
EN

T-IO
(+sib) 

 R
ELA

TE-[+sib] 

 ID
EN

T- [+sib](+ant) 28 

 I D
EN

T- IO
(φ- head) 

 A
LIG

N( +sib-head, R
) 

 I D
EN

T- IO
(ant) 

s…s a. sx…(s)x       

 N b. sx…sy  *     

 Nc. (s)x…sx     *  

 N d. tx…sy *      

                                                
28 I use the feature [+ant] here, but because of the definition of the feature properties (a root node dominates 
either a [+ant] or a [−ant] node) either feature value penalizes disagreement of the anterior value between 
the sibilants in correspondence. For a discussion on this issue, see also section 3.4.1. 
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Notice that because of the asymmetry in the constraint system, even in dominant 

languages there are no co-optima for candidates that are already harmonic in the input. 

Since there is only a constraint ALIGN(φ-head, R), and no constraint ALIGN(φ-head, L), 

except for in dissimilation grammars, the output for harmonic inputs is always harmonic 

with a right-aligned head.  

2.4.3 Interim summary 

In this section, I provide a definition of φ-heads. I show that assuming φ-heads does not 

require the definition of a new property, since prosodic heads are independently 

postulated. I also argue that the axiom on heads that applies to φ-heads naturally extends 

to the standard definition of other phonological heads. 

I also demonstrate how φ-heads are a main factor in the superficial distinction 

between I/O-Correspondence and φ-Correspondence and how their existence limits the 

set of possible structures permitted by the theory. 

Finally, I show that the constraints that govern the distribution of φ-heads are 

Generalized Alignment (§ 2.4.2.1) and Positional Faithfulness constraints (§ 2.4.2.2). 

Both families of constraints are independently motivated and related to the distribution of 

other phonological heads in many theories. 

2.5 Beyond correspondence 

The previous sections were dedicated to correspondence. In this section, I briefly 

introduce the axioms on dominance and precedence relations to contrast them to φ-

Correspondence.  
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2.5.1 Totality 

I briefly touched on totality in section 2.3.1.1, when I defined the constraint RELATE. The 

axiom of totality requires that all elements in the domain of a relation be related to at 

least one element in its range. A formal definition is given below.  

Definition (totality).  

A relation is total iff for each element x in the domain of a relation R is related to 

at least an element y in the range of R. (xx) 

Totality is an axiom of dominance in the theory. This should not be surprising. Under 

most models of the prosodic hierarchy, each element in the prosodic tier is associated to 

at least one element on a lower level. In other words, no floating prosodic constituent is 

allowed in the output.  

For example, because of totality every foot dominates at least a syllable. A 

representation with a floating foot constitutes an ill-formed representation. Notice that the 

opposite is not true: a syllable never dominates a foot. For this reason, dominance is only 

right-total. Likewise, floating features nodes are disallowed in the system. 

For correspondence relations, totality is not an axiom. In fact, in section 2.3.1.1 I 

show that RELATE-X constraints favor candidates with left-total relations, in that they 

only penalize structures where elements in the domain are not in correspondence.  

2.5.2 Surjection 

Another common property of heterogeneous relation is surjection, which is defined as 

follows: 
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Definition (surjection).  

A relation is surjective iff each element x in the range of a relation R is related to 

at most one element y in the domain of R. (xxi) 

While surjection bans one-to-many mappings from the domain to the range, injective 

relations do not permit one-to-many mappings from the domain to the codomain. An 

example of a non-injective (22a) and of a non-surjective (22b) relation are given below. 

(22) Example (non-)injection 

a. A non-injective relation   b. A non-surjective relation 

 

Non-surjection and injection are axioms of dominance relations. This is also a 

standard assumption. Let us consider the relation between feet and syllables. A foot can 

dominate several syllables (22a), but a syllable cannot be dominated by multiple feet. 

Likewise, a root node is usually assumed to be dominated by only one syllable, although 

a syllable might dominate multiple segments.29 

                                                
29 Some theories violate this axiom. For example, ambisyllabicity is a violation of surjection since the same 
segment belongs to two syllables. In Hyde (2001), a syllable can be parsed into multiple feet.  
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Autosegmental relations are non-surjective and non-injective at the subsegmental 

level. Assimilation is obtained when a feature node is associated to two different root 

nodes (possibly by transitivity via an intermediate C/V-node).  

In correspondence theory, non-injective and non-surjective relations are possible but 

penalized. Whenever there is a disparity between the number of elements in a domain and 

the number of elements in the codomain a constraint is necessarily violated. If the extra 

elements are not related, RELATE-X constraints are violated; otherwise, the extra elements 

must be related to more than one element, in which case UNIQUE-X is violated. 

In φ-Correspondence, whenever assimilation causes the spreading of a feature to 

more than one segment, injection is violated, since the configuration is realized as a head 

in correspondence with two or more dependents. 

2.5.3 Properties of homogeneous relations 

As argued in section 2.2.1.5, precedence is a homogeneous relation. The other axiom of 

precedence is connectedness, defined below. 

Definition (connectedness).  

A relation R is connected if each pair of elements in the domain of R is joined 

by a sequence of pairs in R. (xxii) 

The axiom is quite inconsequential for φ-Correspondence, but notice that like totality 

for dominance, the axiom is possibly violated by theories with floating feature elements. 

The introduction of floating elements would thus significantly affect the restrictiveness of 
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the theory, since it requires the relaxation of two axioms of its relations.Precedence in the 

theory is also irreflexive and transitive, as defined below.  

Definition (irreflexivity). A relation R is irreflexive if Ra,b entails that a ≠ b. 

Definition (transitivity). A relation R is transitive if Ra,b and Rb,c entails Ra,c. 

2.5.4 Interim summary 

In this section, I briefly discuss some axioms of the other two relations in the model: 

precedence and dominance. Although the focus of this dissertation is on correspondence, 

I show that the definition of the relations in the system either sheds some light on the 

axiom of correspondence, or it has fundamental repercussions on the definition of 

correspondence relations and correspondence constraints. 

I argue that the axioms of dominance are either axioms of correspondence or that they 

are realized as soft constraints, thus showing that the two relations are underlyingly more 

similar than previously assumed. I also argue that the definition of precedence has a 

significant impact on the definition of correspondence relations and constraints. Within 

the current theory, I can adopt a restrictive definition of precedence, which permits 

limiting the computational complexity of the theory. 
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3 Directional harmony in Chumash 

3.1 Introduction 

In this chapter, I go through the first full analysis of the dissertation. I start with the well-

known case of consonant harmony in (Ineseño) Chumash.  

In Chumash, all sibilants in a word agree in anteriority, and the value of the feature 

[anterior] is solely determined by the value of the rightmost sibilant in the word. An 

example is given below.  

(23) Sibilant harmony in Chumash, basic pattern. (Applegate 1972:200; gloss adapted). 

a. /ha-s-xintila-waʃ/ → [haʃxintila-waʃ] ‘his former Indian name’ 

  cf. /ha-s-xintila/ → [hasxintila] ‘his Indian name’ 

φ-Correspondence elegantly captures this pattern because of the constraints on φ-head 

alignment and φ-head faithfulness. The analysis is exemplified by the candidate /ha-s-

xintila-waʃ/ → [haʃxxintila-wa(ʃ)x]. In the output form, the two sibilants are in 

correspondence, and they must agree for the value of [anterior]. The head is right-aligned 

to the rightmost [+sibilant] feature node, and so it does not violate ALIGN([+sib-head], 

R).  

The positional faithfulness constraint IDENT-IO([+sib-head]) then determines the 

value of the assimilation, based on the position of the head. 
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Despite the simplicity of the pattern, standard treatment in ABC is either 

unsatisfactory or requires the use of constraints that alter fundamental assumptions in OT 

(see section 3.4.1). 

In φ-Correspondence, instead, the analysis does not require the postulation of any 

non-standard OT constraint or a modification of the theory. Rather, the directionality 

pattern is captured by the interaction between the independently motivated alignment, 

positional faithfulness, and standard correspondence constraints.  

3.1.1 Chumashan languages 

Chumashan languages are a family of languages formerly spoken in Southern California 

by the Native American Chumashan people. Chumashan languages have been well 

studied by both descriptive and theoretical phonologists, in particular with reference to 

the process of sibilant harmony analyzed here (Beeler 1970; Applegate 1972; Harrington 

1974; Poser 1982, 2004; Shaw 1991; Hansson 2001/2010; McCarthy 2007; among 

others). 

There are at least three Chumashan languages that show a certain degree of sibilant 

harmony, Ineseño (or Ynezeño, now Samala), Barbareño, and Ventureño. I focus on 

Ineseño since it has been the language most discussed in the theoretical literature 

(Harrington 1974; Poser 1982, 2004; Shaw 1991; Gafos 1996; Hansson 2001/2010; 

McCarthy 2007; among others) and probably the best documented (Applegate 1972), and 

because of the three languages it is the one that shows the clearest case of sibilant 

harmony (Poser 2004). 
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King (1969) established the number of speakers of speakers of Chumashan languages 

in pre-contact times at about 10,700 and 17,250. Unfortunately, no first-language speaker 

remain today 

3.1.2 Consonant inventory 

Chumashan languages have a rich consonantal system, shared by all languages in the 

group (Applegate 1972:8). They distinguish plain, glottal, and aspirated consonants, 

although aspirated consonants seem to be less frequent and more constrained with respect 

to the contexts in which they can appear (all data in this chapter is converted to IPA).  

The same distinction is maintained for the sibilants, which in addition to plain [s, ʃ], can 

also be aspirated [sh, ʃh] or glottalized [sˀ, ʃˀ]. The glottal contrast is reduced to 

plain/glottalized for the series of sonorants. 

 
 Labial Dental Palatal Velar Uvular Glottal 

Nasal plain m n 
    

 
glottalized ˀm ˀn 

    
Plosive plain p t 

 
k q ʔ 

 
ejective pʼ tʼ 

 
kʼ qʼ 

 

 
aspirated pʰ tʰ 

 
kʰ qʰ 

 
Affricate plain 

 
t͡ s t͡ ʃ 

   

 
ejective 

 
t͡ sʼ t͡ ʃʼ 

   

 
aspirated 

 
t͡ sʰ t͡ ʃʰ 

   
Fricative plain 

 
s ʃ X 

 
h 

 
ejective 

 
sʼ ʃʼ xʼ 

  

 
aspirated 

 
sʰ ʃʰ 

   
Approx. plain 

 
l j w 

  

 
glottalized ˀl ˀj ˀw 
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The table above highlights all 12 sibilants in the language. Recall that within a root, 

all sibilants agree in anteriority (palatal), but maintain all other features. The sibilants in 

the column alveolar change to match their palatal correspondents. 

In addition to anteriority, we can distinguish two series of sibilants based on their 

manner of articulation (fricative and affricate), or three series based on their glottal 

specification (plain, aspirated, glottalized). The sibilants are not distinguished for voicing.  

3.1.3 Directional harmony 

All sibilants in a word share the same feature value [anterior] in Chumash, and the 

harmonizing value is determined by the underlying value of the rightmost sibilant in the 

output. The generalization is illustrated by the data in (24) below.  

(24) Directional harmony in Chumash (data from Applegate 1972, vMcCarthy 2007:2) 

/ha-s-xintila-waʃ/ → [haʃxintilawaʃ] ‘his former Indian name’ (p. 200) 

cf. /ha-s-xintila/ → [hasxintila] ‘his Indian name’ (p. 200) 

/s-iʃ-sili-ulu-aq-pej-us/ → [sisʰiluleqpejus] ‘they (dual) want to follow it’ (p. 333) 

cf. /p-iʃ-al-naˀn/ → [piʃanaˀn] ‘don’t you (dual) go!’ (p. 109) 

In (24a), the rightmost sibilant has the feature value [−anterior]. The other sibilant in 

the word is /s/, but because it is followed by a [−anterior] sibilant, it surfaces as [ʃ]. 

Chumash has directional harmony, because the harmonizing feature is determined by the 

rightmost sibilant in the prosodic word, regardless of the morphological position or the 

feature value of the segment. This is shown by (24a), where the target of assimilation is 

[+anterior], and by (24b), where the target is [−anterior]. 
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As previously mentioned, harmony occurs regardless of the glottal specification. 

Plain, glottal, and aspirate sibilants all harmonize even if they do not share the same 

glottal features (aspirated, glottalized). In other words, the only features determining the 

segments that participate in the harmony is [+sibilant]. 

(25) Harmony includes aspirated and glottalized affricates (data from Applegate 1972, 

also cited in Hansson 2001:58-59) 

/s-api-tʃho-it/ → [ʃapitʃholit] ‘I have a stroke of good luck’ (p. 89) 

/s-api-tʃho-us/ → [sapitsholus] ‘He has a stroke of good luck’ (p. 118) 

Harmony is also independent of the morphology. All data reported in the literature 

concerns the entire “word” and ignores any morphological boundary. Since there is no 

process that distinguishes between morphological and phonological words, I can safely 

assume that morphological and phonological word boundaries align and will simply use 

the term “word” to refer to either one of them. Unfortunately, there is no data on 

compounds.  

(26) Harmony independent of the morphology (past /-waʃ/) (ibid.) 

/s-api-tʃho-us/ → [sapitsholus] ‘he has a stroke of good luck’ (p. 118) 

/s-api-tʃho-us-waʃ/ → [ʃapitʃholuʃwaʃ] ‘he had a stroke of good luck’ (p. 119) 

Russell (1993) proposed that harmony in Chumashan languages is phonetic. Poser 

(2004) shows that the criticisms advanced against the phonological nature of the 

phenomenon are either not true for Ineseño, are empirically questionable, or are not a 

diagnostic. McCarthy (2007) further defends the phonological nature of the process by 



71 
 

 
 

using loanword adaption as evidence of the synchronic nature of the phenomenon. A few 

exceptions to generalizations are recorded in Applegate (1972:164). 

(27) Harmony in loanwords (data from Applegate 1972:164, also see McCarthy 2007:2) 

/k-sapatu-Vtʃ/ → [kʃapatutʃ] ‘I wear shoes (zapato)’ (< Sp. zapato) 

/s-kamisa-Vtʃ/ → [ʃkamiʃatʃ] ‘he wears a shirt (kamisa)’ (< Sp. camisa) 

Finally, Chumash has a process that neutralizes [+ant] sibilants to [-ant] when they are 

immediately preceded by another coronal, such as [s], [l] or [n] (28). This process 

interacts with long-distance agreement: neutralized sibilants do not undergo but do 

trigger harmony (29).  

(28) Sibilant neutralization before coronals (data from Applegate 1972; also see 

McCarthy 2007:2) 

 /s-tepuʔ/  →  [ʃtepuʔ] ‘he gambles’ (p. 117) 

 /s-loxʼ-itʼ/  →  [ʃloxitʼ] ‘he surpasses me’ (p. 10) 

(29) Neutralized sibilants do not undergo but trigger harmony (data from Applegate 

1972; also see Poser 1993:318, also cited in Hansson 2001:59) 

 /s-ti-jep-us/ →   [ʃtijepus] ‘he tells him’ (p. 120) 

 /s-is-tɨʔ/ →   [ʃiʃtɨʔ]  ‘he finds it’ (p. 120) 

3.2 Background 

In the following two sections, I introduce the background for the analysis. These sections 

follow a template which is maintained throughout the dissertation. I start with a definition 

of the constraints based on the constraint schemas defined in sections 2.3 and 2.4.2. I then 
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provide a definition of a simplified candidate set, which contains a description of all the 

permutations of elements I justify as necessary and sufficient for the analysis.  

The candidates, the constraints, and the rankings in all the analyses of the dissertation 

were computed using OT Workplace 64 (Prince et al. 2013).  

3.2.1 Constraints 

For the analysis of Chumash, I only need the two most fundamental φ-Correspondence 

constraints: RELATE-X and IDENT-φ. Since harmony occurs among sibilants, I use the 

constraint RELATE-[+sib] to govern the distribution of sibilant nodes in correspondence. 

Sibilants in correspondence agree for the feature anterior, so I introduce the IDENT-φ 

constraint ID-[+sib](ant), which is violated when two sibilants in φ-Correspondence do 

not agree for the feature anterior. A simplified definition of the two constraints is given 

below. 

(30) φ-Correspondence constraints in Chumash 

• RELATE-[+sib] 

– Assign a violation for each [+sibilant] feature node that is not in a φ-

Correspondence relation. 

• ID-[+sib](ant) 

– Assign a violation if two nodes in [+sib]-Correspondence have a different 

specification for the feature [anterior].  

Sibilants in Chumash can be mapped unfaithfully to harmonize with other sibilants in 

the word. The outcome of the harmony is mostly determined by the faithfulness sibilant 
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heads ID-IO(+sib-head), which penalizes sibilant feature heads unfaithfully mapped from 

the input.  

In the analysis, I show how ID-IO(+sib-head) determines the outcome of the harmony 

by keeping the head faithful and by enforcing all the sibilants to agree. 

(31) Positional faithfulness in Chumash 

• ID-IO(+sib-head) 

– Assign a violation if a segment has a φ-head and an unfaithfully mapped 

feature. 

A φ-head (i.e., a trigger of the harmony) can be either a [+anterior] or a [−anterior] 

sibilant. Depending on the value of the head, then, harmony may cause an unfaithful 

mapping of the feature [anterior]. I take this possibility into account by using the 

constraints IDENT-IO[+ant] or IDENT-IO[−ant].  

Additionally, an input sibilant may be realized as a non-sibilant, which allows it to 

escape the correspondence requirement imposed by RELATE-[+sib]. This is an example of 

dissimilation candidate in ABC (Rose & Walker 2004, Bennett 2013/2015). To prevent 

these candidates from winning, I include the IDENT-IO constraint that refer to the feature 

defining the correspondence domain ID-IO(+sib). 

(32) IO-Correspondence constraints in Chumash 

• ID-IO(+ant) 

• ID-IO(−ant) 

• ID-IO(+sib) 
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Finally, I need the alignment constraint to determine the position of φ-heads in the 

sibilant tier. I only consider ALIGN([+sib-head], R), since the candidate with the head on 

the rightmost sibilant is always the winner. I assume that the alignment requirement is on 

prosodic words, so the extended constraint definition is ALIGN([+sib-head], R, ω, R). The 

definition of the constraint is given below.  

(33) ALIGN in Chumash. 

• ALIGN([+sib-head], R) := ALIGN(+SIB, R) 

– Assign a violation if there is a head [+sibilant] feature node not aligned to 

the right edge of the prosodic word. 

3.2.2 Candidate set 

I now move on to the definition of the candidate set. For the sake of clarity and concision, 

I abstract only the relevant patterns and elements.  

The elements participating in the harmony process are sibilants and non-sibilants. All 

the sibilants form a homogeneous class, so I do not need to distinguish between place and 

manner of articulation (except for [anterior]). In the candidate set, then, I only consider 

the permutations of the elements [s, ʃ] for the potential target of the harmony, and [t] as a 

general non-sibilant consonant.  

The candidate set is represented by the schema in (34) below. The schema indicates 

the set of all candidates generated by mapping each element defined in the input (left) 

side to all combinations of elements in the output. 
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(34) GEN for Chumash 

a. Mappings  

 ʃ → s, ʃ, t 

 s → s, ʃ, t 

* → faithful30 

b. Other 

All combinations of surface correspondence 

All possible head positions 

One-to-one I/O mapping only 

As indicated by the notation “s → s, ʃ, t”, the first sibilant in the input /s/ can be 

mapped to [s], [ʃ], [t]. The candidate set will thus include the output [ʃxapi(tʃh)xoit], where 

/s/ is mapped to [ʃ]. The second segment is neither /s/ nor /ʃ/, so it is mapped faithfully, as 

indicated by the statement “* → faithful.” 

I also assume that each root node in the input is linearly mapped to one root node in 

the output. In other words, in terms of I/O-Correspondence, I only consider candidates 

that do not violate any I/O-Correspondence constraint other than IDENT-IO. In other 

words, input–output mapping is always one-to-one, so no output results from segment 

epenthesis, deletion, coalescence, or splitting.  

                                                
30 The “*” indicates any other segment (i.e., non-sibilants). There is no constraint that favors 

unfaithfully mapping such segments, so I do not include them in the candidate set. 
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Let us look at an example. The table below contains all but the dissimilation 

candidates for the input /s-api-tʃho-it/ (I omit the non-informative output where the 

anteriority of the sibilants is switched). 

(35) Non-dissimilation candidates for the input /s-api-tʃho-it/ 

  /s-api-tʃho-it/ Correspond Agree Head 

a. a. [sxapi(tʃh)xoit] y n right 

b. b. [(s)xapitʃhxoit] y n left 

c. c. [ʃxapi(tʃh)xoit] y y right 

d. d. [(ʃ)xapitʃhxoit] y y left 

e. e. [sxapi(tsh)xoit] y y right 

f. f. [(s)xapitshxoit] y y left 

g. g. [sxapitʃhyoit] n n N/A 

h. h. [sxapishyoit] n y N/A 

i. i. [ʃxapitʃhyoit] n y N/A 

 

The first distinction is between the outputs where the sibilants are in correspondence 

(35a–f) or not in correspondence (35g–i). Partial correspondence is also possible (e.g., 

two of three sibilants in correspondence) but not considered. Given the current constraint 

set, candidates with more than two sibilants do not provide any additional ranking 

information, since all sibilants always agree, regardless of their number. 

At the segmental level, I include the candidates (35a, b, g) where the sibilants are 

mapped faithfully from the input, candidates (35c, d, h) where they map to [−anterior] 

sibilants, and candidates (35e, f, i) where they map to [+anterior].  
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For elements in correspondence, head status may also vary. Given two elements in 

correspondence, two possible outputs are generated with the head assigned to either the 

right (35 a, c, e) or the leftmost (35 b, d, f) sibilant. Candidates without a φ-correspondent 

(35g–i) cannot have heads. 

3.3 Analysis 

I now move on the actual analysis. I start by discussing the two winning candidates that 

are necessary and sufficient to obtain the ranking for Chumash (§3.3.1). I then contrast 

them with the loser candidates with respect to correspondence (§ 3.3.2) and identity 

(§ 3.3.3). Section 3.3.4 concludes with the full ranking.  

3.3.1 Winning candidates 

There are two mappings that are necessary and sufficient to obtain a complete ranking for 

the harmony process in Chumash. The first candidate unfaithfully maps a sibilant to 

achieve harmony and has a right-aligned [+anterior] sibilant head, /iʃ-tiʃi-jep-us/ → 

[isxtisxijepu(s)x]; the second candidate also harmonizes but has a right-aligned [−anterior] 

head, /s-api-tʃho-it/ → [ʃxapi(tʃh)xoit].  

The following tableau shows the input and the output of each candidate, as well as the 

constraints they violate. Both candidates satisfy all the constraints, except the two 

faithfulness constraints that refer to [anterior]. 
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(36) Two winner candidates in Chumash 

Input Output 

 ID-IO
(+sib) 

 R
ELA

TE-[+sib] 

 I D-[+sib](ant) 

 A
LIG

N([+sib], R
) 

 I D-IO
(+sib -head)  

 ID-IO
( −ant) 

 ID- IO
(+ant) 

a. iʃ-tiʃi-jep-us isxtisxijepu(s)x      **  

b. s-api-tʃho-it ʃxapi-(tʃh)xoit        * 

 

In both candidates, all the sibilants harmonize for the anterior value of the rightmost 

sibilant in the word. The candidates do not violate either of the two φ-Correspondence 

constraints RELATE-[+sib] or ID-[+sib](ant), since all sibilants are in correspondence and 

agree for the feature [anterior].  

ID-[+sib](ant) does not require the segments that are in correspondence to have a 

particular feature value, so it is equally satisfied if all segments in correspondence are 

[+ant] or [−ant], as shown by (36). 

φ-heads in Chumash are always assigned to the rightmost sibilant in the prosodic 

word. ALIGN([+sib], R) is thus also never violated by the winners in (36).  

Finally, harmony is achieved at the cost of unfaithfully mapping the feature [anterior], 

regardless of its value. This is a case where alignment of the head overrides the 

markedness condition that imposes that the outcome of assimilation is a marked feature 

value (§ 6.2). 
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3.3.2 Correspondence  

I now move on to compare the winning candidates to obtain ranking information. 

RELATE-φ constraints demand that each feature φ be in a φ-Correspondence relation. 

However, dispensing with correspondence relations has several advantages. Ident-φ 

constraints only favor identity among segments in correspondence: it is vacuously 

satisfied if no feature node is in correspondence. Likewise, since heads can only exist as 

part of a correspondence relation, IDENT-IO(φ-head) or ALIGN(φ) constraints cannot be 

violated if there is no φ-correspondence.  

The loser candidates in (37a) contain outputs with no φ-Correspondence relations. 

Since there are no φ-Correspondence relations, there are no heads, and therefore no 

violation of any constraints referring to them. Notice that unfaithfully mapping the 

sibilants to achieve harmony would bring no advantage, since the only constraint 

demanding feature identity is ID-[+sib], which is evaluated with respect to nodes in φ-

Correspondence. 

(37) Candidates violating Relate-[+sib] in Chumash 

ERC Input Winner Loser 

 ID-IO
(+sib) 

 R
ELA

TE- [+sib] 

 ID - [+sib](ant) 

 A
LIG

N([+sib], R
) 

 ID -IO
(+sib- head) 

 ID -IO
( −ant) 

1 s-api-tʃho-it ʃxapi(tʃh)xoit sxapitʃhyoit  W    L 
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Nevertheless, the absence of correspondence yields a fatal violation of RELATE-

[+sib]. Since there are two [+sibilant] nodes that are not in correspondence, the constraint 

is violated twice.  

3.3.3 Identity 

Correspondence is a necessary but insufficient condition for achieving harmony. When 

correspondence holds among sibilants in the output, IDENT-φ constraints must be ranked 

above the IDENT-IO constraint that refers to the non-harmonizing feature value. 

In Chumash, the harmonizing feature is determined by the rightmost sibilant in the 

word, which becomes a feature head. Since feature heads are assigned to any [+sibilant] 

node, regardless of their anteriority, the outcome of the harmony varies depending on the 

candidate.  

The ERCs in (38) show how directional harmony is obtained. The selection of heads 

can be affected by three factors: alignment, feature value, and morphological affiliation. 

Chumash has a pure directional harmony, which means that the head is always assigned 

to the rightmost sibilant of the prosodic word. Alignment is more important than both the 

feature value of a segment and its morphological affiliation.  

Purely directional harmony like Chumash are obtained when an alignment constraint 

such as ALIGN([+sib], R) dominates both faithfulness constraints that refer to the feature 

value of the outcome of the harmony, i.e., IDENT-IO(+ant) and IDENT-IO(−ant). 

Additionally, ALIGN([+sib], R) must be ranked above the relevant positional faithfulness 

constraints (e.g., IDENT-IO(root), omitted here).  
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(38) Right-alignment in Chumash 

ERC Input Winner Loser  

 ID-IO
(+sib) 

 R
ELA

TE-[+sib]  

 I D-[+sib](ant) 

 A
LIG

N([+sib], R
)  

 I D-IO
(+sib-head) 

 I D-IO
(−ant) 

 ID-IO
(+ant) 

2 iʃ-tiʃi-jep-us isxtisxijepu(s)x iʃxti(ʃ)xijepuʃx    W  L W 

3 s-api-tʃho-it ʃxapi(tʃh)xoit (s)xapitshxoit    W  W L 

2 ∘ 3 31    W  L L 

 

Having the head in the right position is also a necessary but insufficient condition to 

have directional harmony. The effect of φ-heads in the outcome of harmony is in fact 

mediated by IDENT-IO(φ-head) constraints.  

In the loser candidate in ERC 2 (39), the head (ʃ) is unfaithfully mapped from an 

input sibilant [s] but is still right-aligned. The opposite mapping is shown in ERC 3, 

where the head (s) is unfaithfully mapped from [ʃ]. In both cases, the head is aligned to 

the right, but it is unfaithfully mapped. The losers then violate one of the two IDENT-

IO(ant) constraints, as well as the positional faithfulness constraint on φ-heads IDENT-

(+sib-head).  

 

 

                                                
31 The operator ∘ is used to indicate a ranking condition entailed by two ERCs. (Brasoveanu & Prince 
2005). 
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(39) Ident-IO(φ-head) 

ERC Input Winner Loser 

 ID-IO
(+sib) 

 R
ELA

TE-[+sib] 

 ID-[+sib](ant) 

 A
LIG

N([+sib],  R
) 

 ID-IO
(+sib-head) 

 ID-IO
(−ant) 

 ID-IO
(+ant) 

4 iʃ-tiʃi-jep-us isxtisxijepu(s)x iʃxtiʃxijepu(ʃ)x     W L W 

5 s-api-tʃho-it ʃxapi(tʃh)xoit sxapi(tsh)xoit     W W L 

4 ∘ 5     W L L 

 

In the winner of the ERC 5 (40), the harmonizing feature is [+anterior], since the 

rightmost sibilant in the input is /s/. In the winner of the ERC 5, the harmonizing feature 

is [−anterior] because the rightmost sibilant is /ʃ/.  

Since harmony causes both feature values to be mapped unfaithfully, ID-[+sib](ant) 

has to be ranked above both IDENT-IO(ant) constraints, as shown by the two ERCs in 

(40). 

(40) Surface identity in Chumash 

ERC Input Winner Loser 

 ID-IO
(+sib) 

 R
ELA

TE-[+sib] 

 I D- [+sib](ant) 

 A
LIG

N ([+sib], R
) 

 I D- IO
(+sib-head) 

 I D -IO
( −ant) 

 ID-IO
(+ant) 

6 iʃ-tiʃi-jep-us isxtisxijepu(s)x iʃxtiʃxijepu(s)x   W   L  

7 s-api-tʃho-it ʃxapi(tʃh)xoit sxapi(tʃh)xoit   W    L 
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3.3.4 Summary 

The support for the skeletal basis of Chumash harmony is given in (41). ERC 1 shows 

that ID-IO(+sib-head) must be ranked above the faithfulness constraints that refer to 

[anterior] to avoid dissimilation candidates winning. 

(41) Simplified support for the ranking 

 

Input Winner Loser 

ID-IO
(+sib) 

R
ELA

TE- [+sib] 

ID-[+sib](ant)  

A
LIG

N([+sib], R
) 

I D-IO
(+sib -head) 

I D-IO
(−ant) 

ID -IO
(+ant) 

 Comments 

1 ʃ…s sx…(s)x ʃx…sy  W    L L Correspondence 

2 ʃ…s sx…(s)x ʃx…(s)x   W   L L Agreement 

3 ʃ…s sx…(s)x (ʃ)x…ʃx    W  L L Directionality 

4 ʃ…s sx…(s)x ʃx…(ʃ)x     W L L No Dominancy 
 

To have harmony, the constraints RELATE-[+sib] and ID-[+sib](ant) also have to be 

ranked above the faithfulness constraints that refer to [anterior] (ERC 2–3). 

ERCs 4 and 5 show how directional harmony is obtained. Because ALIGN([+sib], R) 

≫ IDENT-IO(ant), the head of the correspondence relation is always chosen as the 

rightmost sibilant in the word. Since ID-IO(+sib-head) is ranked above Ident-IO(ant), the 

head surfaces faithfully, and causes the other sibilants in the domain to harmonize for its 

[anterior] feature value.  
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3.3.5 Blocking 

The dissimilation cases (Poser 1993:137, McCarthy 2007) do not pose any issue for 

the analysis. The dissimilation is between two adjacent root-nodes in the assimilation. In 

our model, it means it can be targeted by a markedness constraint that refers to the 

precedence relation.  

As in the case for Basque, I postulate a generic markedness constraint that targets the 

banned sequence of adjacent root nodes. Also notice that the previous analysis is 

unaffected by the introduction of this constraint because it can only be violated for /sn/ 

sequences, and in the examples above that was never the case. 

Derived sibilants do not undergo, but trigger harmony. Let us consider the two cases 

separately. Recall that in Chumash, harmony is from right-to-left. In the tableau below, 

the [+anterior] sibilant would normally induce regressive assimilation of all preceding 

sibilants. However, this requirement conflicts with the effect of local assimilation, which 

prefers candidates with the [−anterior] sibilant.  

ERC Input Winner Loser 

 *sn 

 ID-IO
(+sib) 

 R
ELA

TE- [+sib] 

 ID -[+sib](ant)  

 A
LIG

N([+sib], R
) 

 ID- IO
(+sib-head) 

 ID - IO
(-ant)  

 ID-IO
(+ant) 

8 sn…s ʃn…s sxn…(s)x W  L L   L W 

9 sn…s ʃn…s (ʃ)xn…ʃx W  L L W  W

W 

L 

 

Derived sibilants, instead, trigger harmony.  This is because in this case, local 

assimilation is not in conflict with long-distance agreement, in fact, it feeds it. Since there 
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is no longer a conflict to be resolved, the optimal candidate is the one that displays both 

local and long-distance agreement. 

ERC Input Winner Loser 

 *sn 

 ID-IO
(+sib) 

 R
ELA

TE-[+sib] 

 ID- [+sib](ant) 

 A
LIG

N ([+sib], R
) 

 I D-IO
(+sib-head) 

 I D-IO
(-ant) 

 ID-IO
(+ant) 

10 s…sn ʃx…(ʃ)xn sx…(s)nx W     L   

11 s…sn ʃx…(ʃ)xn (s)x…ʃnx    W W W W L 

12 s…sn ʃx…(ʃ)xn s…ʃn   W   L W L 

13 s…sn ʃx…(ʃ)xn sx…(ʃ)xn    W    L 

 

McCarthy (2007) uses the example of neutralization in Chumash argues that the local 

assimilatory process does not interfere with correspondence because a CRISPEDGE 

constraint is violated. CRISPEDGE constraints (Ito & Mester 1994, Walker 2001:852) are 

violated when some nodes are linked across a domain and therefore are different from 

correspondence.   

I believe a more general and accurate argument McCarthy (2007) makes is that local 

and long-distance interactions are governed by two different kinds of relations. φ-

Correspondence theory makes this insight explicit and more evident: φ-Correspondence 

constraints induce harmony among similar elements at a distance, local markedness 

constraints, instead, refer to the precedence relation, and so do not necessarily to 

similarity.  
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Since they are two different relations, correspondence and precedence do not interact 

at the representation level (one may nonetheless postulate a constraint that refers to both 

relations). 

3.4 Discussion 

3.4.1 Directionality in ABC 

A simple solution to the problem of directionality is the one proposed in Rose and 

Walker (2005). A definition can be paraphrased as follows. 

(42) IDENT-CC(−ant) definition. 

 Assign a violation for each pair of segments in the output that  

1. are in a correspondence relation, and  

2. C1 is [−ant] and C2 is [+ant]. 

The purpose of this constraint is to enforce harmony to [−ant]. However, as pointed 

out in Bennett (2013/2015), the constraint does not favor a specific value. Neither of the 

outputs [ʃx…ʃx] and [sx…sx] violates the constraint, so the constraint cannot distinguish 

between them.  

The above formulation fails because IDENT-CC is a markedness constraint, and 

therefore evaluates only the output in the candidate. IDENT-CC will need to prefer the 

output [ʃ…ʃ] to the output [s…s] only when there is a disjoint input specification for the 

segments; otherwise, neutralization to the marked will be predicted. IDENT-CC will then 

necessarily have to refer to the input to obtain such an effect. The only way of 
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formulating such a constraint is then to use targeted constraints or have a hybrid 

faithfulness/markedness constraint such as this one: 

(43) Ident-CC(−ant) definition. 

 Assign a violation for each segment in the output 

1. if the two segments are in correspondence and  

2. have a different specification for the feature [ant] 

3. if in the input one of the two segments is [+ant]. 

However, such constraints are overly complex, both in terms of conditions to be satisfied 

and formally, since it is simultaneously a markedness constraint and a faithfulness 

constraint.  

Other approaches to the problem of directionality (Hansson 2001/2010, Baković & 

Rose, 2014) have relied on “targeted” constraints. To illustrate, I use Hansson’s 

(2010:265) targeted constraints as an example. Hansson (2001/2010) uses two constraints 

of the type in (44) to account for the harmonizing feature selection problem in Chumash 

directional harmony. 

(44) →IDENT[ant]-CC definition. 

Candidate x´ is preferred over x (x´> x) iff x contains a consonant Ci which is 

marked with respect to CC/Ant, and x´ is exactly like x except in that the same 

Ci is unmarked with respect to CC/Ant. 
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Targeted constraints such as → IDENT[ant]-CC can hardly be connected to any well-

studied constraint type. They are evaluated by comparing different candidate forms, and 

they resemble neither conventional markedness constraints nor faithfulness constraints. 

Targeted constraints are also structurally complex. For example, →IDENT[ant]-CC 

contains two conjunctive conditions (“is marked… and it is exactly like…”) and an 

exception (“except in that the same Ci is unmarked with respect to CC/Ant”). 

Specifically related to → IDENT[ant]-CC is the fact that such constraints are evaluated 

based on the relative markedness of segments. However, directionality is usually 

captured by alignment constraints in Optimality Theory. Markedness is a crucial 

component of dominant harmony, but it plays no role in directional harmony. 

Another advantage of φ-heads and φ-Correspondence constraints is that each 

constraint fulfills a specific function. IDENT-IO constraints only require featural identity, 

as opposed to targeted CC-IDENT constraints, which also specify the conditions under 

which identity should occur. This property is fundamental for the analysis of the 

typological asymmetry in the typology of dominant-recessive harmony discussed in 

chapter 6. 

Finally, in φ-Correspondence directionality constraints follows the generalized 

schema of IDENT constraints, thus satisfying Hypothesis II.  

3.4.2 Directionality in dissimilation 

As it is, φ-Correspondence does not significantly differ from ABC with respect to 

dissimilation. However, the existence of heads in φ-Correspondence makes it possible to 
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formulate constraints that penalize the position of *φ-head based on the feature value of a 

segment. 

Now, suppose we introduce a constraint *φ-HEAD[+ant],32 which assigns a violation 

for each [+anterior] sibilant head. The constraint can, under certain rankings, cause the 

dissimilation mappings /s…s/ ⟶ [s… ʃ] to be optimal. The tableau below exemplifies 

the process. 

(45) Dissimilation in φ-Correspondence 

/s…s/ 
 *φ -H

EA
D[+ant] 

 ID-IO
(+sib)  

 R
ELA

TE-[+sib] 

 ID-[+sib](ant) 

 A
LIG

N ([+sib], R
) 

 I D-IO
(+sib- head) 

 I D -IO
(− ant) 

 ID -IO
(+ant) 

a. sx…(s)x !*        

b. s…t  !*        

c. sx…(ʃ)x    *    * 

 

In candidate (Error! Reference source not found.a), the two sibilant feature nodes 

are in correspondence and agree. φ-Correspondence relations, however, always require a 

head. In the candidate, there are two [+ant] sibilants, so a head is assigned to the 

rightmost one. This violates *φ-HEAD[+ant], which penalizes marked [+ant] heads. 

                                                
32 The constraint can be functionally justified by claiming that heads prefer to be assigned to marked 
values. Such postulation relates to the generalization discussed in section 6.2 which states that that in 
dominant harmonies the outcome of the harmony is always determined by the marked value of a feature. 
The generalization in 6.2 relates to faithfulness constraints, but it could be adapted to dissimilation and 
markedness alike. 
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There are three possible solutions to avoid a violation of the constraint. The ABCD 

mechanism consists in escaping correspondence altogether by mapping the sibilant to a 

[−sibilant], 33 as illustrated by candidate (Error! Reference source not found.b).  

However, *φ-HEAD[+ant] is also not violated if the head is assigned a different value 

for the feature [anterior]. The unfaithful dissimilation mapping [sx…(ʃ)x] does not violate 

*φ-HEAD[+ant] because the head is no longer [+anterior]. 

Directionality is then established the same way as for harmony depending on the 

ranking of IDENT-IO and ALIGN(φ-head) constraints, in this case by aligning the head to 

the right edge of the word and causing the corresponding segment to dissimilate.  

Notice that in this case dissimilation is within elements in correspondence. The theory 

thus also predicts that directional dissimilation is typologically different in terms of 

targets to non-directional dissimilation, which instead is thought as a way of escaping 

correspondence.  

Given the complicated nature of the interaction of these constraints with the other 

constraints of the theory, and since the model without φ-heads constraints is quasi-

identical to ABCD with respect to dissimilation, I leave the issue of dissimilation aside. 

3.4.3 Summary of the chapter 

In this chapter, I show how a simple process of directional harmony can be analyzed 

using φ-Correspondence. The analysis follows from basic assumptions of the theory, such 

                                                
33 Notice that unlike CORR in ABC, RELATE-[+sib] is violated when there is a single element not in 
correspondence, since the constraint does not evaluate two segments at the same time. Since you need at 
least two elements to form a correspondence relation in φ-Correspondence, there is no candidate that can 
satisfy the constraint without banning that specific segment. 
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as that correspondence is headed, that heads like to align to edges, and that heads mark 

privileged positions.  

There is also a clear division of labor between different types of constraints: ALIGN 

constraints require alignment to an edge; φ-Correspondence constraints determine the set 

of elements that participate in the harmony; I/O-Correspondence constraints target 

input/output faithfulness. Not only do the constraints do only “one thing,” but the general 

nature of the constraint definitions allows us to relate them to general classes of 

constraints (Generalized Alignment, Positional Faithfulness, and Correspondence). 

The atomization of constraint function is important in OT. Simple, specialized 

constraints are preferred over complex, heterogeneous ones. One advantage of simpler 

constraints is that they yield a richer set of predictions. While one could define small sets 

of constraints that descriptively account for a phenomenon, the most interesting 

predictions emerge from the interaction of the simple ones. The advantages of this 

approach over ABC are then discussed. Rose and Walker (2004)’s constraints cannot 

account for such cases of directional harmony, even when directionality is specified in 

the constraint definition, while Hansson (2001)’s analysis requires an alteration of the 

EVAL procedure. φ-Correspondence, instead, can elegantly account for directionality by 

using constraints that adhere to independently justified constraint schemas.  
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4 Partial Overlapping in Kalabari 

4.1 Introduction  

It is not uncommon for two different harmonies to coexist in the same language, 

especially in the domain of vowel harmonies. Possibly because of the limited number of 

vocalic features (as compared to consonantal features), different harmonies tend to share 

the same segmental targets. For example, the vowel [e] may be target of both a [−high] 

parasitic harmony and of a harmony that targets all vowels. Following Walker (2017), I 

call these types of harmonies overlapping harmonies.  

Classic formulations of ABC predict a high degree of interaction among overlapping 

harmonies. Since correspondence is established at the segmental level, if two harmonies 

overlap, the theory predicts (depending on how the agreement constraints are defined) 

that all segments in the correspondence participate in all harmonies. Continuing with the 

example above, suppose that there is a sequence [e] … [u]. The two vowels are in 

correspondence because of the system-wide ATR harmony. However, in ABC the 

correspondence relation will also induce the unwanted parasitic harmony that supposedly 

targets only [−high] vowels. Empirically, I am not aware of the existence of such a case 

of induced harmony. In contrast, overlapping harmonies are always independent from 

one another.  

This prediction is borne out in feature correspondence: since the correspondence 

relation occurs at the feature level, the existence of a correspondence relation on a feature 

does not entail the existence of any other correspondence relation on other features.  
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Kalabari presents an interesting example of overlapping harmonies. Three harmonies 

are enforced in its roots: a system-wide ATR harmony and two different back harmonies 

parasitic on height.  

Kalabari is also an interesting case, because unlike Hansson’s (2010) and Walker’s 

(2017) examples, the lack of interaction can be shown to occur at the paradigmatic level 

between roots with only two syllables. Therefore, intransitive correspondence does not 

resolve the problem.  

Finally, Kalabari high vowel harmony – unlike the other two – is dominant-

directional and limited to two vowels. This pattern is not only predicted by basic φ-

Correspondence constraint interaction, but it also shows that headedness is a property of 

feature nodes, and not of roots. 

The chapter is organized as follows. In section 4.1, I start with an overview of 

Kalabari’s harmonies (§ 4.1.1) to briefly show how overlapping harmonies are 

problematic for classic ABC, but not for φ-Correspondence (§ 4.1.2). Section 4.2 lays 

down the theoretical and empirical basis for the analysis in section 0. Section 4.4 

concludes with a comparison of the analysis with other relevant theories. 

4.1.1 Overview of Kalabari’s harmony 

Kalabari is an East Ijaw language spoken in Nigeria (Williamson 1969; Jenewari 1977, 

1980, 1985; Akinlabi 1997). It is characterized by three co-occurring vowel harmonies: a 

directional, parasitic back harmony for [+high] vowels, a non-directional parasitic back 

harmony for [−high] vowels, and a non-parasitic (aka system-wide) ATR harmony. The 
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harmonies manifest themselves as a set of co-occurrence restrictions operating in the 

root. 

For example, [−high] vowels agree for the feature [back] with other [−high] vowels. 

Sequences like *[e] … [o] are unattested, but a [+high] and a [−high] vowel can co-occur 

even if they do not agree for the feature [back], as in the word [númé] ‘song’.  

The back harmony for high vowels bans root containing sequences34 of [+high, 

+back] … [+high, −back] like [u…i]. This harmony is “directional”: the sequence *[u … 

i] is disallowed, while the sequence [i … u] is well formed. 

Vowels in the same word must also agree in ATR, regardless of their height. So, a 

sequence like *[e…ʊ] is also banned, even though the two vowels do not have the same 

height specification. 

The vowel [a] behaves marginally differently from other vowels. [a] cannot occur 

with the front non-high vowels [e] and [ɛ], but can occur with any high vowel, as one 

would expect from the [−high] back harmony restriction. I take this generalization to 

indicate that the dominant feature in back harmonies is [+back], and thus that sequences 

like [a]… [e] are mapped to a harmonic root.  

 The vowel [a] also does not participate in [ATR] harmony. I argue that [a] is neutral 

in ATR harmony because it has a [−ATR] specification, and because in Kalabari there is 

no [+ATR, +low] vowel. Since [−ATR] is the recessive feature, the vowel cannot trigger 

                                                
34 A sequence is constituted by two or more vowels in the same word separated by one or more consonants.  
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harmony by itself, and because of the inventory gap, it cannot be the target of the 

harmony either. 

To summarize, all vowels are included in, or constitute, the domain of ATR harmony, 

while back harmonies are parasitic on height. [−high] vowels harmonize in backness 

regardless of their order, while for [+high] vowels the harmony is directional and 

restricted to adjacent targets. There is no backness co-occurrence restriction between 

vowels with a different value for the feature [high]. Finally, the low vowel [a] harmonizes 

for backness, but not for ATR.  

(46) Harmonies in Kalabari 

 Low Mid High 

Low NA [+ATR] only  [+ATR]  

Mid  [+ATR] only [+ATR] and [+back] [+ATR]  

High [+ATR] only [+ATR] only [+ATR] and dir. [+back] 

4.1.2 Overlapping harmonies  

As anticipated in the introduction, Kalabari exhibits a case of overlapping harmonies. 

The overlapping sequences in Kalabari include a mid vowel and high vowel that are 

disharmonic in backness but agree in ATR, as in the word [númé] “song”. The existence 

of these sequences, together with the absence of comparable words disharmonic in ATR 

(i.e., [u] … [e]), shows that vowels with a different height specification need only agree 

in ATR, not in [back].  

In the feature correspondence analysis, the correspondence relation only connects the 

[+vocalic] node (47a). No correspondence is instantiated at the level of [high] feature, 
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since the [+high] and [−high] features are distinct, and therefore no back harmony is 

demanded (47b).  

Classic ABC predicts that in these sequences either both ATR and back harmony 

occur, or neither. This is because there is only one type of correspondence relation (2b), 

one which causes both the ATR harmony and the unwanted back harmony to apply to the 

same segments (see also Hansson 2010, Walker 2016).  

(47) Two kinds of correspondence 

a. Featural correspondence    b. Segmental correspondence 

  

4.2 Background 

In this section, I provide some background for the analysis carried out in section 0. The 

section describes the vowel inventory of the language (§ 4.2.1), as well as the exception 

to the harmonies generalizations (§ 4.2.3). Sections 4.2.4 and 4.2.2 introduce the 

constraint set and the candidate set assumed in the analysis.  
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4.2.1 Vowel inventory 

On the surface, Kalabari has nine oral vowels—[a, i, ɪ, e, ɛ, ɔ, o, ʊ, u]—and nine 

corresponding nasal vowels (Jenewari 1977, 1985), which may be split into [+ATR] and 

[−ATR] sets. The same vowels may also be split into [+back] and [−back] sets as in (4).35 

(48) Kalabari vowels (Williamson 1969; Jenewari 1977, 1980, 1985). 

a. ATR Split 

[+ATR] vowels: [i, e, o, u] 

[−ATR] vowels: [ɪ, ɛ, ɔ, ʊ, a] 

b. Back Split 

[+back] vowels: [u, o, ʊ, ɔ, a] 

[−back] vowels: [i, e, ɪ, ɛ] 

The nasal vowel vowels behave like the oral ones, so I do not further distinguish 

between the two sets. Tones also do not interact with the harmony patterns, so they are 

omitted from the tableaux.  

From the vowel inventory, schematized in (5) below, one can observe that every 

vowel has a [±ATR] counterpart and a [±back] counterpart, except for the low vowel /a/. 

In 4.3.2.2, I argue that this inventory gap provides evidence for the dominance status of 

[+ATR] and [+back] features and that it also explains the apparent absence of ATR 

harmony for the low vowel.  

 

 

                                                
35 The +/− split here is not to be construed as recognition of +/− specification, but should rather be viewed 
merely as a useful descriptive tag for advanced tongue root versus retracted tongue root vowels, on the one 
hand, and back versus front vowels, on the other. To simplify the description our focus will be on oral 
vowels, but the statements made here are true for the nasal vowels as well. 
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(49) Kalabari vowel inventory 

 [−back]  [+back]  

 [+ATR] [−ATR] [−ATR] [+ATR] 

[+high] i ɪ ʊ u 

[−high] e ɛ ɔ o 

[+low]   a  

4.2.2 Exceptions 

The patterns introduced in the previous sections were previously described in the 

literature (e.g., Akinlabi 1997). A search for exceptions in Blench (2008) reveals only the 

terms listed in (48). In addition to being small in number, all the exceptions are either 

loanwords (48f), compounds (18a–d), or exceptional (48e).  

(50) Some loanwords and compounds do not harmonize (Blench, 2008) 

a. tʊmg + bákɪ ‘sowr (fruit)’ (p. 343) 

b. tʊ́ḿg + balɪ́ ‘single (e.g., single fruit, single digit)’ (p. 343) 

c. kʊ́rɔ́ + tánjɪ́ ‘catfish’ (p. 212) 

d. kʊrɔ + kɔ́njɪ ‘a proud person’ (p. 212) 

e. kʊ́lʊ́kʊ́lʊ́kalɪ́ka ‘a war drumical name for the Kalabaris’ (p. 211) 

f. egúsí ‘melon’ (p. 99) 

4.2.3 Constraints 

In the analysis, I include the following constraints based on the schemas defined in 

sections 2.3 and 2.4.2: 
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• RELATE-[−hi]  

• RELATE-[+hi] 

• RELATE-[+voc] 

• ID-[+hi](bk) 

• ID-[−hi](bk) 

• ID-[+voc](ATR) 

• ALIGN([+high], R) 

The other constraints included in the analysis are standard faithfulness and 

markedness constraints. Recall that [−back] and [+ATR] low vowels never surface in 

Kalabari. In other words, while for mid and high vowels there are [±back] and [±ATR] 

pairs of vowels, the only low vowel in the system is [a]. 

To account for this generalization, I use the markedness constraint *æ, which assigns 

a violation for each [+ATR] or [−back] low vowel in the output.36 

Finally, I use the four IDENT-IO constraints that refer to the two harmonizing feature 

values of [back] and [ATR], and the meta-constraint IDENT-IO(height), which assigns a 

violation for each vowel in the output that has a different value for either [±low] or 

[±high] from its input correspondent. All the constraints used in the analysis are listed 

below. From this point forth, I use the abbreviated constraint names in (23). 

 

                                                
36 In both the candidate set and in the constraint name, I use the symbol æ to indicate any low vowel that it 
is [+ATR] or [−back]. Since the vocalic inventory of Kalabari only has the single [−ATR, +back] vowel 
“a”, this notation does not have any substantial effect on the analysis.  
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(51) Other constraints for Kalabari. 

• ID-IO[+bk] 

• ID-IO[−bk] 

• ID-IO[+ATR] 

• ID-IO[−ATR] 

• ID-IO[height] 

• *æ 

4.2.4 Candidate set 

The candidate set includes all combinations of vowels in bisyllabic roots for both the 

input and the output forms. Outputs are further distinguished depending on whether two 

features correspond or not. The schema in (52) defines the candidate set. 

(52) Candidate set generation schema 

input  utput  

V…V  V…V{±φ, …}  

where V = [æ, a, i, ɪ, e, ɛ, ɔ, o, ʊ, u] 

For the purpose of this analysis, it is sufficient to only consider roots with two vowels 

and correspondence on three feature domains [+high, −high, +vocalic]. I ignore 

[−vocalic] segments for simplicity, and I assume that no consonant has these features. 

Since there are only two segments, they can correspond or not correspond for a given 

feature. I indicate the features in correspondence by placing them between curly brackets. 

Some examples are given below: 
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(53) Examples of candidates 

• ɛ…o {-H} = a root containing the vowels [ɛ] and [o]. The two [−high] feature 

nodes are in correspondence. 

• ɛ…o {} = a root containing the vowels [ɛ] and [o]. No feature node is in 

correspondence. 

• ɛ…o {-H, V} = a root containing the vowels [ɛ] and [o]. The two [−high] feature 

nodes, and the two features [+vocalic] correspond.  

• ☹ ɛ…i {+H} = a root containing the vowels [ɛ] and [o]. Ill-formed because there 

is only one [+high] node in the output.  

I assume that harmony in Kalabari is always obtained via featural unfaithfulness, so 

vowels are always in a one-to-one relation with their input (no epenthesis, deletion, 

coalescence, or splitting) and in the same order (no metathesis). Candidates where a 

vowel is mapped to a consonant are also not included in the candidate set.  

4.3 Analysis 

4.3.1 The three basic harmonies 

In this section, I provide a formal analysis of Kalabari’s harmonies. The data is mostly 

from Akinlabi (1997). I demonstrate that feature correspondence permits a fairly simple 

analysis of the system as the combination of three harmonies (§§ 4.1–4.3). 

I then show that the behavior of [a], which acts as a trigger for back harmony, but which 

is opaque to ATR harmony (§ 4.2), is also elegantly captured by the theory. I conclude by 
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showing why classic segmental correspondence cannot account for the data and briefly 

discuss an alternative analysis based on feature-specific IDENT constraints (§ 4.3).  

4.3.1.1 Back harmony in [−high] vowels 

There are two distinct types of parasitic back harmonies in Kalabari: one concerns 

[+high] vowels, and the other [−high] vowels. I start with [−high] vowels. The set of 

[−high] vowels include all the mid vowels [e, ɛ, o, ɔ] and the low vowel [a]. Because of 

the special behavior of [a], I only discuss mid vowels in this section. The analysis of [a] 

is illustrated in section 4.3.2.2. 

Mid vowels fall out neatly into two [+ATR] and [−ATR] sets and into two [+back] 

and [−back] sets. Since back harmony is not directional in [−high] vowels, and [−high] 

vowels must also agree for ATR, in forms with only mid vowels, all the vowels must be 

identical (11) (Williamson 1969:107; Jenewari 1973:63, Akinlabi 1997:100). The only 

sequences allowed are [o…o], [e…e], [ɛ…ɛ] or [ɔ…ɔ]. All other combinations are ruled 

out (12). 

(54) Mid vowel sequences are identical (Akinlabi 1997:100) 

[+ATR]   [−ATR] 

éré ‘female’  ɛ́rɛ́ ‘name’ 

béle ‘light’  ḅɛ́rɛ́ ‘case/trouble’ 

énéme ‘oil palm’  ɛ́tɛ́rɛ̄ ‘mat’ 

póló ‘compound’  ɔ́lɔ́ ‘cough’ 

ólóló ‘bottle’  ɔḅɔ́kɔ̄ ‘fowl’ 



103 
 

 
 

(55) Non-occurring mid vowel sequences 

ATR violation  back violation  ATR and back violations 

*e … ɛ   *o … e   *o … ɛ 

*ɛ … e   *ɔ … ɛ   *ɔ … e 

*o … ɔ   *e … o   *e … ɔ 

*ɔ … o   *ɛ … ɔ   *ɛ … o 

The tableau below shows the relevant candidates. I exclude the constraints referring 

to [+high] and those specific to [a] because they do not apply to any the candidate in the 

tableau.  

(56) Back harmony in Kalabari (mid vowels) 

Input Winner Loser 

R
ELA

TE-[−hi] 

R
ELA

TE- [+hi] 
I D-[+hi](bk)  

ID- [−hi](bk) 

I D- IO
[+bk] 

I D-IO
[−bk]  

e…o o…o {-H, V} a. e…o {V} W     L 

  b. e…o{-H, V}    W  L 

  c. e…e {-H, V}     W L 

 

In terms of OT ranking, harmony is obtained as usual when the relevant RELATE and 

ID-[f](g) constraints dominate ID-IO[−bk] or ID-IO[+ATR].37 In the case of high vowel 

                                                
37 I assume for now that [+back] are [+ATR] are the dominant features. I justify this assumption in section 
4.3.2.2. 
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back harmony, RELATE-[+hi] and ID-[+hi](bk) dominate ID-IO[bk]. Likewise, for [−high] 

vowels, the ranking is RELATE-[−hi], ID-[−hi](bk) ≫ ID-IO[−bk].  

4.3.1.2 Back harmony in [+high] vowels 

For high vowels, if the first high vowel of the root is [+back], then the immediately 

following high vowel must be [+back] as well. Therefore, the disharmonic sequences 

[u…i] and [ʊ…ɪ] are not attested.  

The trisyllabic forms show that in a sequence of high vowels, once a [+back] occurs, 

the following high vowel must also be [+back]. 

(57) High vowels, directional back harmony (Akinlabi 1997:101) 

 [+ATR]   [−ATR] 

ḅuru ‘yam’   ḅʊrʊ ‘become rotten’ 

kúrúsu ‘cannon’  ḅʊkʊrʊ ‘crayfish trap’  

kírī ‘ground’   fɪrɪ ‘work/message’ 

íkú ‘louse’   ɪ́kʊ́ ‘rock’ 

 (58) Attested and non-attested roots (back-harmony) 

Attested  Not attested (*[+back] … [−back]) 

  i … u   *u … i 

  ɪ … ʊ   *ʊ … ɪ 

  i … u … u  *u … i … u *, u … u … i, *u … i … i 

  ɪ … ʊ … ʊ  *ʊ … ɪ … ʊ, *ʊ … ʊ … ɪ, *ʊ … ɪ … ɪ 
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For the sake of exposition, I set aside the issue of directionality and assume that 

[+high] vowels always agree in backness. By doing so, the analysis of [+high] vowel 

back harmony parallels the analysis of [−high] vowels, as shown in the tableau below.  

(59) Back harmony in Kalabari (high vowels) 

Input Winner Loser 

R
ELA

TE-[−hi]  

R
ELA

TE-[+hi] 
I D-[+hi](bk) 

ID-[−hi](bk) 

ID- IO
[+bk] 

I D-IO
[−bk]  

u…i u…u {+H, V} a. u…i {V}  W    L 

  b. u…i{-H, V}   W   L 

  c. i…i {-H, V}     W L 

 

Notice how the two constraints RELATE-[−hi] and RELATE-[+hi] refer to two 

complementary sets of pairs of feature nodes, so they cannot ever be violated by the same 

element. As a result, the two harmonies are completely independent in terms of basic 

feature correspondence constraints and relations, even though their rankings “overlap” in 

that both pairs of correspondence constraints dominate ID-IO([bk]). 

For this reason, sequences of mid and high vowels do not have to be harmonic for the 

feature [back].  

(60) Mid and high roots disharmonic for back (Akinlabi 1997:118) 

[+ATR]   [−ATR]  

ékulé ‘hawk’  fɛ́rʊ́ ‘wind’ 

pókī ‘listen’ dɔ́kɪ̄ ‘burn (intr.)’  

ímō ‘sweat’  pɪ́kɔ́ ‘feather’ 
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4.3.1.3 ATR harmony 

I now move on to ATR harmony. Using the traditional terminology, ATR harmony is 

system-wide or non-parasitic, in the sense that the harmonizing vowels do not need to 

share any feature value in addition to the one specifying that they are vowels.38 

The data below show that if two high vowels co-occur in the root, they have identical 

ATR feature.  

(61) High vowels, ATR harmony (Akinlabi 1997) 

 [+ATR]   [−ATR] 

ḅuru ‘yam’  ḅʊrʊ ‘become rotten’ (p. 101) 

kírī ‘ground’  fɪrɪ ‘work/message’ (p. 111) 

íkú ‘louse’  ɪ́kʊ́ ‘rock’  (p. 101) 

(62) Unattested sequences of high vowels disharmonic for ATR 

  *u … ʊ, *ɪ ... i 

*ʊ … u, *i … ɪ 

Despite having a different height feature value, mid and high vowels agree for [ATR] 

(63), as demonstrated by the absence of [ATR] disharmonic roots such as the ones listed 

in (64).  

 

                                                
38 [a] is neutral to [ATR] harmony, so this statement is biased by our working analysis. I justify this 
assertion in 5.2.2.1. 
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(63) Mid and high vowel agree for ATR (Akinlabi 1997:101) 

[+ATR]   [−ATR] 

fíyé ‘food’   bɪtɛ ‘cloth’ 

féní ‘bird’   dɛrɪ ‘laugh’ 

poku ‘bat’   tɔ́rʊ́mgbɔ́ ‘eye’ 

fúrō ‘belly/stomach’  dʊ́rɔ́ ‘barracuda’ 

(64) Sequences of mid and high vowels disharmonic in [ATR] 

 Same Back  Different Back   Unattested 

 [+ATR]  [−ATR]  [+ATR] [−ATR]  [+ATR] [−ATR] 

i … e  ɪ … ɛ   e … u   ɛ … ʊ   *i … ɛ   *ɪ … e  

e … i  ɛ … ɪ   u … e   ʊ …ɛ   *ɛ ... i   *e … ɪ 

o … u  ɔ … ʊ   o … i   ɪ … ɔ   *o … ʊ  *ɔ … o 

u … o  ʊ … ɔ   i … o   ɔ …ɪ   *ʊ … o  *o … ɔ 

Feature correspondence is straightforwardly applied to general harmonies by 

assuming that correspondence acts on the vocalic feature nodes [+voc]. The subranking 

for ATR harmony thus also parallels that of the two parasitic harmonies, with 

RELATE([+voc]), ID-[+voc]([ATR]), and ID-IO([+ATR]) ≫ ID-IO([−ATR]).39 Notice that 

                                                
39 See (4.2) for a justification of the subranking ID-IO([+ATR]) ≫ ID-IO([−ATR]). 
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no constraint refers to the height of the vowels, so a quasi-identical analysis applies to 

mid vowel ATR harmony as well. 

(65) ATR harmony for [+high] vowels 

Input Winner Loser 

R
ELA

TE([−hi]) 

R
ELA

TE([+voc]) 
I D-[−hi](bk)  

ID -[+voc](A
TR

) 

ID -IO
[+A

TR
] 

ID -IO
[+bk] 

ID-IO
[−A

TR
] 

ID-IO
[−bk] 

i…ʊ i … u {+H, V} a. i … ʊ {+H}  W     L  

  b. i … ʊ {+H, V}    W   L  

  c. ɪ … ʊ {+H, V}     W  L  

           

 

4.3.2 Harmony interactions 

In the previous section, I discussed the three basic harmonies and showed that because of 

feature correspondence, it is natural to treat three harmonies independently as very simple 

and common cases of harmony.  

In this section, I discuss the complications of the system and demonstrate that φ-

Correspondence can account for them naturally. I start with the case where two 

harmonies interact, resulting in the overlapping harmony pattern. I then move on to the 

analysis of the behavior of [a] and show how it naturally emerges from the system.  

4.3.2.1 Overlapping harmonies  

Roots containing a mid and a high vowel agree only for [ATR], but not for [back]. For 

example, the sequence [e…u] is well attested. Given the current analysis, [e…u] maps 
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from both the faithful input /e…u/ and the disharmonic /ɛ…u/. Let us consider the 

unfaithful candidate.  

The winning candidate /ɛ…u/ → [e…u]{V} has one correspondence relation on the 

vocalic tier, but no correspondence on either the [+high] or [−high] tier (67). Since [e] is 

[−high] and [u] is [+high], the winner does not violate either of the correspondence 

constraints RELATE([−hi]) or RELATE([+hi]). Because neither their [+high] nor [−high] 

feature are in correspondence, there is no constraint that favors agreement for backness 

(66d). However, both vowels have the [+voc] feature, so they must correspond, as in 

(66a), and agree for the feature ATR, as in (66b). Finally, the relative ranking of the 

IDENT-IO(ATR) (66c) determines the dominance of the [+ATR] feature.  

 

(66) Tableau for the mapping /ɛ…u/ → [e…u]  

Input Winner Loser 

R
ELA

TE([−hi]) 

R
ELA

TE([+hi])  

R
ELA

TE([+voc]) 
I D -[−hi](bk)  

I D -[+voc](A
TR

)  

ID -IO
[+A

TR
] 

I D-IO
[+bk] 

I D -IO
[−A

TR
]  

I D -IO
[−bk]  

ɛ…u e…u {V} a. ɛ…u {}   W     L  

  b. ɛ…u {V}     W   L  

  c. ɛ…ʊ {V}      W  L  

  d. ɛ…i {V}       W L  
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(67) Representation of the output [e…u] with feature correspondence in Kalabari 

 

4.3.2.2  [a] and the active features 

In the previous section, I assumed that the “active,” dominant features were [+ATR] and 

[+back]. In this section, I show that the currently analysis elegantly captures the behavior 

of [a] and provides justifications for the assumptions previously made on the 

directionality of the harmony.  

Low and mid vowels agree in [+back], because both have the same [−high] 

specification for height. This is without regard to whether the same sequences agree in 

[ATR]. The following examples of occurring and non-occurring sequences illustrate the 

point. 

(68) Low and mid agree for [back], since they are both [−high] (Akinlabi 1997:103) 

Back agreement   Back violation 

[+ATR]    [−ATR]   Non-occurring 

ḍáwó ‘kola nut’   ḍawɔ ‘dream’   *a … e 

áyō ‘onion’    awɔ ‘children’  *ɛ … a 
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As noted earlier, only the vowel [a] has no [−ATR] counterpart. It does not undergo 

ATR harmony because of this inventory gap. Interestingly however, though [a] does not 

have a [−back] counterpart, it does participate in back harmony. 

(69) Low and high vowels can combine without restriction (Akinlabi 1997:103) 

[+ATR]   [−ATR] 

niná ‘urine’  pɪnā ‘be white’ 

ati ‘ten’   wárɪ ‘house’ 

fúrā ‘be pregnant’  ḍʊḅa ‘be (come) fat/big’ 

awuwán ‘yawn’  árʊ́ ‘canoe’ 

The low vowel [a] can co-occur with both [+ATR] and [−ATR] vowels, so even 

disharmonic roots like [a…o] are attested. If we exclude harmonically bounded 

candidates, we are left with four competing candidates: the winner, which has the faithful 

mapping, and the three losers, which achieve harmony by means of one of the following 

three mechanisms.  

(70) ATR disharmonic roots 

Input Winner Loser 

*æ 

ID-IO
[height] 

R
ELA

TE-[ −hi ] 
ID- [−hi](bk) 

ID -[+voc](A
TR

) 

I D-IO
[+A

TR
]  

ID -IO
[+bk] 

R
ELA

TE-[ +voc ] 
ID- IO

[−A
TR

] 

ID- IO
[−bk] 

a…o a…o {−H} a. æ…o {−H, V} W       L   

  b. o…o {−H, V}  W      L   

  c. a… ɔ {−H, V}      W  L   

  d. a…o {−H, V}     W   L   
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The first option is to change the ATR value of the /a/ to [+ATR] (70b). The output is 

harmonic but does not win because low [+ATR] vowels do not ever surface in Kalabari. 

This generalization is captured by ranking the constraint *æ in the first stratum of the 

ranking. The second option, (b), is to change the height of the low vowel, an option that 

is ruled out by mean of the constraint ID-IO(height).  

The third candidate (c) is the most interesting, which changes the mid vowel to 

[−ATR]. However, using the standard phonological terminology, [−ATR] is the 

regressive feature, and it cannot trigger harmony.40 

Notice that when harmony is achieved and the dominant value determines the 

outcome of the harmony, dominance is established by the relative ranking of the two 

faithfulness constraints IDENT-IO[+ATR] and IDENT-IO[−ATR]. Here harmony is 

blocked, and so the ranking is between RELATE and the faithfulness constraint that refer 

to the regressive value IDENT-IO[−ATR].  

 [a] is neutral to ATR harmony, but it participates in back harmony. The absence of 

disharmonic output shows the exact opposite of what was observed concerning ATR 

harmony: [+back] is the active dominant feature for the [−high] harmony. [a] can co-

occur with back vowels (e.g., [a…o] and [a… ɔ]), but not with front vowels, because 

front non-high vowels are mapped unfaithfully to harmonize for backness with [a].  

To summarize, [a] is the only low vowel in Kalabari, so phonotactically no ATR or 

back alternation is possible without changing the vowel height. The fact that [a] 

                                                
40 The dominance of the [+ATR] value also conforms to Casali’s (2003) generalization, which states that 
“[+ATR] is normally dominant in languages with an [ATR] contrast among high vowels.”  
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harmonizes with non-high back vowels shows that [+back] is the dominant feature: since 

[a] is [+back], it causes other low vowels to agree for backness. In contrast, the neutral 

status of [a] with respect to ATR harmony shows that [+ATR] is the dominant feature 

value. 

4.4 Discussion 

4.4.1 Independence of directionality 

Vowels of the same height participate in both ATR and back harmonies. For example, I 

assume that the input /e…ɔ/ harmonizes for both ATR and backness and that it thus maps 

to [o…o] (again, the explanation for the choice of the active features is given in section 

4.3.2.2). The winner thus has two correspondence relations, one on the vocalic tier and 

another on the [−high] tier. Both relations are targeted by the respective IDENT 

constraints, which, – like in previous examples – cause the two segments to harmonize.  

For example, candidate (a) does not violate ID-[−high](bk), even though it 

corresponds and harmonizes for ATR, because the constraint only targets [−high] feature 

nodes in correspondence. The candidate contains two [−high] feature nodes, but they are 

not in correspondence, only the [+voc] nodes are (see 4.3 for a diagrammatic 

representation).  

Notice that the two harmonies are also independent in terms of directionality: the first 

segment changes to harmonize for backness, while the second changes to harmonize for 

ATR. This shows that directionality cannot be enforced on the segmental level via 

RELATE/CORR constraints. 
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(71) Back and ATR harmony for mid vowels 

Input Winner Loser 

R
ELA

TE([−hi]) 

R
ELA

TE([+voc]) 
ID-[−hi](bk)  

ID -[+voc](A
TR

) 

ID -IO
[+A

TR
] 

ID-IO
[+bk]  

ID -IO
[−A

TR
] 

I D-IO
[−bk] 

e…ɔ o…o {-H, V} a. e…ɔ {V} W       L 

  b. o…ɔ {-H}  W     L  

  c. e…o {-H, V}   W     L 

  d. o…ɔ {-H, V}    W   L  

  e. ɔ…ɔ {-H, V}     W  L L 

  f. e…e {-H, V}      W L L 

 

4.4.2 Independence of interaction 

Traditional ABC cannot account for such cases of partially overlapping harmonies. An 

analysis using segmental correspondence largely parallels the analysis described in the 

previous sections. However, as the tableau below shows,41 in the standard ABC analysis 

an input like /e…u/ containing mid and high vowel is incorrectly predicted to harmonize 

for the feature back.42 RELATE-[−hi], RELATE-[+hi], and ID-VV[bk] must dominate ID-

IO[bk] to obtain the back harmonies (a), while RELATE-[+voc] and ID-VV[ATR] must 

dominate ID-IO[ATR] to account for the ATR harmony (b). Given these ranking 

conditions, the faithful candidate cannot win (c).  

                                                
41 I use a classic tableau here because it better shows the wrong prediction. 
42 I assume that there are no anti-faithfulness constraints in CON, and therefore that if the /e…u/ does not 
map to its faithful output [e…u], then nothing else does (Tesar, 2013).  
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Mid and high vowels must be in correspondence, since they participate in the ATR 

harmony. However, for both mid and high vowels to participate in back harmony, ID-

VV[bk] must dominate ID-VV[bk]. The two conditions for harmony are thus satisfied: the 

two segments correspond, and the ID-VV constraint that refers to the harmonizing feature 

dominates the corresponding ID-IO constraint. If you alter this relative ranking, you lose 

the parasitic harmonies; conversely, if you do not, back harmony over-applies to mid–

high vowel combinations as well.  

 (72) Ranking contradiction for mid–high sequences in ABC: /e…u/ → [o…u] 

Input Output 
*æ

 

ID-IO
[height] 

C
O

R
R-[hi] 

C
orr-V

V
 

ID-IO
[+A

TR
]  

ID-V
V

[bk] 

I D -IO
[+bk] 

I D-V
V

[A
TR

]  

I D-IO
[− A

TR
] 

I D-IO
[−bk] 

e…u a. ex…uy    !*       

 ☹ b. ex…ux      !*     

 c. ex…ix       !*    

 💣 d.ox…ux          * 

 

The tableau also makes clear why intransitive correspondence does not work in this 

case. The problem occurs even with only two segments, where by definition, transitivity 

cannot play a role at the syntagmatic level.  

A solution to this problem is to have ID-VV selectively apply to vowels with specific 

features, that is, to make ID-VV parasitic on a specific set of features (Walker 2016). 

Nonetheless, a central tenet of ABC is the distinction between correspondence and 

identity constraints. IDENT-VV constraints determine the feature value for which the 
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segments in correspondence must agree, while correspondence constraints determine the 

set of segments that participate in the harmony. By making ID-VV parasitic, one could in 

principle eliminate Surface Correspondence altogether,43 since the function of 

establishing the segments that participate in harmony is taken over by IDENT constraints.  

The resulting constraints are also quite descriptive, since they specify both the target 

and the outcome of the harmony (“two segments with the feature φ must agree for the 

feature φ′”).  

In the analysis I am proposing, I maintain the basic mechanism of ABC as 

correspondence plus identity, and I address the issue of overlapping harmony by simply 

moving the correspondence relation from the root tier to the feature tier.  

The main advantage of this model is that multiple harmonies are now 

representationally independent. For example, the diagram below44 shows the 

correspondence relations for the mapping /o…e…ɪ/ ⟶ [o…o…i] in feature 

correspondence.  

There are two domains for the surface correspondence relations. The domain of the 

first relation is the set of all [+high] nodes, while the domain of the second is the set of all 

[+vocalic] nodes. Both relations are total, in the sense that all elements in a domain are in 

correspondence.  

However, in terms of segments, only the first two vowels are related by the [−high] 

correspondence relation, since the last vowel is not associated with a [−high] feature 

                                                
43 Similarly, in McCarthy (2010), CORR constraints are eliminated, but not Surface Correspondence. 
44 From now on, I omit all the consonants from the diagrams, since they do not interact with the vowels and 
since their features never overlap. 
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node. For this reason, the high vowel is correctly excluded from participating in the 

[back] harmony with the other mid vowels, while still participating in the ATR harmony. 

(73) Multiple, non-overlapping harmonies in feature correspondence 

 

To obtain a similar effect using Bennett’s (2013/2015) model, one has to postulate 

two overlapping relations: one for the general ATR harmony and another limited to the 

first two vowels for the non-directional back harmony. However, such a set of relations is 

impossible in ABC, fundamentally because the same segment cannot be in two different 

surface correspondence relations, like [m] and [p] in (72). 

(74) [m] and [p] are in two different correspondence relations (Bennett 2015:31) 

[s1am1,2p1,2el1a] 

Intransitive correspondence formulations (Walker, 2017) do not solve the problem 

either. This is most evident in cases like Kalabari bysillabic root, where the relation 

occurs between two segments, and so transitivity cannot play a role (the definition of 

transitivity itself requires the existence of at least three elements). 
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5 Derived environment effects in Basque 

5.1 Introduction 

IDENT(φ-head) constraints are standard faithfulness constraints, and φ-heads are normal 

phonological heads. Their role in harmony phenomena is a by-product of the assumption 

that φ-heads only exist as part of a φ-Correspondence relation, which usually causes 

harmonic processes, while faithfulness to a head is predicted to interact with other 

markedness constraints as well. Specifically, φ-Correspondence predicts that 

neutralization may block harmony and that harmony may block neutralization.  

The former is what happens in Basque. In some varieties of the language, sibilants in 

most roots agree on the distributed feature, which distinguishes between laminal and 

apical sibilants. For example, /es̻-ets̺i/ → [es̺-ets̺i] ‘persist’, cf. /es/ ‘no’, /ets̺i/ ‘consider’.  

In addition to harmony, Basque has another process of neutralization, where sibilants 

neutralize apical before another consonant. 

Derived apicals, however, do not cause other sibilants to harmonize. For example, 

/s̻is̻ku/ ‘bag’ maps to disharmonic [s̻is̺ku] rather than to [s̺is̺ku]. The second sibilant [s̺] 

normally triggers long-distance assimilation, but it is transparent to harmony if it is in a 

neutralization context. The three processes are summarized below.  
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(75) Abstract set of mappings in Basque 

a. Sibilant harmony 

/s̻…s̺/ → [s̺… s̺] 

b. Neutralization 

s̻C→ s̺C 

c. Neutralization bleeds harmony (DEE) 

/s̻…s̻C/ → [s̻… s̺C] 

This is the pattern that φ-Correspondence predicts to arise from the interaction 

between IDENT-IO(φ-head) and markedness constraints on segment clusters. 

A simplified analysis of the phenomenon goes as follows: φ-heads on apical sibilants 

normally act as triggers45 of sibilant harmony in Basque. However, when the apical 

sibilant appears before a consonant, a conflict arises. The element either becomes a target 

of long-distance assimilation or a target of local assimilation. On the one hand, 

neutralization wants to change the second sibilant, while on the other hand, harmony 

wants the sibilant to remain faithful in order to act as a trigger of harmony.  

There are four possible solutions to this conflict: (i) the element is not assigned the 

status of a φ-head in the first place, so it does not act as a trigger of the harmony 

(neutralization bleeds harmony); (ii) harmony bleeds neutralization, which results in a 

violation of the constraint that demands local assimilation; or (iii) neutralization feeds 

                                                
45 Here trigger and target do not refer to the original meaning of the word. No element ‘triggers’ a process 
in OT. In φ-Correspondence, the term refers to an element with the head property for which there is at least 
a correspondent that is mapped unfaithfully in order to achieve harmony. This is not a formal, precise 
definition, but it is good enough since I only use the term for the sake of exposition.  
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harmony (which results in a violation of an IDENT-IO(φ-head) constraints).46 There is a 

fourth logical case, namely the case where harmony feeds neutralization. However, this 

case requires a different configuration where the trigger of harmony is not the neutralized 

segment. In this case, the theory always predicts (iv) to occur, since the targets of φ-

correspondence assimilations are not protected by any positional faithfulness constraint 

(see 5.2.4).  

Basque belongs to the first class of languages, where neutralization prevents harmony 

from occurring. As pointed out in Falk (2014), such a process cannot be analyzed in 

ABC. The reason is that all the segments in correspondence are representationally 

identical. Even in the theories that encode directionality in special IDENT-CC/VV 

constraints (Hansson 2001, Rose & Walker 2004), the difference between “triggers” and 

“targets” is encoded in the IDENT-CC/VV constraint and is opaque to other constraints. In 

contrast, in φ-Correspondence, heads are explicitly “marked” in the representation, and 

making them susceptible to targeting by standard faithfulness constraints and interact 

with other processes. 

In the rest of the section, I start with an introduction of Basque consonant inventory 

(§ 5.1.1). I then describe more thoroughly the pattern of harmony, the neutralization 

process, and how the two processes interact (§ 5.1.2). I subsequently proceed to introduce 

the constraints (§ 5.1.3) and the candidate sets (§5.1.4). 

 

 

                                                
46 See Chapter 6 for a typology of these patterns. 
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5.1.1 Consonant inventory 

Most dialects of Basque distinguish three series of sibilants: laminal [s̻, ts̻], apical [s̺, ts̺], 

and palatal [ʃ, tʃ], as indicated in the table above. However, the majority of the dialects 

(e.g., Vizcaya, much of Guipu’zcoa) have lost the distinction between laminal and apical 

sibilants, so that in these varieties the anterior harmony process (Trask 1997) has no 

visible effect. 

The distinction between laminal and apical sibilants is orthographically expressed via 

the distinction between <s> for the apical and <z> for the laminal sibilants, which makes 

data written in the standard orthography amenable to analysis (Falk n.d.).47 

With the exception of the distinction between laminal and apical sibilants, Basque has 

a fairly unmarked consonant system, shown in the table below.  

(76) Consonants in Standard Basque 

  Labial Laminal Apical Palatal Velar Glottal 

Nasal m 
 

n ɲ 
  

Plosive p, b t, d 
 

c, ɟ k, g 
 

Affricate 
 

ts̻ ts̺ tʃ 
  

Fricative f s̻ s̺ ʃ 
 

h 

Approximant 
  

j 
  

Lateral 
  

l ʎ 
  

Rhotic  
 

r 
   

Rhotic Tap 
 

ɾ 
   

                                                
47 The data contained in this chapter is from the “Lexikoa Atzo eta Gaur” (LAG) 
(https://www.ehu.eus/eu/web/eins/lexikoa-atzo-eta-gaur-lag-). A parser-friendly version of this dictionary 
was kindly provided by Joshua Falk. 
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5.1.2  Harmony 

In the dialects that maintain the distinction between laminal and apical sibilants, 

underlying sibilants in the root agree in the distributed feature. For example, disharmonic 

sequences like [s̺…s̻] or [s̻… ts̺] are not attested.  

Palatal sibilants behave like laminals, so roots contain apical sibilants and palatal 

sibilants, but no root contains a laminal and a palatal sibilant (e.g., *[ʃ…s̻]). 

Even though harmony is manifested as a co-occurrence restriction in the root, it is 

still possible to determine its directionality by observing compounds and loanword 

adaptation patterns (39a, b). The alternations show that in most dialects the outcome of 

the harmony is always the apical coronals [s̺, ts̺] as opposed to the laminal [s̻, ts̻]. 

(77) Basque coronal harmony (LAG, also cited in Hansson 2010:53) 

a. Compounds 

 /s̻in-ets̺i/ → [s̺in-ets̺i] ‘believe’ cf. /s̻in/ ‘truth’  

 /es̻-ets̺i/ → [es̺-ets̺i] ‘persist’ cf. /es/ ‘no’, /ets̺i/ ‘consider’  

b. Sound change and loanwords 

 frants̻es̺ > frants̺es̺  ‘French’, from Spanish francés (Trask 1997:138) 

 s̺as̻oi > s̺as̺oi(n)  ‘season’, from Spanish Sazón (Hualde et al. 1996:113) 

The harmony does not extend to suffixes, so disharmonic pairs are attested so long as 

one of the sibilants is in an affix. 
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(78) Affixes do not harmonize (LAG, also cited in Hansson 2010:53) 

hots̺es̻ ‘noise instrumental’  cf. hots̺ ‘noise’  

its̺as̺os̻ ‘sea instrumental’   cf. its̺as̺ ‘sea’ 

s̺arts̻e ‘enter gerund’   cf. s̺ar- ‘enter stem’ 

What makes these varieties of Basque interesting is the generalization that neutralized 

sibilants have ever trigger harmony (Falk, 2014). In other words, disharmonic roots are 

allowed so long as one of the sibilants is neutralized.  

Laminal sibilants neutralize before another consonant, so the sequence [s̻C] never 

surfaces. The resulting [s̺] in neutralization contexts, though, does not cause other 

sibilants to harmonize. For example, the input /s̻is̻ku/ (77c) maps to the disharmonic 

[s̻is̺ku], rather than to [s̺is̺ku].48 

(79) Laminal neutralization in disharmonic roots (Falk 2014:1) 

 /s̻is̻ku/ → [s̻is̺ku], *[s̺is̺ku] ‘bag’ 

 espacio (sp.) > es̺pas̻io, *es̺pas̺io Spanish ‘space’ 

5.1.3 Constraint set 

In the analysis, I include the following constraints based on the schemas defined in 

sections 2.3 and 2.4.2. They include the relate constraint RELATE-[+sib], which governs 

the distribution of the sibilant nodes in correspondence, the constraint that enforces 

feature identity among sibilants for the feature distributed ID-[+sib](dist), and the 

                                                
48 This neutralization process is no longer active in the grammar of Basque (Hualde, p.c.), as demonstrated, 
for example, by the words [gus̺ti] ‘all’ and [bes̺te] ‘other’. 
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alignment constraint on sibilant heads ALIGN([+sib-head], R). Finally, there is the 

faithfulness constraint on φ-head ID-IO(+sib-head). 

(80) Constraints related to φ-Correspondence in Basque 

• RELATE-[+sib] 

– Assign a violation for each [+sibilant] feature node that is not in a φ-

Correspondence relation. 

• ID-[+sib](dist) 

– Assign a violation if two nodes in [+sib]-Correspondence have a different 

specification for the feature [distributed].  

• ALIGN([+sib-head], R), alias ALIGN([+sib], R) 

– Assign a violation if there is a head [+sibilant] feature node not aligned to 

the right edge of the prosodic word. 

• ID-IO(+sib-head) 

– Assign a violation if a segment has a φ-head and an unfaithfully mapped 

feature. 

I also consider the two IDENT-IO constraints that refer to the harmonizing feature 

values of [dist], and the IDENT-IO constraint that refers to the feature nodes in 

correspondence ID-IO(+sib).  

 (81) IO-Correspondence constraints in Basque 

• ID-IO[+dist] 

• ID-IO[−dist] 

• ID-IO[+sib] 
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I assume that a constraint *s̻C stands for a set of markedness constraints that favors 

the mapping /s̻C/ → [s̺C] over /s̻C/ → [s̻C]. The constraint can potentially be derived 

either from the interaction of other markedness constraints or from constraints that favor 

local assimilation.  

However, even in the case that local assimilation is governed by correspondence (e.g., 

Shih & Inkelas, 2014), due to their independence of correspondence relations on different 

tiers (see chapter 4), the specific mechanism of assimilation has no repercussions on the 

current analysis. I thus assume the following simple definition: 

(82) *s̻C definition. 

 Assign a violation for each s̻C cluster in the output. 

Finally, I use the constraint φ-EDGE[+sib](root) to account for the fact that harmony 

only occurs within the root. The constraints appear in the ABC literature as CC-

EDGE(root) and prohibits correspondence between two segments that do not belong to the 

same morphological or prosodic domain (Bennett 2015:73–80).  

(83) φ-EDGE[+sib](root) definition.  

Penalize φ-Correspondence across root boundaries 

For each pair of elements X, Y in φ-Correspondence, assign a violation if 

 X is in the root and Y is not in the root. 

In the output [ʃx…{sy…ʃx}root], Edge-HD(root) is violated once, because the two 

sibilants [ʃ] are in correspondence, while the leftmost [ʃ] is not in the root. No violation is 

assigned, because the sibilant [s] is not in correspondence, since the constraint is only 
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violated by segments that correspond. Segments not in correspondence are ignored, no 

matter what their morphological position or their featural specification is. The set of all 

constraints used in the analysis is listed below. 

• RELATE-[+sib]  

• ID-[+sib](dist) 

• ID-IO(+sib-head) 

• ALIGN([+sib-head], R) 

• ID-IO[+dist] 

• ID-IO[−dist] 

• ID-IO[+sib] 

• *s̻C 

5.1.4 Candidate set 

The set of inputs consists of the forms defined in the schema (77). The candidate set 

includes three critical segments: the apical [s̺], the laminal [s̻], and the non-sibilant [t] for 

the dissimilation candidate. 

Since sibilants preceding a consonant are neutralized for the apical/laminal 

distinction, I include the non-sibilant consonant C. C always follows the sibilant, since it 

is the only relevant neutralization context, and it is always mapped faithfully since it 

never neutralizes. 
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(84) GEN for Basque 

a. Mapping rules 

s̻ → s̺, s̻, t 

s̺ → s̺, s̻, t 

C → C 

b. Others 

• All combinations of surface correspondence among sibilants 

• One-to-one I/O mapping only 

To exemplify, given an input /s̻… s̺C/, there is the following possible subset of 

outputs: [s̻… s̺C], [s̺x… (s̺)xC], [s̻x… (s̻x)C]. Notice that no segment is ever inserted or 

deleted, so the consonant C must be specified underlyingly to appear in the output. Also, 

C is never part of a correspondence relation. This is justified by the phonotactics of 

Basque, since a sibilant never follow another sibilant in a coda.  

5.2 Analysis 

I now move to illustrate the analysis of these two phenomena and of their interaction. I 

start with an overview of the support candidates in section 5.2.1. Section 5.2.2 contains 

the analysis of the basic harmony pattern, while section 5.2.3 shows how blocking occurs 

in the case of neutralized segments. Finally, 5.2.5 shows how root-bound harmony is 

captured in the same way as in classic ABC by banning correspondence that crosses a 

specific morphological domain.  
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5.2.1 Overview 

Three candidates are sufficient to determine the ranking of Basque: the harmonic 

candidate with a left-aligned dominant feature (/s̺olas̻/ → [(s̺)xolas̺x]), the candidate that 

shows the Derived Environment Effect (/s̻is̻ku/ → [s̻xis̺yku]), and the candidate with the 

disharmonic sibilant in the root (/its̺as̺o+s̻/ → [its̺xa(s̺)xos̻y]).  

The violation tableau for the three winners is shown in (85). In candidate (85a), the 

output is harmonic, has all the sibilants in correspondence, and agrees in the head’s 

feature value [−distributed]. Since the input is disharmonic, the non-head, [+distributed] 

segment [s̻] is mapped unfaithfully, resulting in a violation of ID-IO[+dist].  

Basque has dominant harmony, so the head is determined by the feature value of the 

segments in correspondence, rather than by their position. In candidate (85a), the 

[−distributed] sibilant is aligned to the left of the word. Since the head is not right-

aligned, the candidate violates ALIGN([+sib], R).  

Candidate (85b) is not harmonic. A disharmonic candidate violates either the RELATE 

or IDENT-[sib] constraint. If the segments with the correspondence feature do not 

correspond, they violate RELATE. Alternatively, the segments may correspond, but not 

agree. In this case, the candidate violates IDENT-[sib]. Finally, because it is adjacent to 

another consonant, the [+distributed] sibilant is mapped unfaithfully in this candidate as 

well, resulting in a violation of ID-IO[+dist].  
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(85) Violation tableau for the three winners  

Input Output 

ID-[+sib](dist) 

*s̻C
 

ID-IO
(−dist)  

ID-IO
(+sib -head) 

R
ELA

TE- [+sib]  

ID-IO
(+dist) 

A
L([+sib], R

) 
a. s̺olas̻ (s̺)xolas̺x      * * 

b. s̻is̻ku s̻xis̺yku     * *  

c. its̺xa(s̺)xos̻y its̺xa(s̺)xos̻y     *   

 

5.2.2 Basic interaction 

To have harmony, the RELATE-φ constraint and the corresponding IDENT-φ constraint 

must dominate at least one IDENT-IO constraint that refers to a harmonizing feature (86a, 

b). Since harmony is established among sibilants for the feature [−distributed], we have 

the two ranking conditions: RELATE-[+sib] ≫ IDENT-IO[−distributed] and ID-[+sib](dist) 

≫ ID-IO[−distributed]. 

(86) Harmony in Basque 

 

s̺olas̻ ⟶ (s̺)xolas̺x 

ID-[+sib](dist)  

*s̻C
 

I D-IO
(− dist) 

I D -IO
(+sib -head)  

R
ELA

TE- [+sib]  

ID -IO
(+dist) 

A
L([+sib], R

) 

a. s̺xolas̻y     W L L 

 
b. s̺xolas̻x   W   L L 

c. s̻xolas̻x    W  L L 
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The varieties of Basque under consideration display a dominant harmony. Purely 

dominant harmonies are obtained by ranking ID-IO[+dist] above ALIGN([+sib], R). In the 

ERC (86c), the candidate with the head on the dominant feature wins, even if the φ-head 

it is not the rightmost feature on the tier.  

ERC (86c) also shows that dominant feature is determined by the relative ranking of 

IDENT-IO constraints, and it is independent of φ-Correspondence.  

This is an important point that it is expanded in chapter 6: because dominant 

directionality is governed by IDENT-IO constraints, markedness effects apply, creating an 

asymmetry in the typology. The dominant feature is [−distributed], and it is imposed by 

the ranking ID-IO[−dist] ≫ ID-IO[+dist]. 

5.2.3 Derived environment effect 

The interaction between neutralization and harmony can be observed in the mapping 

/s̻is̻ku/ → [s̻xis̺yku]. In the winning candidate, the second sibilant neutralizes [s̺] because 

of the constraint on s̻C clusters. The two sibilants do not correspond. For this reason, the 

first sibilant does not violate ID-[+sib](dist), even though the resulting root is 

disharmonic. The second sibilant is a [s̺], which normally acts as a trigger of harmony. 

However, in this case harmony is blocked. 
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(87) DEE in Basque 

 

s̻is̻ku ⟶ s̻xis̺yku 

*s̻C
 

ID-[+sib](dist)  

ID-IO
(+sib) 

ID-IO
(+sib -head) 

ID -IO
( −dist)  

R
ELA

TE- [+sib] 

ID-IO
(+dist) 

A
L(φ-head, R

) 

 a. s̻xi(s̻)xku W     L   

 b. s̻xis̻yku W        

 c. s̺xi(s̺)xku    W  L W  

 d. s̻xi(s̺)xku  W    L   

 

The first two candidates have identical output forms, although (87a) harmonically 

bounds (87b), since it does not violate RELATE-[+sib]. In both candidates, the second 

sibilants do not neutralize, so they violate the constraint on local assimilation *s̻C. Since 

the two output sibilants are identical, corresponding and agreeing does not violate any 

other constraint.  

In the introduction, I said that if there is an interaction between neutralization and 

harmony I consider four relevant outcomes: (i) neutralization bleeds harmony; (ii) 

harmony bleeds neutralization; (iii) neutralization feeds harmony; and (iv) harmony feeds 

neutralization. I said that (i) is the winner candidate in Basque. (87a) instead represents 

the second case. The candidate corresponds and harmonizes, and so it does not violate 

either RELATE-[+sib] or ID-[+sib](dist). However, by doing so, it violates the constraint 

on local assimilation *s̻C. Because of φ-Correspondence, neutralization is blocked. 
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Candidate (87c) represents the case where neutralization feeds harmony.49 The second 

sibilant assimilates and becomes a trigger, causing the first sibilant to assimilate.  

The outcome of the harmony is thus by the head, which is considered a privileged 

position and protected by IDENT-IO(+sib-head). But a head is not just a privileged 

position with respect to harmony. As a harmony trigger, a feature head has a privileged 

status even with respect to other markedness constraints. ID-IO(+sib-head) is thus 

violated in this candidate. Without φ-heads and the constraint ID-IO(+sib-head) the 

winning candidate without harmony would lose to this candidate (see 5.2.7).  

Finally, candidate (87d) is an alternative valid representation of the winning candidate 

in Basque. If we look at the segmental information, the output is identical to the winning 

candidate. The root is disharmonic, with the first sibilant mapped faithfully and the 

second neutralized. Since the winning candidate and the loser are phonetically identical, 

there is no way to tell which one is the actual winner.  

The only difference is in the correspondence relation. To have harmony, both the 

RELATE-X and the IDENT-φ constraints need to outrank the relevant faithfulness 

constraints. If a faithfulness constraint outranks RELATE-X but not IDENT-φ, then we have 

correspondence without harmony; if it outranks both, we have no correspondence. The 

same prediction is made in ABC. This means that some of the candidates generated are 

                                                
49 Again, I use a “derivational” terminology to elucidate the process. Here “harmonize” means that a 
segment is mapped unfaithfully to achieve harmony. If two sibilants are identical and are mapped faithfully 
in the input, in φ-Correspondence they “harmonize” the same way as in candidates where there is an 
alternation. So, neutralization does not really feed harmony, because harmony would be achieved anyway, 
although not via an unfaithful mapping. 
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phonetically identical and that different rankings are compatible with the same set of 

data.  

Notice that for disharmonic roots the input with two apicals must be assumed, unlike 

harmony, where I show that no output with disharmonic candidate exists. The goal of this 

analysis is to show that some candidates fail to harmonize and that there is a ranking that 

generates disharmonic candidates as optimal in the otherwise harmonizing grammar of 

Basque. The assumption is that these candidates have an underlying apical in a 

neutralization context. 

5.2.4 Other predictions 

Unfortunately, I could not find any root with three syllables in the lexicon. Nevertheless, 

extending the analysis to roots with three sibilants, the prediction is that an input with 

both a neutralized and a non-neutralized [−distributed] sibilant is harmonic. For example, 

the input /s̺…s̻…s̻k/ maps to [(s̺)x…s̺x…s̺xk]. Since now there is a non-neutralized 

[−distributed] sibilant in the input (the first s̺), the head does not need to be assigned to 

the sibilant in the neutralization context. Instead, the first sibilant becomes the head and 

causes the second sibilant to assimilate, while the neutralized sibilant inconsequentially 

corresponds and agrees with the rest of the sibilants.  
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(88) Input with three sibilants harmonize 

 

s̺is̻is̻ku 

*s̻C
 

ID-[+sib](dist) 

ID-IO
(+sib)  

ID-IO
(+sib -head) 

ID-IO
(−dist) 

R
ELA

TE-[+sib] 

I D-IO
(+dist)  

A
L(φ -head,  R

) 
 a. (s̺)xis̻yis̺xku      !* * * 

 b. (s̺)xis̺xis̺xku       ** * 

 c. s̻xi(s̻)xis̻xku !*    *   * 

 

The theory also makes the prediction that a DEE cannot occur if the affected segment 

is a target instead of a trigger of the assimilation (see the tableau in (89) below). Since 

only heads are targeted by Ident-φ constraints, targets are predicted to not interact with 

other processes given the current constraint set, since only heads are marked with the 

property H, and only H nodes are targeted by constraints. This is prediction (iv), where 

harmony feeds neutralization.  

Imagine a language like Basque, where the neutralization causes the sibilants to map 

to the regressive feature [s̻]. Since [s̻] is not the dominant feature, there is no demand for 

it to be a head. In case of disharmonic input, then, the head would be assigned to the [s̺] 

segment. This segment, though, does not interact with the neutralization process. It can 

be a head, stay faithful, and trigger harmony as if there were no neutralization.  
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(89) Neutralization of the regressive feature has no effect 

s̺is̺ku ⟶ (s̺)xis̺xku 

*s̺C
 

ID-[+sib](dist) 

ID-IO
(+sib) 

ID-IO
(+sib -head) 

ID-IO
(−dist) 

R
ELA

TE-[+sib] 

I D-IO
(+dist)  

s̻xi(s̻)xku W     L L 

s̻xi(s̺)xku  W    L  

s̻xisyku      W L 

 

5.2.5 Domain restrictions 

The last issue that is still left unaddressed is the fact that suffixes do not harmonize with 

the root. The instrumental suffix /-s̻/ for example, never surfaces as [s̺], even if an apical 

sibilant is present in the root, nor does it cause the sibilant in the root to become 

[−distributed]. The input /its̺as̺o+s̻/ maps faihtfully to [its̺a s̺os̻] rather than to *[its̺as̺os̺] or 

*[its̻as̻os̻]. 

This phenomenon has little to do with headedness or feature correspondence. Rather, 

it is due to the presence of an undominated φ-EDGE constraint that penalizes 

correspondence across root boundaries. The analysis is identical to a standard ABC 

analysis for this pattern. 

Candidates (90a, b) select the rightmost [−distributed] segment as the head. It is a 

perfect head since it does not violate any c-head constraint. However, it fatally violates φ-

EDGE[+sib](root). The only way to avoid the final dental from being a head is to not have 

the segment in correspondence, as shown in (90c). 
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(90) Domain restriction in Basque 

Input Winner Loser 

φ-E
D

G
E[+sib](root) 

*s̻C
 

ID -[+sib](dist)  

I D-IO
(+sib) 

ID -IO
(+sib -head) 

ID-IO
(−dist)  

R
ELA

TE-[+sib] 

ID -IO
(+dist) 

A
L (φ- H

ead, R
) 

its̺as̺o+s̻ its̺xa(s̺)xos̻y its̺xas̺xo(s̺)x W      L W  

s̺olas̻ (s̺)xolas̺x s̺xolas̻y       W L L 

  

5.2.6 Summary  

The tableau in (91) shows the three strata of the grammar. At the top stratum, there are all 

the undominated constraints. Harmony across root-boundary is always banned by Φ-

EDGE[+sib](root). The constraint *s̻C is also undominated, since neutralization applies 

across the board.  

ID-[+sib](dist) is also undominated, even though not all output harmonizes. This is 

because elements not in correspondence vacuously satisfy the constraint. In the case 

where harmony is not achieved, the elements are not in correspondence, so the constraint 

is not violated. 

Next, there are the three faithfulness constraints. ID-IO(+sib) is undominated, so 

candidates do not ever map a sibilant into a non-sibilant to escape correspondence. ID-

IO(+sib-head) is also undominated. Because a φ-head cannot be mapped unfaithfully, 

disharmonic candidates vacuously satisfy the constraint by having the sibilants not in 

correspondence. 
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Finally, ID-IO(−dist) determines the directionality of both the local assimilation and 

of the long-distance assimilation process. Harmony in Basque is dominant-regressive, 

and the dominant value is always [−distributed] and never [+distributed].  

The only constraint in the second stratum is RELATE-[+sib]. The constraint is 

sandwiched between two other strata. On the one hand, it dominates ID-IO(+dist), so that 

harmony can be achieved when neutralization does not interfere or when correspondence 

does not cross the root boundaries. On the other hand, correspondence, and thus 

harmony, is restricted in Basque by both morphological factors and by the neutralization 

process. In these contexts, correspondence is not instantiated, and the constraint RELATE-

[+sib] is violated. Finally, in the bottom stratum are the constraints ID-IO[+dist] and 

ALIGN([+sib], R). ID-IO[+dist] is violated by all unfaithful mappings of sibilants. If a 

sibilant must change because of neutralization or because of harmony, then it is always 

the [+dist] feature value that is changed. ALIGN([+sib], R) is also on the bottom stratum, 

since Basque is a purely directional harmony, and alignment to an edge does not play any 

role in the assignment of the φ-heads in the output.  
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(91) Support tableau for Basque 

 ERC Input Winner Loser 

Φ
-E

D
G

E[+sib](root) 

*s̻C
 

ID-[+sib](dist) 

ID -IO
(+sib)  

ID-IO
(+sib-head) 

ID -IO
(−dist) 

R
ELA

TE-[+sib]  

ID- IO
(+dist) 

A
L(φ-head, R

) 

1 its̺as̺o+s̻ its̺xa(s̺)xos̻y its̺xas̺xo(s̺)x W      L W  

2 s̻is̻ku s̻xis̺yku s̻xi(s̻)xku  W     L L  

3 s̻is̻ku s̻xis̺yku s̻xi(s̺)xku   W    L  W 

4 s̻is̻ku s̻xis̺yku s̻xityku    W   L L  

5 s̻is̻ku s̻xis̺yku s̺xi(s̺)xku     W  L W  

6 s̺olas̻ (s̺)xolas̺x s̻xola(s̻)x      W  L L 

7 s̺olas̻ (s̺)xolas̺x s̺xolas̻y       W L L 

 

5.2.7 Basque in ABC 

As previously reiterated, ABC cannot capture the interaction between harmony and 

neutralization. I show that a crucial role in blocking the harmony is played by φ-heads via 

the constraint IDENT-IO(+sib-head). Since ABC does not have any head, it cannot capture 

either the asymmetry between trigger and target in Basque or the interaction of elements 

in a correspondence relation with other phenomena. The analysis of ABC of the harmony 

pattern follows the lines of the analysis in φ-Correspondence. To have harmony, IDENT-

CC(ant) and CORR(+sib) must be ranked above ID-IO(+dist). Neutralization is also 

obtained by ranking *s̻C above ID-IO(+dist). 

This ranking works well when the two processes do not interact. However, when the 

two processes co-occur, a ranking contradiction arises. As illustrated in (92), CORR(+sib) 
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has to be ranked above IDENT-IO[−dist] in order to have harmony (92e), while at the 

same time it must be ranked lower than the same IDENT-IO[+dist] to avoid 

overapplication in neutralized forms (92b). 

(92) Basque in ABC 

Winner Losers 

*s̻C
 

ID-C
C

(dist) 

I D-IO
(−dist) 

C
O

R
R(sib) 

I D-IO
(+dist)  

s̻is̻ku → s̺xis̻yku a. s̺xisxku  W  L  

 b. s̺xis̺xku W  W L  

 c. s̻xis̻xku    L W 

s̺olas̻ → s̺olas̺ d. s̺xolas̻x  W   L 

 e. s̺xolas̻y    W L 

 f. s̺xolas̺x   W  L 

 

In φ-Correspondence, ID-IO(+sib-head) favored the candidate without harmony. 

However, in ABC the absence of heads (or any other marking on the trigger of harmony) 

does not permit a distinction between the two sibilants in correspondence. In fact, there is 

not even a way to refer to elements in correspondence outside of the domain of Surface 

Correspondence constraints.  

5.3 Chapter summary 

In this chapter, I discussed a rare case of interaction between harmony and neutralization 

in Basque, which is a direct consequence of the introduction of φ-heads.  
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In general, I showed that φ-heads play different roles in φ-Correspondence. First, I 

demonstrate that φ-heads are essential in the proof of Hypothesis I, since they allow us to 

formulate φ-Correspondence as a type of correspondence relation (chapter 2).  

I also showed that φ-heads play a major role in determining the directionality of the 

harmony (chapter 3). Directional harmonies (like in Chumash) are argued to have a right-

aligned φ-heads. In other languages (see Dominant-Directional harmony in section 

6.1.2.3), the alignments of φ heads interacts with other IDENT-IO constraint either to 

determine the directionality of the harmony or limit the domain of the correspondence 

relations.  

In this chapter, I have shown a yet another effect of φ-heads. Feature nodes are 

marked with a head feature, and the positional faithfulness constraints IDENT-IO(φ-head) 

directly refer to the property in their evaluation of an element as a privileged position.  

The general nature of headedness and of the positional faithfulness constraints yields 

to the interaction with other local markedness constraints. In particular, the theory 

predicts that harmony may non-trivially interact with neutralization process affecting the 

trigger of a harmony process in various ways.  

In Basque, we see an example of neutralization counterbleeding harmony. When a 

potential trigger occurs in a neutralization context, it cannot act as the head of the 

harmonic domain. If the neutralized segment is the only possible trigger, harmony does 

not occur, which explains the disharmonic roots observed in the language.  

In the previous sections, I showed that cases where Kalabari can be analyzed in 

classic ABC by introducing a somewhat complex set of constraints. Interactions between 
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neutralization and harmony require non-trivial alteration either of the correspondence 

relation or of the constraint evaluation mechanism. These interactions are predicted to 

occur in φ-correspondence because of the general definition of headedness and positional 

faithfulness constraint.  

ABC does not have heads and does not distinguish between triggers and targets. Any 

phenomenon that presents an asymmetry between the two types of elements is therefore 

problematic for the theory (see also Walker 2016 for a clear example of trigger–target 

asymmetry).  
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6 Typologies 

In this chapter, I discuss the typological predictions of the theory. In section 6.1, I discuss 

the basic typology of directionality in φ-Correspondence. In section 6.2, I introduce a set 

of generalizations that restricts the types of attested directionality patterns, and the 

consequences one of these restrictions have on theories of markedness.  

6.1 Base typology 

I start with the basic typology of φ-Correspondence. This typology defines the basic 

patterns of directionality predicted by the theory by focusing on the interaction between 

the basic φ-Correspondence constraints RELATE-X and IDENT-φ. 

6.1.1 Formal typology 

6.1.1.1 Features 

In section 2.3, I explain that the number of φ-Correspondence constraints grows linearly 

with the number of features postulated. A model with five features has five RELATE-φ 

constraints and five IDENT-φ constraints, while a model with ten features has double that 

number. This proliferation of constraints raises two issues.  

The first issue is practical: more constraints generate bigger typologies, which in turn 

are harder to analyze. In this chapter, I only consider one harmony at the time (i.e., set of 

φ-Correspondence constraints that refer to a single feature). This move is justified 

because φ-Correspondence relations are mostly independent from one another, as 

illustrated in the analysis of Kalabari in chapter 4. In other words, harmony may interact 

with other processes and other harmonies, but not directly via correspondence.  
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The second issue concerns the raw number of constraints themselves. However, the 

constraints are all derived from the same schemas (i.e., have the same definition), so the 

number of features (and consequently the number of postulated constraints) is less 

important. 

Thus, one can study the structure of the typology for one harmony and generalize it to 

all other features. The actual typology comprises different languages in terms of features, 

but they can all be linked back to one of the abstract patterns described in the rest of this 

section. 

For the sake of readability, instead of using an abstract feature, I use the feature 

[+sibilant] to refer to the tier of correspondence and the feature [anterior] for the 

harmonizing feature.  

6.1.1.2 Candidate set 

Candidates include a root with two consonants and two vowels, and an optional suffix 

with a sibilant. The segments considered include the sibilants [s, ʃ], which represent the 

segments with the correspondence feature, and the segment without the correspondence 

feature [t]. The vowel [a] is used to separate the consonants but does not play any role 

under the current constraint set. An example of a possible candidate is as follows: 

/ʃasa+s/ → [sxasxa+sx]. The complete characterization of the candidates is provided in 

(93), in the usual format.  
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(93) Candidate set 

a. Inputs 

[s, ʃ, t] a [s, ʃ, t] a + ([s, ʃ, t]) 

b. Mappings  

ʃ → s, ʃ, t 

s → s, ʃ, t 

t → t 

c. Other 

All combinations of surface correspondence among sibilants 

One-to-one I/O mapping only 

There is no deletion or epenthesis in the candidates, so the input and output always 

contain the input segments. The last consonant is considered morphologically an affix to 

the root, and there is no morphological rephrasing, so the structure of both input and 

output is always CVCV+(C). 

The output follows the same format used in chapter 3. It may contain one and only 

one head, the indices indicate correspondence, and it contains the same set of segments 

[s, ʃ, t] included in the input.  

6.1.1.3 Constraints 

The constraint set used is like the one used for Chumash in chapter 3. It includes 

constraint RELATE-[+sib] to govern the distribution of nodes in correspondence, and the 
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IDENT-φ constraint ID-[+sib](ant), which favors elements in correspondence that agree for 

the feature anterior. 

(94) φ-Correspondence constraints in Chumash 

• RELATE-[+sib] 

– Assign a violation for each [+sibilant] feature node that is not in a φ-

Correspondence relation. 

• ID-[+sib](ant) 

– Assign a violation if two nodes in [+sib]-Correspondence have a different 

specification for the feature [anterior].  

The other two constraints refer to φ-heads. ID-IO(+sib-head) is the faithfulness 

constraint that penalizes φ-heads from being mapped unfaithfully, and ALIGN([+sib-

head], R) penalizes the misalignment of the heads to an edge. 

• ID-IO(+sib-head) 

– Assign a violation if a segment has a φ-head and an unfaithfully mapped 

feature. 

• ALIGN([+sib-head], R) 

– Assign a violation if there is a head [+sibilant] feature node not aligned to 

the right edge of the prosodic word. 

Finally, there are the IDENT-IO constraints that refer to the features in correspondence 

(+sib) and to the features for which agreement is demanded (anterior), and one constraint 

that refers to segments in the root ID-IO(root) (see (19) for a definition).  
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(95) IDENT-IO Constraints in the typology 

• ID-IO(+ant) 

• ID-IO(−ant) 

• ID-IO(+sib) 

• ID-IO(root) 

The constraint set contains two justified simplifying assumptions. First, I assume that 

ID-IO(−ant) always dominates IO(+ant). The typology that does not impose this 

restriction includes the same patterns but with the feature values switched. Furthermore, 

this move is empirically justified, as discussed in section 6.2.2. 

Likewise, I do not include the mirror image of ALIGN([+sib-head], R) that would refer 

to the left edge. The absence of this constraint is justified empirically, as discussed in 

6.2.1.2. 

6.1.1.4  The typology 

The list of language types generated by the typology is given in (96). Since there is no 

phonetic realization of headedness or of correspondence, grammars with the same 

segmental mapping are merged together and considered as a single language.  

For example, although the faithful mapping with no elements in correspondence is 

structurally different from the output with some elements in correspondence, the 

candidates are considered the same when classifying the language. 

The tables below contain the languages of the typology. Most languages can be 

obtained by simply looking at the candidates with two segments in the root. These 
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languages are included in (96). Including an affix allows us to further distinguish one 

type of language, indicated in (97).  

The mappings reported always concerns sibilant harmony, while the languages 

reported refer to the general pattern description. Descriptions of the patterns for each 

attested type of harmony can be found in section 6.1.2. 

(96) Typology within the root (CVCV). 

/ʃasa/ /saʃa/  Language description Example languages 

(ʃ)xaʃxa ʃxa(ʃ)xa  Pure dominant harmony.  

Outcome determined by a feature. 

Malto, Basque, 

Moroccan Arabic  

sxa(s)xa ʃxa(ʃ)xa 
 
Pure directional harmony.  

Outcome determined by alignment to an edge. 

Tsilhqot’in, Chumash, 

Saisiyat, Thao 
ʃxasya ʃxa(ʃ)xa  Dominant-directional harmony.  

Harmony only if aligned and dominant. 

Ngizim, Pengo, Kera 

   
ʃxatya  ʃxa(ʃ)xa 

 
Dominant-directional dissimilation. 

Harmony if aligned and dominant, otherwise. 

diss. 

unattested? 

ʃxatya ʃxatya 
 
Dissimilation. 

Dissimilation for disharmonic inputs. 

Chol 

ʃxasya sXaʃya 
 
Faithful. 

No harmony or dissimilation. 

All other languages 

 

In addition to the faithful and dissimilation languages, the typology includes three 

well-known types of harmonies: dominant harmonies, where the target is determined by a 

specific feature value; directional harmonies, where the target is determined by the 

position of the feature in the string (leftmost or rightmost); root control harmonies, where 



148 
 

 
 

the target is in a privileged morphological position (discussed in the next section).50 The 

harmonies can be either exclusively of one type (i.e., “pure”) or mixed.  

Mixed types (such as dominant-directional) are classified as a combination of base 

types. Mixed types impose a restriction on the application of harmony based on their base 

type. For example, in dominant-directional harmony, only dominant-right aligned 

segments act as triggers. If the rightmost sibilant does not have the dominant feature, 

harmony is blocked. Likewise, in dominant-root control harmonies, only segments with 

the dominant feature in the root can act as triggers. 

6.1.1.5 Root control 

Including an affix simply extends the typology above with two additional languages. In 

dominant-root control harmony, the outcome is determined by a segment in the root with 

the dominant feature.  

There are two subtypes of languages that belong to this type. These differ in whether 

the root segments harmonize or not. For example, in /saʃa+s/ → [sxa(ʃ)xa+ʃx] the sibilants 

in the root do not harmonize, while in the candidate /saʃa+s/ → [ʃxa(ʃ)xa+ʃx], harmony 

includes the suffix and the segments in the root. 

 

 

 

                                                
50 In this dissertation, I only discuss the distinction between root (privileged) vs. affixes (non-privileged). 
(Beckman, 1998:191–209). In Obolo, harmony goes from onset (privileged) to coda, but such cases are 
scarce.  
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(97) Typology with an affix (CVCV+C) 

/ʃasa+s/ /saʃa+s/  Language description Example languages 

(ʃ)xasxa+ʃx sxa(ʃ)xa+ʃx 
 Dominant-root control.  

Outcome determined by a feature in the 

root. 

Bemba, Yaka (Bantu) 

  

ʃxasxa+sx ʃxa(ʃ)xa+ʃx  

Dominant-directional-root control 

harmony.  

Harmony if aligned, dominant, and in the 

root. 

 Unattested 

 

Both language subtypes are attested. However, since the question as to whether or not 

harmony extends to the root is not relevant for the typology of directionality (see also 

section 6.1.2.5), I consider the two languages as belonging to the same directionality 

type. 

Dominant-directional-root control harmonies seem to be unattested. However, these 

patterns, much like the dominant-directional dissimilation class (see previous section) are 

also subtle, so they are easy to miss in a cursory description of a language.  

Notice that no directional-root control languages are not generated, in which, the 

outcome of the harmony would be determined by the rightmost segment in the root.  

However, whether or not these languages are generated or depends not on φ-

Correspondence, but rather on the definition of ALIGN(φ-head) constraints. In section 
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2.4.2.1, I assume that the alignment constraints have a categorical definition rather than a 

gradient one. 

The categorial definition does not generate these languages because it cannot 

distinguish between candidates like ʃxa(ʃ)xa+s and (ʃ)xaʃxa+s. The sibilant is not right-

aligned in either candidate, so it violates the categorical definition is violated once.51 

(98) Language not generated. 

/ʃasa+s/ /saʃa+s/  Language description Example languages 

sxa(s)xa+s ʃxa(ʃ)xa+ʃ 
 

Directional-root control.  

Outcome determined by alignment to the 

root. 

Unattested 

 

6.1.2 Empirical survey 

I now review the empirical attestation of the types generated by the typology. The focus 

is on the basic directionality types, and so the details of the harmony processes, eventual 

alternative analyses, and the interaction of harmony with other processes are not 

discussed. 

 

 

                                                
51 If we consider prefixes, then such languages are predicted by the typology even with the categorial 
definition. Having an ALIGN(φ-head) that refers to the root edge as opposed to the prosodic word edge also 
yields the same outcome. More evidence is required to assess the most appropriate definition of ALIGN(φ-
head) and of its effect on directionality. 



151 
 

 
 

6.1.2.1 Dominant harmony 

I start with dominant harmonies. In those harmonies, the outcome of the assimilation is 

determined by specific value of a feaure, such as [+ant] as opposed to [−ant].  

While in many varieties of Arabic, sibilant assimilation is directional, in Moroccan 

harmony, it is argued to be pure dominant (99). Heath (1987) provides the following data: 

(99) Sibilant harmony in Moroccan Arabic (Heath 1987) 

   Classical Arabic Moroccan 

 a. zadʒ  → ʒaʒ ‘glass’ 

 b.  zulajdʒ → ʒlliʒ ‘tiles’ 

 c. sardʒ  → ʃarʒ  ‘saddle’ 

 d. ʃams → ʃomʃ ‘sun’ 

Another example of a pure dominant harmony is Basque (§ 3.2). In this language, 

coronal harmony manifests itself as a co-occurrence restriction in roots, in compounds, 

and in loanword adaptations. In some dialects, harmony is always to the apical coronals 

/s̺, ts̺/ and never the alveolar coronals /s, ts/ (Trask 1997). 

The examples in (100) show that the assimilation target is independent of 

directionality, since it goes from left to right. It is also independent of root control, since 

the assimilation also occurs within roots, as also seen in (100). 
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(100) Basque coronal harmony 

 a. /sin-ets̺i/ → [s̺in-ets̺i] ‘believe’, cf. /sin/ ‘truth’ 

 b. /es-ets̺i/ → [es̺-ets̺i] ‘persist’, cf. /es/ ‘no’, /ets̺i/ ‘consider’ 

 c. /frantses̺/ > /frants̺es̺/ ‘French’, from Spanish francés 

 d. /s̺atsuri/ > /s̺ats̺uri/ ‘mole’ 

 e. /s̺asoi/ > /s̺as̺oi(n)/ ‘flavor’ 

In Tlachichilco Tepehua (Hansson 2010:88-94), dorsalized /p, t/ harmonizes with 

uvular /q, q’/ (e.g., /q’ut-ɬi/ → [ʔoq-ɬi]).52 

Place harmony is different from other types of harmony in that it is parasitic on other 

features. For example, in Gojri two plosives have to be identical if they are aspirated. A 

similar requirement is active in Aymara and Tzutujil (and other Mayan languages), the 

difference being that the features are ejectives. In Hausa two glottalic consonants must 

identical. 

In Kera, the prefix /ka/ is realized as [ga] if there is a voiced segment in the root 

(although see Pearce 2005 for an alternative analysis). This harmony is of type dominant-

root control in that the trigger is in the root, and only the marked feature value can be the 

harmonizing feature. Directionality is irrelevant, as assimilation occurs in both prefixes 

                                                
52 Watters (1998) notes two exceptions: /ʔaq-lukut/ → [ʔaq-qloquti] ‘horn’, cf. /ʔaq-/ ‘head’ and /lukut/ 
‘bone’; and [ʔaqlaqawaːnan] from /lakaw/ ‘dream’. The exceptions are sporadic, but they cannot be derived 
from directionality, since the target is the leftmost sibilant, nor they can be derived from root-orientedness, 
since the uvular is in a prefix.  
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and suffixes. Similarly, several Coptic dialects (Sahidic, Akhminic, Assiutic) underwent a 

sound change where /s/ > /ʃ/, via assimilation to tautomorphemic /ʃ, tʃ/. 

(101) Voicing harmony in Kera 

a. Voicing harmony in feminine suffix /-ka/ 

sar-ka ‘black (fem.)’ 

d͡ʒar-ga ‘colorful (fem.)’ 

b. Voicing harmony in nominal prefix /k-/ 

 kə-maanə ‘woman’ 

 kə-taːta-w ‘cooking pot (pl.)’ 

 kə-kamma-w ‘chief (pl.)’ 

 gə-daːrə ‘friend’ 

 gə-dajka-w ‘jug (pl.)’ 

c. Bidirectional voicing harmony (collective /-kaŋ/, masculine /-ki/) 

 kə-sar-kaŋ ‘black (coll.)’ 

 ki-sir-ki ‘black (masc.)’ 

 gə-d͡ʒar-gaʌ ‘colorful (coll.)’ 

 gi-d͡ʒir-gi ‘colorful (masc.)’ 

Most cases of nasal harmony are of the dominant-root control type. A sonorant in a 

suffix becomes a nasal if there is a nasal at a certain distance in the root. For example, in 
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Yaka and in many Bantu languages, harmony is always obtained via nasalization of a 

segment in an affix. 

(102) Nasal harmony in Yaka (Hyman, 1996) 

a. Perfective suffix /-idi/ → [-idi]: 

 tsub-idi ‘to wander (perf.)’ 

 kud-idi ‘to chase (perf.)’  

 kik-idi ‘to block (perf.)’  

 kas-idi ‘to lie (perf.)’  

b. Nasal harmony in /-idi/ → [-ini] 

 tsum-ini ‘to sew (perf.)’ 

 kun-ini ‘to plant (perf.)’ 

 wun-ini ‘to whisper (perf.)’ 

b. Nasal harmony must be triggered in the root 

 kud-ana ‘to chase (caus.)’  

 kik-ana ‘to block (caus.)’  
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(103) Nasal harmony in Lamba (data from Odden, 1994) 

a. Perfective suffix /-ile/: 

 -pat-ile ‘scold (perf.)’ 

 -uum-ine ‘dry (perf.)’  

 -mas-ile ‘plaster (perf.)’ *[-mas-ine] 

b. Intransitive reversive suffix /-uluk-/: 

 -fis-uluk-a ‘get revealed’  

 -min-unuk-a ‘get unswallowed’  

 -mas-uluk-a ‘get unplastered’ *[-mas-unuk-a] 

Hansson (2001/2010), citing Greenberg (1951), notes that in some Teke dialects 

(Kukuya), in a sequence CVCVCV, only the second and the third velar consonants 

harmonize for nasality.  

6.1.2.2 Directional 

In directional harmonies, the outcome of the assimilation is determined by a segment that 

is aligned to a specific edge of the word. An example of pure directional harmony is 

Chumash (§ 3.1), where the rightmost sibilant in the word determines the [ant] value of 

all other sibilants.  

Several Formosan languages also show the effect of pure directional harmony in 

sound change, although there are some exceptions. All the reconstructions are from 

Blust’s (1995) analysis, and the original forms are from Proto-Austronesian. The two 
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clearest cases (Blust 1995; Hansson 2010:56) are Saisiyat (NW Taiwan) and Thao 

(Central Taiwan). In Saisiyat, there are words that display anteriority assimilation. 

Similarly, Thao also has continuant harmony, and anteriority harmony in sibilants, as 

well as a very peculiar case of harmony with the lateral fricatives. 

Another case of pure directional harmony is the Northern Athapaskan language 

Tsilhqot’in (Chilcotin). In Tsilhqot’in, pharyngealized alveolar sibilants /sʕ, zʕ, tsʕ, ts’ʕ, 

dzʕ/ (−RTR) contrast with plain alveolar sibilants /s, z, ts, ts’, dz/ (Cook 1993; Hansson 

2007; 2010). The two alveolar sibilant series harmonize for [RTR], and the harmonizing 

feature is determined by the rightmost segment in the word.  

In various Niger-Congo and Afro-Asiatic languages, such as Shambaa, Izere, 

Rwanda, and Rundi, harmony is directional, often from suffix to root, as shown in (104). 

In (104a) the root-final sibilants [s, z] fuse with the palatal glide of the perfective suffix 

/-je/ and become [ʂ, ʐ]. The data in (55b) shows that the harmonizing feature is always 

determined by the rightmost segment, even when it appears in a suffix. Given the data 

available, it is unclear if the harmony is dominant, since the harmonizing feature always 

seems to be the retroflex. If that is the case, then these languages are of the type 

dominant-directional (see below). 
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(104) Directional harmony in Rwanda 

a. Root harmony 

 /ba-ra-saːz-je/ → [baraʂaːʐe] ‘they are old’ 

 /a-sas-je/ → [aʂaʂe] ‘he just made the bed’ 

 /a-sokoz-je/ → [aʂokoʐe] ‘he just combed’  

b. Suffix to root harmony 

 /ku-sas-iːʂ-a/ → [ku-ʂaʂiːʂa] ‘to cause to make the bed’ 

 /ku-saːz-iːʂ-a/ → [ku-ʂaːʐiːʂa] ‘to cause to get old’ 

 /ku-uzaz-iːʂ-a/ → [ku-uʐaʐiːʂa] ‘to cause to fill’ 

Both Tsuut'ina (Sarcee) (105) and Navajo (106) have directional harmony, with the 

harmonizing feature determined by the rightmost sibilant in the root. Wiyot (Algic; 

Teeter 1959) and Rumsen (Costanoan) are also argued to have directional harmony.  

(105) Sibilant harmony in Tsuut’ina 

/si-tʃiz-aʔ/ → [ʃitʃidza] ‘my duck’ 

/si-tʃogo/ → [ʃitʃogo] ‘my flank’ 

/na-s-ɣatʃ/ → [naʃɣatʃ] ‘I killed them again’ 
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(106) Sibilant harmony in Navajo (data from McDonough, 1991)53 

/j-iʃ-mas/ → [j-is-mas] ‘I am rolling along’ 

/ʃ-is-na/ → [s-is-na] ‘he carried me’ 

/si-d͡ʒeːʔ/ → [ʃi-d͡ʒeːʔ] ‘they lie (slender stiff objects)’ 

/dʒ-i-zda/ → [dzizda] ‘he sat down’ 

/dz-isʃ-l-haːl/ → [dʒiʃhaːl] ‘I tumble into water’ 

6.1.2.3 Dominant-directional 

In dominant-directional languages, harmony occurs only when a marked segment is the 

rightmost correspondence segment in the word. This happens in Bolivian Aymara and in 

the West Chadic language Kera. In Kera, there is optional root-internal harmony if /tʃ/ 

follows a /t/. The only two examples given involve the mapping /t…tʃ/ → [tʃ... tʃ], but 

according to Hansson’s (2010) description, the sequence /tʃ…t/ does not trigger harmony. 

The two examples are reported below. 

(107) Kera coronal harmony 

 a. tutʃi ~ tʃutʃi ‘tamarind’  

 b. tʃe tʃerke ‘backbone’  

In Basaa, the velar stop /k/ nasalizes if the previous consonant is a nasal. Another 

dominant-directional language is Pengo. In Pengo, coronals harmonize for [distr_release], 

for example /t…tʃ/ → [tʃ…tʃ] (108). However, as in the case of Kera and Aymara, 

                                                
53 Navajo also has been argued to have a process of RtoL consonant harmony between the perfective 

/si-/ and 1st singular subject prefixes (McDonough 1991).  
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harmony is blocked if a [+distr_release] coronal is not the rightmost segment in the 

correspondence. The reverse mapping never happens, regardless of the position of the 

segments, so the input /ʃ…t/ is mapped faithfully [ʃ…t], as shown in (108). 

(108) Dominant coronal harmony in Pengo (data from Burrow & Bhattacharya 1970) 

a. titʃ ~ tʃitʃ ‘to eat (past stem)’ 

b. toːtʃ ~ tʃoːtʃ ‘to show’ 

c. taːnd͡ʒ~ tʃaːnd͡ʒ  ‘to appear’ 

e. tʃeta man ‘to be awake’, *tʃetʃa, *teta  

f. d͡ʒaːti ‘castle’, *dʒaːtʃi 

6.1.2.4 Non-harmonic types 

In addition to three types of harmony, there are several grammars with non-harmonic 

candidates. As in ABC, the typology of φ-Correspondence includes faithful grammars 

that differ on whether the segments with the correspondence feature are in 

correspondence or not.  

The dissimilation language is the same predicted by ABC (e.g., Bennett 2013): a 

segment may escape the requirement to correspond by unfaithfully mapping the feature 

for which correspondence is demanded.  

Finally, the dominant-dissimilation grammar is a combination of the dissimilation 

type and the dominant-directional one. In this grammar, disharmonic roots harmonize 

when the rightmost segment in the correspondence is marked; otherwise, disharmonic 

roots dissimilate. To my knowledge, such grammars are unattested. Nevertheless, the 



160 
 

 
 

directional-dissimilation grammar is a combination of two already rare language types. 

The fact that the language is unattested might then be because the conditions for such a 

grammar to come about are very unlikely to occur in a language.  

6.1.2.5 Domain restrictions 

The generalizations and the properties discussed in this section apply to the harmonizing 

feature component and should not be confounded with other correspondence effects, such 

as harmony domain restriction. 

An example of domain restriction was shown for Basque, where harmony does not 

extend to suffixes (§ 2.3). There are other languages where affixes do not trigger 

harmony or participate in harmony. In Rwanda retroflex harmony only holds within the 

stem (a). Sibilant in the affixes do not participate in the harmony (b). 

(109) Rwanda domain restriction (Mpiranya & Walker 2006, cited in Bennett 2015:78) 

a. /ku-sas-iiʂ-a/ → [gu<ʂaʂiiʂa>] ‘to cause to make the bed’ 

b. /zi-saaʂ-e/ → [zi<ʂaaʂa>] ‘it became old (perf.)’ 

In Athapaskan languages, harmony goes from the root to the prefix, and it is right-to-

left, as in Chumash. Hansson (2010:148) citing (Sapir & Hoijer, 1967:16) notes that 

enclitics are never affected by harmony. In both languages the harmonizing feature is 

determined by the rightmost sibilant in the root. Enclitics that follow the root do not 

participate in the harmony.  

These languages still fall under the generalizations discussed in this section. Basque 

and Rwanda have agreement to the marked feature value, while Sarcee and Navajo are 
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directional. Nonetheless, the properties and the generalizations discussed have nothing to 

say about the domain restriction, they are just limited by it in their application. 

6.2 Trigger asymmetries 

There are several patterns that concern the directionality of the outcome of the harmony 

and are attested in an asymmetric way. In section 6.2.1, I formulate three parameters that 

account for these asymmetries. Each parameter encodes a generalization on a macro-type 

of directionality (dominant, directional, root control). I then illustrate how the 

combination of these parameters limit the typology of directionality introduced in the 

previous section only to the attested patterns.  

Sections 6.2.2 focus on the generalization on markedness. This generalization is 

particularly important because it allows us to distinguish between general theories of 

markedness. I show that the typology of consonant harmony provides evidence for the 

hypothesis that a subset of faithfulness constraints are in a fixed ranking relation as 

opposed to a stringent relation. 

6.2.1 The three generalizations 

In this section, I argue that for each of the three macro-types of harmonies (dominant, 

directional, and root control) there is a bias towards a specific direction of assimilation.  

6.2.1.1 Dominancy 

The first generalization concerns dominant harmonies. Hansson (2010) and Bennett 

(2013/2015) noted a tendency or a strong preference for “marked” (see 6.2.2.1 for a 

working definition of markedness) feature values to be the target of assimilation. 
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Although in most cases the generalization is rendered opaque by alignment and root 

control effect, an analysis of all the languages reported in Hansson (2001/2010) confirms 

that in dominant harmony the target of assimilation is always the marked value. The 

following generalization states that if there is harmony in a dominant harmony, the 

outcome of the harmony is the marked feature value, given that no other process affects 

the harmonizing segments (e.g., neutralization). 

(110) Generalization (Harmony to the Marked) 

Given a sequence ψ of consonant segments <s1, s2, …sn> in the input with different 

specifications −φ, +φ of a feature, if a sequence Ψ of corresponding segments in the 

output <S1, S2, …Sn> harmonizes in a dominant harmony grammar 𝒢, then the 

segments in Ψ will have a marked feature specification +φ, and not the unmarked −ϕ, 

unless S ∈ Ψ cannot be +φ in 𝒢. 

For example, if a set of consonants harmonizes for nasality, dominant harmony is 

always obtained by changing [−nasal] segment to [+nasal], but never the opposite 

([+nasal] → [−nasal]). 

Phonotactic restriction may give the impression of a violation of the generalization. 

For example, in Tiene, in C1VC2VC3 stems, C2 and C3 are required to agree in nasality 

via dominant harmony (111a, b). However, when the coronal continuant segment /s/ is 

the affix segment, the target if agreement is [−nasal] (111c).  
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(111) Nasalization and denasalization in Tiene 

 a. Nasalization in infixed applicative /-lV-/ 

 bak-a ‘reach’, ba-la-k-a ‘reach for’ 

 jɔb-ɔ ‘bathe’, jɔ-lɔ-b-ɔ ‘bathe for’ 

 duma ‘run fast’, du-ne-m-e ‘run fast for’ 

b. Nasalization in stative /-Vk-/ 

 jaat-a ‘split’, jat-ak-a ‘be split’ 

 sɔn-ɔ ‘write’, sɔn-ɔɳ-ɔ ‘be written’ 

 c. Denasalization with infixed causative /-sV-/ 

 lab-a ‘walk’, la=sa=b-a ‘cause to walk’ 

 kuk-a ‘be sufficient’, ku=si=k-e ‘make sufficient’ 

 tóm-a ‘send’, tó-se=b=e ‘‘cause to send’ 

 dím-a ‘get extinguished’, dí-se=b=e ‘extinguish’ 

The correspondence pair [nx…sx] can agree in nasality by either nasalizing the /s/, or 

to the coronal nasal, (violating IDENT-IO(+sibilant) or *NASFRIC), or by denasalization 

(thus violating IDENT-IO(+nasal)). The generalization is then compatible with this 

analysis, since there is no need in any IDENT-IO constraint to refer to an unmarked value 

of a feature (e.g., IDENT-IO(−nasal)). 
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There is another apparent violation of the markedness generalization. In Bukusu, the 

applicative /-il/ assimilate to a rhotic in the stem (110). However, in Sundanese, the 

opposite relation holds between rhotics and laterals: the plural /-ar/ assimilates to a lateral 

in the stem (111). Unlike the other cases discussed in 1.3 where the asymmetry was due 

to the markedness hierarchy between two values of the same feature (e.g., [+nasal] vs. 

[−nasal]), the symmetry in these examples is due to the fact that both [+lateral] and 

[+rhotic] are marked for coronals (as opposed to [−lateral] and [−rhotic]). In section 1.3 it 

was shown that the marked value for the coronals /s/ can either be dental /s̺/ or palatal /ʃ/ 

(or even retroflex). Since both are marked in sibilant ([+distributed], [−anterior]), either 

can be the trigger in dominant harmony. 

(112) rhotic > lateral harmony in Bukusu. 

 a. /il/ is faithful 

 xam-il-a ‘milk for’ 

 but-il-a ‘pick/gather for’ 

 teːx-el-a ‘cook for’  

 b. /il/ → [ir] if preceded by a [+rhotic] 

 /bir-il-a/ → [bir-ir-a] ‘pass for’ 

 /ir-il-a/ → [ir-ir-a] ‘die for’ 

 /kar-il-a/ → [kar-ir-a] ‘twist’ 
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(113) lateral > rhotic harmony in Sundanese 

 a. infix /il/ is faithful 

 litik l-al-itik ‘little (plural)’ 

 ləga l-al-əga ‘wide (plural)’ 

 b. /il/ → [ir] if preceded by a [+rhotic] 

 kusut k-ar-usut ‘messy (plural)’ 

 poho p-ar-oho ‘forget (plural)’ 

 riwat r-ar-iwat ‘startled (plural)’ 

6.2.1.2 Alignment 

The second generalization states that in directional harmonies, the trigger of the 

assimilation is always right-aligned, never left-aligned. As in the case of markedness, 

mixed types and other independent processes may make the alignment imperfect. The 

interaction with other factors is accounted for as an effect of the violability of OT 

constraints, as show in the typology. A descriptive generalization is given below.  

(114) Generalization (Harmony to the Right). 

Given a sequence ψ of consonant segments <s1, s2,…sn> in the input with 

different specifications φ, φ′ of a feature, if a sequence Ψ of corresponding 

segments in the output <S1, S2,…Sn> harmonizes in a direction harmony grammar 

𝒢, then the segments in Ψ will have the feature specification φ′ of the rightmost 
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segment sn ∈ ψ, and never the value ϕ, unless S ∈ Ψ cannot be φ′, or an 

independent process changes φ′ → φ. 

The classic example of directional harmony in Chumash was discussed in chapter 3. 

In Chumash, it is always the rightmost sibilant that determines the target of harmony, 

regardless of markedness and morphological constituency. Chumash thus constitutes an 

example of pure directional harmony. The generalization states that languages like 

Chumash, where it is the leftmost sibilant that determines the outcome of the harmony, 

do not exist. 

Hansson (2001/2010) has a long discussion about this asymmetry. He accounts for it 

in terms of functional bias for anticipatory coarticulation effects in consonant production. 

Analytically, the typological gaps are either caused by the absence of constraints like 

ALIGN(φ-head, L) or simply that the patterns never arise for functional reasons.  

Notice that the former option has no relation with Hypothesis II, since ALIGN(φ-head) 

constraints are not φ-Correspondence constraints. Either choice is thus quite 

inconsequential for the goal of this dissertation. 

6.2.1.3 Privileged Position 

The fact that root control harmony is always inside-out is a generalization that can be 

derived from related work on harmony (Baković 1999), and more general work on 

positional faithfulness (Prince & Smolensky 1993/2004; Beckman 1998, among others). 
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(115) Generalization (Harmony from the Privileged). 

Given a sequence ψ of consonant segments <s1, s2, …sn> in the input with 

different specifications φ, φ' of a feature, if a sequence Ψ of corresponding 

segments in the output <S1, S2, …Sn> harmonizes in a root-controlled harmony 

grammar 𝒢, then the segments in Ψ will have the feature specification φ′ of the 

segment(s) in a privileged position, and never the value ϕ, unless S ∈ ψ cannot be 

φ′ in 𝒢. 

One characteristic of root control harmony is that it cannot be a pure type, unlike 

dominant and directional harmonies. For example, Navajo is described as root control 

harmony in Hansson (2001/2010).  

Harmony can be obtained via assimilation of the marked /ʃ/ and the unmarked value 

/s/ of the sibilant. The value is determined by the feature value in the root.  

(116) Root-controlled sibilant harmony in Navajo (data from McDonough 1991) 

/j-iʃ-mas/ → [j-is-mas] ‘I am rolling along’ 

/ʃ-is-na/ → [s-is-na] ‘he carried me’ 

/si-d͡ʒeːʔ/ → [ʃi-d͡ʒeːʔ] ‘they lie (slender stiff objects)’ 

Root control directionality tells you that the outcome of the assimilation is determined 

by a segment in the root. However, any root control harmony still has to resolve the 

conflict that arises when two targets appear in the root.  

Consider for example the disharmonic input /s+aʃaso/, where the first sibilant is in an 

affix. Assuming there is no harmony among sibilants in the root, the grammar needs to 



168 
 

 
 

decide which of the two sibilants determines the outcome of the harmony in the affix. 

Even if the harmony is only within root, as in /ʃaso/, the grammar still has to decide 

which of the two sibilants acts as the trigger. 

Given the generalizations on directionality so far discussed, if the [−ant] sibilant is 

picked, the harmony is also directional, if the [+ant] /s/ segment acts as trigger it is a 

directional harmony. Either way, the grammar must determine a trigger, and 

morphological affiliation alone cannot decide. Both sibilants are in the root, and therefore 

the harmony type must at least be dominant-root control or directional-root control. Cases 

where only one consonant appears in the root are undetermined, not pure root control.  

The asymmetry is obviously an effect of the privileged status of root segments as 

opposed to segments in affixes. Evidence is conspicuous across different phonological 

patterns, and in OT is analyzed as an effect of the well-justified constraint IDENT-

IO(root). The data from consonant harmony supports the theory.  

6.2.1.4 Mixed types 

Each harmony type is associated with a generalization. Thus, for example, the 

markedness generalization is always valid in dominant harmony, even in mixed-type 

languages. A dominant-root control does not show agreement to the unmarked if not for 

phonotactic reasons. The agreement to the marked is limited to affixes or segments to the 

left of the dominant feature.  

For example, recall that in Yaka, the perfective suffix /-idi/ is realized as [-ini] when 

preceded by a nasal in the root. If the nasal is in the affix, the obstruents in the root do not 

harmonize.  
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Yaka is a dominant-root control language, so two generalizations hold: it is always a 

segment in the affix that is changed, and the target of assimilation is always [+nasal], 

never [−nasal] (i.e., nasalization rather than denasalization).  

Notice that both conditions must be true. A nasal in the affix does not trigger 

harmony because of the generalization on root control, and [−nasal] segment in the root 

does not denasalize nasal affixes because of the generalizations on dominant harmony. 

The table below shows the effect of the generalization on each of the different 

harmony types obtained by combining the three macro-types. 

(117) Combinations of harmony types 

Harmony type Outcome determined 

pure dominant the marked feature value 

dominant-directional marked and rightmost segment 

dominant-root control marked segment in the root 

pure directional rightmost segment 

directional-root control rightmost segment in the root 

pure root control segment in the root 

restricted marked rightmost segment in the root  

  

6.2.2 Markedness generalization 

In this section, I show that the typology of consonant harmony not only provides 

evidence for the preservation of the marked, but that it also crucially distinguishes 

between the two most important theories of faithfulness ranking restriction: To capture 

the markendness generalization, preservation of the marked must be implemented as a 
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fixed ranking condition on faithfulness constraint, as opposed to a stringency formulation 

of the constraints.  

I start with a working definition of markedness and illustrate the result of the 

empirical investigation (6.2.2.1). I then define the set of mappings and languages that the 

typology must include to adhere to the MG (6.2.2.4) and subsequently define a unique 

candidate set that allows us to compare the theories of markedness to test (6.2.2.6).  

In section 6.2.2.7, I define the two constraint sets for the stringency typologies and for 

the fixed ranking typologies. Section 6.2.2.8 and 6.2.3.1 show that only the fixed ranking 

restriction can account for the MG. Finally, section 6.2.3.1 provides more evidence for 

the fixed ranking hypothesis by showing that stringency also yields majority rule effects, 

while fixed ranking does not.  

6.2.2.1 Markedness 

I start with by introducing an operational definition of markedness. The definition below 

is limited to a specific type of markedness effects, and the only purpose is to provide a 

simple definition of markedness for the sake of exposition. For a similar definition of 

markedness also see Prince’s (2000:3).  

Definition (markedness). Given two features φ and ʃ in a context C, +φ ⟩m φ (φ more 

marked than +φ) if /+φ/ → [φ] but not /φ/ → /+φ/ in C. (operational definition) 

The definition only refers to markedness in targets. For example, in Sri Lankan 

Portuguese Creole, marked place of articulation (labials and dorsals) undergo 

assimilation, while the unmarked coronals do not. Markedness is also typically argued to 
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determine the form of epenthetic segments (de Lacy 2002/2006), so the definition does 

not apply to these cases.  

Markedness scales depend on the prosodic position. For example, [+nasal] is more 

marked than [−nasal] in onset position, but less marked in coda. In the proposal I will 

only consider assimilation of segments in onset position, since they constitute almost all 

cases.54 Table 2 summarizes the findings. In the first group of columns the total number 

of language surveyed for each type of harmony is indicated. The second group includes 

all the languages that show a dominant harmony pattern (not necessarily pure dominant). 

Two kinds of languages were not included: (i) purely root-controlled and purely 

directional languages where assimilation is entirely dependent on the morphological 

affiliation or the position in the string of the target segments (and therefore both values 

are found); (ii) languages where it is impossible to determine the input–output mapping 

because there is no asymmetry in the co-occurrence restrictions.  

(118) Asymmetries in dominant harmony 

Type Total Number Map Languages 

laryngeal  16 [−voice] → [+voice] 

d…t → d…d 

Ngizim, Kera, Malto 

nasal 23 [−nasal] → [+nasal] 

n…l → n…n 

Kikongo, Lamba,  

Bemba, Yaka… 
dorsal 8 [−high] → [+high]  

q…k → q…q 

Tlachichilco Tepehua, 

Misantla Totonac, … 
coronal 42 [+ant] → [−ant] 

[–dist] → [+dist] 

ʃ…s → ʃ…ʃ 

Aari, Flemish, Gimira… 

                                                
54 A case of onset–coda assimilation is found in Malto. 



172 
 

 
 

6.2.2.2 Agnostic directionality 

I now discuss the theoretical implication of the MG for the theories of markedness. I start 

by distinguishing two types of theories of directionality of agreement: those where the 

outcome of the harmony is determined by agreement constraints (intrinsic directionality) 

and those where the outcome of the harmony is entirely determined by faithfulness 

constraints (agnostic directionality). 

φ-Correspondence is an example of a theory agnostic to directionality. RELATE-φ, 

IDENT-φ, and ALIGN(φ-head) constraints do not determine what the outcome of the 

harmony is. Take for example the candidates in the tableau below.  

(119) Harmonic outputs never violate φ-Correspondence constraints 

Input Output RELATE (+sib) IDENT-[sib](ant) ALIGN(+sib-head, R) 

ʃ…s sx…(s)x     

 ʃx…(ʃ)x     

The input contains two disharmonic sibilants, while the two outputs are harmonic. In 

the first candidate, the sibilants agree for the feature [+ant], in the second for the feature 

[−ant]. The candidates have identical violation profiles. If we only consider φ-

Correspondence constraints, the outcome of the harmony is undefined.  

Directionality is governed by standard IDENT-IO constraints such as IDENT-IO(φ) 

(e.g., IDENT-IO(−ant)), IDENT-IO(φ-head), and IDENT-IO(root). In ABC, Bennett 

(2013/2015) is an example of a theory where agreement constraints are also agnostic to 

directionality.  

For example, Bennett (2013/2015) has the following definition of CC·IDENT.  
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(120) CC·IDENT-[F] definition.  

 For each distinct pair of consonants X & Y, assign a violation if: 

a. X & Y are in the same surface correspondence class, and 

b. X is [αF], and 

c. Y is [βF] 

… where F is some feature, [αF] & [βF] are its possible values and α != β. 

Again, in previous tableaux, (see 2.3.1.1 for a definition of CORR), the two candidates 

are not distinguished (as also discussed in Bennett 2013/2015).  

(121) CORR and CC·IDENT are agnostic to directionality in Bennett (2013/2015). 

Input Output CORR(+sib) CC·Ident(ant) 

ʃ…s sx…sx   

 ʃx…ʃx   

 

There are other theories which are agnostic to directionality. For example, 

directionality in Span Theory (McCarthy 2004; O’Keefe 2007) is very similar to 

directionality in φ-Correspondence. A span is assigned a head, and then the head 

determines the outcome of the harmony via a positional faithfulness constraint. 

Theories of intrinsic directionality include autosegmental theories where the 

directionality of the spreading is encoded in the rules/constraints that define the 

agreement target (e.g., Clements 1976, Goldsmith 1990, Jurgec 2011). With the most 

notable exception being Bennett (2013/2015), most formulations of ABC are also of this 

type (e.g., Rose & Walker 2004, Hansson 2001/2010). For a discussion on intrinsic 

directionality in ABC, see section 3.4.1. 
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6.2.2.3 Markedness theory 

Markedness generalization states that the trigger in dominant harmony is always the 

marked segment. In φ-Correspondence, the trigger feature value is the node that is 

faithfully preserved. By combining the generalization with the definition of trigger in φ-

Correspondence, you get the result that in dominant harmonies, the marked feature value 

is faithful. This effect falls under the definition of one of the most important 

generalizations in the theories of markedness, known as the Preservation of the Marked 

(de Lacy, 2002/2006). The effect is observed across phonological domains such as 

neutralization, local assimilation, and epenthesis, among others.  

PoM is a generalization on candidate forms: it does not necessarily say anything 

about how the generalization is implemented in a theory. De Lacy (2002/2006) shows 

that PoM in OT is best implemented as part of a theory of faithfulness constraints. This 

approach has the advantage of applying across different phonological domains, since 

faithfulness constraints play a crucial role in all unfaithful mappings.  

Thus, optimally the typological effects on the preservation of the marked should arise 

from the interaction between a general theory of agreement and the general theories of 

markedness.  

6.2.2.4 Typology conditions 

A theory that accounts for MG should answer the following question: Given a 

disharmonic correspondence pair ⟨s, ʃ⟩, where s and ʃ represent two segments in 

correspondence, with different feature values—ʃ (marked) and s (unmarked)—that are 
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required to harmonize, what set of constraints should be in CON so that the mapping in 

(122a) is possible, but not the mapping in (122b)? 

(122) Possible and impossible mappings 

a. /s…ʃ/ → [ʃ…ʃ]  

b. /s…ʃ/ → [s…s] 

The fact that a theory generates both the mapping to the unmarked and the mapping 

to the marked is not sufficient to demonstrate that such a theory cannot account for MG.  

The unmarked mapping may in fact result from neutralization. Imagine a language 

where /ʃ/ → [s]. Then, it is obvious that for independent reasons (i.e., neutralization) it 

would also map /ʃ…s/ → [s…s] in the system above. The following conditions must then 

hold: 

(123) Given a pair of segments ⟨s, ʃ⟩ in correspondence, where s and ʃ have different 

feature values—s (marked) and ʃ (unmarked)—a set of constraints can account for MG if: 

a. that the mapping (i) is possible, and 

b. the mapping (ii) entails the mapping (iii), i.e., it is due to neutralization.  

i. /s…ʃ/ → [ʃ, ʃ]  

ii. /s…ʃ/ → [s, s]  

iii. /ʃ/ → [s] 

In other words, the only way to obtain the mapping /s…ʃ/ → [ʃ, ʃ] should be via a ranking 

that also neutralizes the marked value /ʃ/ → [s] in any context.  
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6.2.2.5 Candidate set 

To evaluate the conditions under which MG is realized, one only needs to consider the 

following candidate set. 

(124) Candidate set for the typology 

a. /s…ʃ/ → [ʃ…ʃ] or [s…s]  

b. /ʃ/ → [s] or [ʃ] 

c. /s/ → [s] or [ʃ] 

The goal of the typologies is to evaluate the outcome of harmony. For this reason, I 

only include candidates where the two segments interact to yield harmony. The segments 

considered are only /s/ and /ʃ/.  

Because of the condition on neutralization, I also include the mapping of single 

segments to their faithful and non-faithful output, so both /s/ and /ʃ/ can map to [s] and 

[ʃ].  

Directionality effects are manifested only in disharmonic inputs that harmonize, so 

the mappings <s, ʃ> → <s, s> and <s, ʃ> → <ʃ, ʃ> are both crucial.  

Candidates with the input with the reverse ordering of the sibilants /ʃ…s/ are not 

included. Dominant harmony is myopic to linear ordering, so all generalizations hold 

equally regardless of the order of the sibilants.  
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6.2.2.6 Constraints 

In the candidate set, I assumed only candidates with one segment or those with the 

segments in correspondence and in agreement. In terms of constraints, this equates to 

saying that RELATE-[+sib] and IDENT-[+sib](ant) are never violated (or undominated).  

As stated in the previous section, markedness and harmony operate in a modular 

fashion, with limited overlap: the theory of harmony determines what segments 

correspond and what features agree, while the theory of markedness determines the 

outcome of the harmony. 

In φ-Correspondence (and in agnostic directionality theories) this translates into 

faithfulness constraints (and partially markedness) governing the outcome of the 

harmony. 

For the typology, I thus consider the constraints IDENT-IO(+ant), and IDENT-IO(−ant). 

IDENT-IO(+ant) is violated only when a [+ant] segment in the input is mapped to [−ant], 

IDENT-IO(−ant) when a [−ant] segment is mapped to [+ant]. The third and last constraint 

is *[−ant], which assigns a violation for each segment in the output with the feature 

[−ant]. 

Finally, the fixed ranking hypothesis imposes that for any ranking IDENT-IO(−ant) 

dominates IDENT-IO(+ant). I do not impose any ranking restriction on the markedness 

constraints since both the stringency and the fixed ranking restriction on markedness 

constraints make the same prediction with respect to MG. 
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6.2.2.7 Fixed ranking  

To check whether the fixed ranking condition predicts MG, I check that in the typology 

generated by the candidate set and the constraints described in the previous sections all 

the conditions are met.  

There are three conditions, which are reproduced and formalized below:  

1. There is a ranking (i.e., a language) where the sibilants harmonize to the marked 

value, and at the same time the unmarked sibilants do not neutralize to its marked 

value. 

∃ rank | /ʃ…s/ → [ʃ…ʃ] and /s/ → [s]  

2. There is a ranking where the marked value neutralizes to the unmarked value 

∃ rank | /ʃ/ → [s] 

3. There is no ranking where the sibilants harmonize to the unmarked value, and at 

the same time the marked sibilants remain faithful. 

∄ rank | /ʃ…s/ → [s…s] and /ʃ/ → [ʃ] 

The conditions are verified against the typology in the tableau below. The first 

condition says that harmony to the marked should be possible, even in languages when 

there is no neutralization of the unmarked value. In other words, the typology must 

contain a language where harmony to the marked is not the result of neutralization. Such 

ranking exists and is obtained when IDENT-IO(−ant) dominates *[−ant] and IDENT-

IO(+ant).  
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(125) Fixed ranking: harmony to the marked 

ERC Input Winner Loser *[−ant] ID(−ant) ID(+ant) 

∃ rank | /ʃ…s/ → [ʃ…ʃ] and /s/ → [s] 

a. ʃ…s ʃ…ʃ s…s L W L 

c. s s ʃ   L 

 

The second condition, which requires that neutralization to the unmarked also be 

possible, is attested as well in languages where *[−ant] dominates IDENT-IO(+ant).  

(126) Fixed ranking: neutralization to the unmarked 

ERC Input Winner Loser *[−ant] ID(−ant) ID(+ant) 

∃ rank | /ʃ/ → [s] 

c. ʃ s ʃ W  L 

 

Finally, the last requirement ensures that there is no language in the typology where 

harmony to the unmarked occurs while the marked value maps faithfully. The stringency 

restriction correctly predicts this ranking to be impossible.  

(127) Fixed ranking: harmony to the unmarked. 

ERC Input Winner Loser *[−ant] ID(−ant) ID(+ant) 

∄ rank | /ʃ…s/ → [s…s] and /ʃ/ → [ʃ] 

d. ʃ…s s…s ʃ… ʃ W L (W) 

f. ʃ ʃ s L W  
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The last two ERCs show that harmony to the unmarked not possible in this grammar. 

The ERC (d) states that either *[−ant] dominates IDENT-IO(−ant) or IDENT-IO(+ant) 

dominates IDENT-IO(−ant). However, the second condition is ruled out by the fixed 

ranking relation between the two faithfulness constraints, which leave only the first 

condition as available.  

The ERC (f) contains the contradictory condition. ERC (d) states that *[−ant] must 

dominate IDENT-IO(−ant), while ERC (f) states that IDENT-IO(−ant) must dominate 

*[−ant]. Thus, no ranking is possible in the grammar that generates harmony to the 

unmarked and does not neutralize the marked segment in all other contexts. This is the 

right prediction, because we do not want a theory to generate such language. 

6.2.2.8 Stringency  

An alternative to fixed ranking is to assume that faithfulness constraints are stringently 

defined. This means that there is no restriction on the ranking of faithfulness constraints, 

but that instead there is no IDENT-IO constraint in CON that only refers to the unmarked 

value of a feature. A formal definition is given below, adapted from de Lacy (2006:54). 

(128) Stringency restriction on CON.  

• For a binary feature φ, there are only the constraints *+φ, Ident-IO(+φ), and 

Ident-IO(±φ), where +φ is the marked value of φ. 

• The constraints IDENT-IO(−φ) and *−φ do exist. 

IDENT-IO(−ant) and IDENT-IO(+ant) are violated only when the input has a specific 

feature value. IDENT-IO(±ant) is violated when a segment is mapped unfaithfully for the 

feature [ant] regardless of its input feature specification. It is sufficient to violate only one 
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ranking condition to prove that stringency cannot account for MG. The condition violated 

is the one that states that there no language is possible that has harmony to the unmarked 

and faithful mapping of the marked feature value in isolation.  

The tableau below contains the ranking for this language. Its interpretation parallels 

the one in the previous section. ERC (d) states that to have harmony to the unmarked, 

either *[−ant] dominates IDENT-IO(−ant) or IDENT-IO(+ant) dominates IDENT-IO(−ant). 

Since there are no fixed ranking conditions, both options are open.  

Likewise, the ERC (f) requires that IDENT-IO(−ant) dominate *[−ant]. This condition 

now only partially conflicts with the ones in ERC (e), since it only affects one of the 

disjuncts. The ranking for the grammar with assimilation to the unmarked and no 

neutralization is thus possible when the stringent faithfulness constraint dominates 

ID(−ant) and ID(ant) dominates *[−ant]. For those familiar with ERC fusion (Brasoveanu 

and Prince, 2011), the last row of the tableau shows that the fused ERC contains at least a 

W. 

(129) Stringency and the MG 

ERC  Input Winner Loser *[−ant] ID(−ant) ID(±ant) 

M ∄ rank | /ʃ…s/ → [s…s] and /ʃ/ → [ʃ] 

d. ʃ…s s…s ʃ…s W L W 

f. ʃ ʃ s L W  

 L L W 

 

6.2.2.9 Stringency and fixed ranking 
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A logical possibility is to make both assumptions about CON, that is, to postulate that 

there are two faithfulness constraints in a fixed ranking and stringent relation. This gives 

us two additional sensible ranking restrictions:  

1. IDENT-IO(−ant) ⋙ IDENT-IO(±ant) 

2. IDENT-IO(±ant) ⋙ IDENT-IO(−ant) 

As can be seen from tableau below, the first condition is very similar to the case 

where there is fixed ranking and no stringency, the only difference being in the ERC (e) 

in the third condition.  

The ERC (e) states that either ID(±ant) or ID(−ant) must dominate *[−ant]. Thus, 

*[−ant] ≫ ID(−ant) from ERC (d) and ID(±ant) ≫ *[−ant] from ERC (d). The final 

ranking is therefore ID(±ant) ≫ *[−ant] ≫ ID(−ant).  

(130) IDENT-IO(−ant) ⋙ IDENT-IO(±ant) 

ER

C 

Input Winner Loser *[−ant] ID(−ant) ID(±ant) 

 ∃ rank | /ʃ…s/ → [ʃ…ʃ] and /s/ → [s] 

a. ʃ…s ʃ…ʃ s…s L W L 

b. S s ʃ   L 

∃ rank | /ʃ/ → [s] 

c. ʃ s ʃ W  L 

M ∄ rank | /ʃ…s/ → [s…s] and /ʃ/ → [ʃ] 

d. ʃ…s s…s ʃ… ʃ W L  

e. ʃ ʃ s L W W 

 L L W 
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This is the only possible ranking to have harmony to the unmarked. However, as 

shown in the final ranking, ID(±ant) dominates ID(−ant) by transitivity, which violates the 

fixed ranking condition. Therefore, the condition IDENT-IO(−ant) ⋙ IDENT-IO(±ant) 

also correctly predicts that harmony to the unmarked is not possible.  

The tableau for the other fixed ranking order IDENT-IO(±ant) ⋙ IDENT-IO(−ant) is 

identical to the one above (same constraints me entails same violations). Therefore, 

ranking to get assimilation to the unmarked is also ID(±ant) ≫ *[−ant] ≫ ID(−ant).  

However, now the fixed ordering relation is reversed. IDENT-IO(±ant) must dominate 

IDENT-IO(−ant), which is compatible with the ranking that yields harmony to the 

unmarked. To sum up, either one of these two following restrictions accounts for the 

markedness generalization. 

1. IDENT-IO(−ant) ⋙ IDENT-IO(±ant) 

2. IDENT-IO(−ant) ⋙ IDENT-IO(+ant) 

Theorem IV (faithfulness in MG).  

A theory is compatible with the MG if a faithfulness constraint referring to the 

marked value of a feature always dominates the other faithfulness constraint that 

refers to the unmarked value of the same feature. 

The theorem only refers to the MG. A stronger formulation would involve generally 

defining the faithfulness restriction over all domains as follows.  

Hypothesis III (faithfulness ranking condition). 
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Faithfulness constraints referring to the marked value of a feature always 

dominate the other faithfulness constraint that refers to the unmarked value of the 

same feature. 

6.2.3 Open issues 

A potential problem is cases where the unmarked value survives in coalescence. De Lacy 

(2002/2006) claims that Pali is such a case. To (overly) simplify, in the markedness 

hierarchy for places of articulation, dorsal is the most marked, followed by labials and 

coronals. However, in Pali, coronals are preserved as faithful over labials. Since the 

output of coalescence is determined by the relative ranking of faithfulness constraints, the 

hypothesis incorrectly predicts that such a pattern is impossible.  

There are two considerations to be made. In the analysis of the typology of 

coalescence, de Haas (1988) claims that in coalescence the output is always the marked 

value. Pali might thus be an exception for which an alternative analysis is possible. 

The other issue concerns markedness in place of articulations. The phenomenon in 

Pali concerns major places of articulation. However, there is only one potential case of 

harmony to major place of articulation in Ngbaka (Danis 2017),55 and it respects the 

expected markedness hierarchy. The hypothesis may thus just be valid for features other 

than major places of articulation. 

                                                
55 Rose and Walker (2004) and Hansson (2001/2010) both observed the lack of empirical evidence for such 
cases.  
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Whether the restriction on faithfulness constraint ordering is a valid generalization in 

all phonology is beyond the scope of this dissertation. The MG, though, is an important 

new generalization both for theories of harmony and for theories of markedness. 

Another potential problem with the generalization is the observation in Baković 

(2000) that in vowel harmony the reverse effect is observed. In dominant harmonies, the 

unmarked value acts as the dominant feature value, and the marked value as the 

regressive one. This generalization is not only contrary to the MG, but more generally to 

the PoM. However, it must be noted that Baković (2000) refer to the feature ATR, for 

which the markedness relation is not as clear as for other features.  

Directionality in dominant vowel harmonies is also often complicated by the effect of 

other apparently unrelated factors, such as the phonotactic of the language. For example, 

Casali (2003) observes that [+ATR] is normally dominant in languages with an [ATR] 

contrast among high vowels, while [−ATR] is dominant in languages without the 

contrast.  

6.2.3.1 Majority rule 

Another pair of mappings that should not be generated by any grammar assigns the 

outcome of the harmony based on which feature is most numerous in the input. For 

example, a language may map /ʃ…ʃ…s/ → [ʃ…ʃ…ʃ] because the majority of the sibilants 

in the input are [−ant], but /ʃ…s…s/ → [s…s…s] since the majority of sibilants are 

[+ant]. 
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Such mapping is known as majority rule (Lombardi 1999, among others) and as in the 

case of local assimilation it is never observed in long distance harmony patterns. This 

adds a fourth condition to the typology. 

4. There is no ranking where the outcome of the harmony is determined by the 

majority rule. 

∄ rank | /ʃ…ʃ…s/ → [ʃ…ʃ…ʃ] and /ʃ…s…s/ → [s…s…s] 

It has been well known since Lombardi (1990) that the majority rule effect emerges 

when a general faithfulness constraint such Id(±ant) dominates the specific ones such as 

ID(−ant), but also ID-IO(onset) or ID-IO(φ-head).  

To give an example, the tableau below shows that only when ID(±ant) is ranked 

above any of the other two faithfulness constraints the majority rule mappings win.  

ERC Input Winner Loser ID(±ant) ID(−ant) ID(+ant) 

M ∄ rank | /ʃ…ʃ…s/ → [ʃ…ʃ…ʃ] and /ʃ…s…s/ → [s…s…s] 

a. ʃ...s...s s...s...s

... 

ʃ...s...s W L W 

b. ʃ...ʃ...s ʃ...ʃ...ʃ ʃ...ʃ...s W W L 
 

Stringency without fixed ranking, or the fixed ranking IDENT-IO(±ant) ⋙ IDENT-

IO(−ant), thus also incorrectly predicts majority rule patterns.  

This condition is already entailed by the more specific one that accounts for the MG. 

In other words, the theorem (see the previous section) already excludes majority rule 

patterns and does not need to be amended.  
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Theorem V (MG and majority effect).  

A theory is compatible with the markedness generalization and does not predict 

majority rule effects if a faithfulness constraint referring to the marked value of a 

feature always dominates the other faithfulness constraint that refers to the 

unmarked value of the same feature. 

Finally, this section also shows that the existence of majority rule effect is external to 

φ-Correspondence itself. The concerns expressed on (certain formulations of) ABC in 

McMullin and Hansson (2015) thus do not apply to φ-Correspondence or to similar 

agnostic theories of directionality. 

6.3 Chapter summary 

In this chapter, I describe the basic typology of φ-Correspondence. I show that the theory 

predicts the existence of several directionality patterns, which arise from the combination 

of the basic directionality types: dominant, directional, and root control. 

I also provide empirical support for the various types of harmony and for the fact that 

the mixed types directional-root control and pure root control are neither generated nor 

attested. 

I then describe the three generalizations that operate on the directionality types 

previously introduced. For dominant harmony, the trigger is always the marked value; for 

directional harmony, the trigger is always aligned to the right edge of a prosodic word or 

of the root; for root control harmony the trigger is in the root. The three generalizations 

are schematized below. 
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(131) Properties of consonant harmony 

 

 

 

 /α…β/ → *[α…α], [β…β]   /α…β/ → [β…β], *[α…α]     /α…β/ → [β…<β>m], [α…<α>m] 

 Target β is marked.   Target β is on the right.  Target β is in a privileged p. 

I also show that the generalizations extend and hold conjointly in mixed types. For 

example, in a dominant-directional harmony the trigger is both marked and right-aligned 

to an edge.  

The generalization on root control effect is analyzed as an effect of positional 

faithfulness constraints (or more generally it is due to the status of the root as a privileged 

position). The generalization on alignment is less straightforward and may be due to a 

functional bias. Analytically, it can easily be mimicked by omitting the constraint 

ALIGN(φ-head, L).  

The generalization on dominance is the most interesting one, because it is 

incompatible with the theory of markedness, where the faithfulness constraints are in a 

stringent relation. 

Finally, I argue that φ-Correspondence is an agnostic theory of directionality and that 

the markedness generalization ought therefore to be captured by the theory of 

markedness. In this respect, I provide a general formulation of the theory of faithfulness 

directional dominant root-controlled 

outside-in unmarked marked R

toL 

L

toR 

inside-out 
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that accounts for both the MG and avoid majority rule effect. The generalization crucially 

concerns fixed ranking as opposed to stringency.  
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7 Conclusions 

7.1 Open issues 

Before concluding, in this section I discuss three issues that were not investigated in the 

dissertation because they were not central to the goal of the thesis. I briefly investigate 

the consequences of the assumption that φ-Correspondence acts on feature nodes (7.1.1) 

and on tones (7.1.2) and then conclude with some phenomena that arise from the 

interaction of the constraints UNIQUE and CONTIGUOUS (7.1.2). 

7.1.1 Root–node correspondence 

In the dissertation, I defined the domain and codomain of φ-Correspondence as consisting 

of output feature nodes. However, a more general definition of the domain of φ-

Correspondence could include all output-interpretable features, and therefore root nodes 

as well.56 

When applied to root nodes, the effects of φ-Correspondence become very close to 

theories of strictly local spreading (Ní Chiosáin & Padgett 1993, Gafos 1996, Flemming 

1995, among others). The empirical domain of these patterns includes all languages 

where a feature spreads across a string of consecutive segments (see Walker 2008 for an 

extensive review).  

To give an example, in the Applecross dialect of Irish Gaelic (Ternes 1973, cited in 

Walker 2008:35), nasality spreads from a stressed nasal vowel until it reaches a voiceless 

                                                
56 This assumption would also require a redefinition of the axiom of Maximal Distance (or the assumption 
that all input root nodes are heads), since head root nodes would differ of two properties with respect to 
input root node. 
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obstruent and then stops. The description of the phenomenon is simplified, but it 

expresses a pattern that is quite common.  

(132) Scottish Gaelic nasal spreading 

a. /mãhar/ → [mãh̃ãr]̃ ‘mother’ 

b. /tʲiãnu/ → [tʲiãnũ] ‘to do, to make’ 

c. /ʃɛ̃nɛvar/ → [ʃɛ̃nɛ̃ṽãr]̃ ‘grandmother’ 

d. /tʰãhusk/ → [tʰãh̃ũsk] ‘senseless person, fool’ 

e. /kʰɔ̃ispaxk/ → [kʰɔ̃ĩspaxk] ‘wasp’ 

φ-Correspondence captures this kind of assimilation without further assumptions 

when the domain of correspondence is the set of root nodes. Let me start with the 

example without blocking. In the mapping /mãhar/ → [mãh̃ãr]̃ ‘mother’, nasality spreads 

from the first nasal to all other segments in the word. The basic constraints we need are 

RELATE-R, IDENT-[⊙](nasal), CONTIGUOUS-⊙, IDENT-IO(+nasal), and IDENT-

IO(−nasal), defined the usual schemas in chapter 2. 

The tableau below shows how the spreading candidates win: RELATE-⊙ demands all 

segments (root nodes) to be in correspondence, IDENT demands that they agree for 

nasality, and finally, ID-[⊙](nasal) determines that nasality spreads.  

(133) Nasal spread in root correspondence 

/mãhar/ ID-[⊙](nas) CONTIG-R RELATE-R ID-IO[nas] 

a. ☞ 

mx(ã)h̃xãxrx̃ 

   *** 

b. mx(ã)xhxaxrx ***    

c. mãhar   ****  
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Adding a markedness constraint against voiceless nasal obstruents (*[t]̃) yields the 

blocking mapping. The crucial candidates are illustrated in the tableau below. RELATE-⊙ 

favors candidates with all segments in correspondence. One of the segments, though, 

cannot nasalize without fatally violating *[t]̃.  

(134) Blocking in root correspondence 

/kʰɔ̃ispaxk/ 

ID-[⊙
](nas) 

*[t ]̃ 

C
O

N
TIG-⊙

 

R
ELA

TE- ⊙
 

ID -IO
-nas]  

Comments 

a. ☞ kʰ(ɔ̃)xĩxspaxk    6 1 spreading 

with 

blocking 

b. kʰɔ̃ispaxk57    7  no 

spreading c. k̃ʰx 

(ɔ̃)xĩxs̃xp̃xãxx̃xk̃x 

 3   7 spreading 

to all 

segments 

d. kʰ(ɔ̃) xĩxspãxxk   1  3 obstruents 

are 

transparen

t 

 

There are two candidates that harmonize and do not violate the phonotactic 

constraints, the one where the obstruent is transparent and nasalization simply skips it (d), 

and the candidate where the obstruent blocks the spreading of the feature (a). The winner 

in Gaelic is the latter, since it does not violate CONTIGUOUS-⊙.  

This simplified analysis shows that the basic mechanism of φ-Correspondence can 

account for basic cases of local spreading by extending the correspondence relation to 

root nodes. Further work is necessary to verify whether this approach is viable as a 

general theory of the phenomenon.  

 

                                                
57 Notice that the sour grape candidate (Padgett 1995) is harmonically bounded.  



193 
 

 
 

7.1.2 Contiguous, unique, and proximity 

In the dissertation, I mainly focused on the two core constraints that drive assimilation: 

RELATE and IDENT. However, in chapter 2 I also briefly discussed two additional 

constraints of correspondence UNIQUE and CONTIGUOUS, which are defined here: 

CONTIGUOUS-XY definition. 

For each x and y elements members of the relation ℛX-Y, if x precedes y, assign a 

violation for each element w in Y that follows x but precedes y.  

UNIQUE-X definition. 

Given the correspondence relation ℛX-Y, assign a violation for each element x in X 

that corresponds to an element y in Y if there is another element z in Y that also 

corresponds to x. 

As mentioned in section 7.1.1, CONTIGUOUS constraints play a crucial role in 

blocking. Consider the following case of blocking in consonant harmony in 

Kinyarwanda. In this language, root-final palatal sibilants [s, z] triggers regressive 

harmony to the preceding sibilant. Note that the perfective suffix [-i, -e] and the agentive 

[-i] cause the sibilant to become retroflex in the first place (Walker & Mpiranya 2006). 

(135) Coronal harmony in Kinyarwanda 

-saaz + i-e → [ʂaaʐe] ‘become old + perfective’ 

-uzuz + i-e → [uʐuʐe] ‘fill + perfective’ 

-sakuz + i-e → [ʂakuʐe] ‘shout + perfective’ 
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Crucially, harmony is blocked by intervening coronals.  

(136) Harmony blocking with coronals 

siitaaz + i-e → [siitaaʐe], *[ʂiitaʐe] ‘make stub + perfective’ 

saandaaz- + i-e → [saandaʐe], *[ʂaandaʐe] ‘become warm (liquid) + perfective’ 

sodook + iʐe → [sodookeʐe], *[ʂodookeʐe] ‘make move slowly + perfective’ 

The basic analysis is straightforward, and it is the same as in the case of unbounded 

harmony illustrated in the previous section. The blocking segment cannot assimilate, so 

the potential target is separated by one feature node from the head, thus violating 

CONTIGUOUS-[cor].  

In the tableau below, candidate (b) violates IDENT-[cor][rtfl] because the coronal [t] 

does not assimilate in [+rtfl] with the head, while candidate (c) has the skipped feature 

node.  

(137) Blocking in Kinyarwanda 

/s…t…ʐ/ ID-[sib](rtfl) CONTIG-[cor] ID-IO[−rtfl] RELATE-[cor] 

a. ☞ [s…t…ʐ]    ** 

b. [ʂ1…t1…(ʐ)1] *    

c. [ʂ1…t…(ʐ)1]  * *  

 

 A diagrammatic representation of candidate (c) is given below. The head is in 

correspondence with the first coronal [ʂ]. However, to do so it has to skip over [t], which 

also has a coronal feature node, thus fatally violating CONTIGUOUS-[cor]. 
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Relevant phenomena that involve the constraints CONTIGUOUS and UNIQUE concern 

languages where harmony extends to one target (non-iterative harmony).58 In Lango 

(Nilotic, Uganda), [+ATR] spreads from the suffix vowel to the last vowel of the root. 

(138) ATR harmony in Lango (Woock & Noonan 1979, cited in Kaplan 2008) 

a. /bɔŋɔ+ni/ → [bɔŋo+ni] ‘your dress’ 

b. /cɔŋɔ+ni/ → [cɔŋo+ni] ‘your beer’ 

c. /amʊk+ni/ → [amuk+ni] ‘your shoe’ 

d. /mɔtɔka+e/ → [mɔtok+æ] ‘cars’ 

Cases of non-iterative harmony can be captured by ranking both UNIQUE and 

CONTIGUOUS above the relevant RELATE constraint. As the tableau below exemplifies, 

UNIQUE prevents correspondence from relating more than two elements (c), while 

CONTIGUOUS ensures that the target is the one adjacent to the head59 (d).  

(139) Non-iterative harmony in Lango 

/bɔŋɔ+ni/ 

ID-[+voc](A
TR

) 

U
N

IQ
U

E-[+voc ]  

C
O

N
TIG-[+voc] 

R
ELA

TE-[+voc]  

ID- IO
[A

TR
] 

Comments 

a. ☞ bɔŋoxn(i)x    * * one head, one dependent 

b. bɔŋɔni    !**  faithful 

c. boxŋoxn(i)x  !*   ** unbounded spreading 

d. boŋɔni   !* * * non-contiguous spreading 

                                                
58 See Kaplan (2008) for a critical analysis of non-iterative processes.  
59 Harmony is also limited to the syllable adjacent to the suffix. To restrict the harmony to this condition, a 
PROXIMITY constraint is required (e.g., Rose & Walker 2004).  



196 
 

 
 

In this section, I only show some phenomena that UNIQUE and CONTIGUOUS can 

account for. I leave the investigation of the full range of predictions and a more detailed 

analysis of the examples discussed for future work. 

7.1.3 Tones 

As mentioned in chapter 1, a natural expansion of the theory is in the domain of the 

tonology. McCarthy and Prince (1995:18) already suggest an extension of 

Correspondence Theory in the following passage: 

Then MAX-ET requires that every tone-bearing element have a correspondent 

tone, and DEP-ET requires that every tone have a correspondent tone-bearing 

element. These are equivalent to two clauses in Goldsmith’s (1976) “Well-

Formedness Condition” for autosegmental phonology: every tone-bearing element 

is associated with some tone; and every tone is associated with some tone-bearing 

element. The other constraints on correspondence laid out in Appendix A, such as 

LINEARITY, CONTIGUITY, and ANCHORING, also have clear analogues in principles 

of auto-segmental association, such as the line-crossing prohibition, the 

requirement of directional one-to-one linking and the Initial Tone Association 

Rule (Clements & Ford 1979). 

In terms of Hypothesis I, the relation respects all the three axioms of correspondence. 

It is heterogeneous (between a TBU and a tone), the elements in correspondence differ 

with respect to one property (output TBUs vs. output tone elements), and the relation has 

symmetric closure (tone corresponds to TBUs and TBUs correspond to tone, as 

demonstrated by the constraints below). 
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Many well-known tonal constraints parallel the φ-Correspondence constraint 

definitions. RELATE-T demands that all tones be related to a TBU, and it is therefore 

violated by floating tones. The idea of floating tones and their tendency to get related to a 

TBU has been fundamental in autosegmental phonology since its inception, and it was 

first formalized as the OT constraint *FLOAT in Myers (1997). 

The other RELATE constraint is RELATE- TBU, which has the same definition of 

RELATE-T but with the mapping going from TBUs to tones (see symmetric closure 

above). The constraint demands that each TBU be in correspondence with at least a tone. 

As in the case of RELATE-T, this is a well-known constraint in tonology under the name 

of SPEC-T (Yip 2002).  

The constraints UNIQUE-T and UNIQUE-TBU penalize contour tones and tone 

spreading, respectively. As in the case of RELATE, these phenomena are natural and 

widespread in tonology, and so are the constraints that refer to them (Yip 2002). 

The CONTIGUOUS constraints penalize skipping in tone spreading, while as pointed 

out in McCarthy and Prince (1995:18), LINEARITY is a violable version of the no-crossing 

constraint in autosegmental theory, and it has been postulated in the tonal literature by 

Zoll (2013). 

There is only one constraint class that does not seem to have any effect or 

correspondent in the tonal literature, namely IDENT-XY. Recall that Hypothesis II 

demands that all constraints be instantiated for a specific relation, but it does not require 

that those constraints have an effect. I have shown an example of UNIQUE constraints that 

refer to heads. It is possible to postulate such a constraint, but it would have no effect in 
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the grammar because a dependent can never correspond to two heads. In other words, 

while some constraint definitions can be formulated, it is not the case that within the 

theory they always have an effect. IDENT-TBUT is such a constraint. Following the 

schema in section 2.3.1, the constraint is defined as follows: 

IDENT-TBUT definition. 

For each TBU x assign a violation if: 

a. x dominates an element φ, and 

b. any of its x′ correspondents (tone) do not dominate an element φ′,  

… where φ and φ′ have the same interpretable property. 

The problem with this constraint is that while TBUs directly dominate some features 

(e.g., a syllable dominates a root node, which in turn dominates some feature nodes via 

transitivity of dominance), tones are not in a dominance relation with either the root or 

feature nodes (they are connected by correspondence). Therefore, the constraint is always 

vacuously satisfied and has no effect on the typology.  

In this section, I only briefly touched on the possibility and plausibility of extending 

Corresponding Theory to tonology. Nevertheless, I show that there is a transparent 

relation between correspondence constraints and well-attested constraints in 

autosegmental tonology. The current formalism and resources should also make it easy to 

compile a typology of basic tonal constraint interaction and to conduct a valuable, 

rigorous comparison between tonal correspondence, autosegmental theory, and other 

forms of correspondence (such as B/R or φ-Correspondence). 
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7.2 Conclusion 

The goal of the dissertation was to demonstrate that φ-Correspondence is empirically and 

theoretically desirable. The first step consisted in applying the tools of logic and model 

theory to provide a rigorous definition of correspondence and of correspondence 

constraints to show that the same definitions apply to both Correspondence Theory and 

φ-Correspondence. These definitions constitute the basis of φ-Correspondence and 

allowed me to test the following two main hypotheses of the dissertation: 

Hypothesis I (correspondence relation).  

I/O Correspondence, O/I Correspondence, and all φ-Correspondence relations are 

different types of the same kind of correspondence relation. 

Hypothesis II (constraints).  

For each relation type I/O Correspondence, O/I Correspondence, and all φ-

Correspondence there is a proper set of constraints that adhere to the same set of 

correspondence constraint schemas. 

Concerning Hypothesis I, I identified three axioms of correspondence—

heterogeneity, symmetric closure, and minimal distance—and showed that they hold for 

both the I/O-Correspondence and φ-Correspondence relation.  

For the constraints, I introduced the four schemas RELATE-X, UNIQUE-X, 

CONTIGUOUS-X, and IDENT-XY and demonstrated that a definition of the each of the 

constraints exists for both I/O and φ-Correspondence relation. The focus was on RELATE-
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X and IDENT-XY, but I presented some examples of patterns where the other constraints 

distinguish crucial candidates.  

I postulated that a fundamental component of φ-Correspondence is the φ-head. 

Without heads, φ-Correspondence cannot be defined as a correspondence relation and the 

constraints cannot be formulated using the correspondence constraint schemas.  

The theory highlights a new parallel between segmental (harmony) and prosodic 

phenomena. It shows that φ-heads obey the same fundamental axioms of other linguistic 

heads and tend to be right aligned and positionally faithful like other prosodic heads.  

Headedness also plays a crucial role in the directionality of harmony. I argued that 

head–dependent agreement relations are currently the best configuration to express well-

known asymmetries in agreement patterns.  

Directional harmonies, such as in Chumash, are elegantly captured by assuming that 

the trigger of the harmony is marked with a head status (see chapter 3). By doing so, no 

special directionality constraints need be postulated, and the parallel between prosodic 

and feature heads is established.  

φ-heads also allow us to naturally capture the counterfeeding opacity effects observed 

in the typology of harmony (see chapter 5). In fact, the patterns are naturally predicted by 

the theory as the result of the interaction of the independently motivated positional 

faithfulness constraint on φ-heads and basic markedness constraints. 

The other crucial notion of φ-Correspondence is feature correspondence. This 

assumption is crucial in providing a unified definition of the correspondence constraints 



201 
 

 
 

and allows us to formulate constraints on head-alignment using standard Generalized 

Alignment constraints.  

Empirically, I showed that feature correspondence solves the problems of overlapping 

harmonies (and Agreement by Proxy), where harmony between to elements cannot be 

established by virtue of the presence of another intervening harmony (chapter 4). 

Finally, I identified a parametric system of directionality types and argued that each 

of the basic type is asymmetric in its typological attestation (chapter 6). Since 

directionality is obtained via φ-head faithfulness, I also showed that the markedness 

generalization is optimally analyzed as an effect of the Preservation of the Marked, for 

which I provided a formulation that avoids majority rule effects. 

The dissertation leaves open two major issues that can pursued in the future. φ-

Correspondence is established at the feature node level. However, the model suggests the 

possibility of having a head-dependent relation on root nodes as well. This would make a 

theory more alike span theory that accounts for cases of “unbounded” harmony such as 

nasal spreading. Since all root nodes are in the domain of the relation, parasitic effects are 

not expected to occur, and the CONTIGUOUS and UNIQUE constraints will favor candidates 

with a span of segments in correspondence (section 7.1.1). 

I also briefly touched on UNIQUE-X and CONTIGUOUS-X schemas, showing that such 

constraints express some important restrictions on agreement relations, but neither their 

predictions nor the empirical evidence were analyzed sufficiently. Of particular interest 

were the cases where harmony is limited to a contiguous sequence of target segments, 

such as in Oroqen, Teke dialects, or Yabem, or to account for non-iterative harmony and 
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blocking (section 7.1.2). Finally, I suggested that φ-Correspondence (or Correspondence 

Theory in general) could be extended to tones using the methodology of discussing 

formal properties and the constraint schemas described in this dissertation (7.1.3) 

Theoretically, the most interesting contribution of phi-Correspondence Theory is to 

highlight the “economical” nature of phonology, with a few axioms and elements 

accounting for a diverse number of phenomena. 
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