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By NATALIE R. DELBUSSO 

 

Dissertation Directors: 

Alan Prince and Bruce Tesar 

 

 

Formal typological analysis provides an otherwise unobtainable level of insight into 

both theories and the linguistic facts they analyze. This dissertation develops Property 

Theory (Alber & Prince 2016, 2017, in prep., Alber, DelBusso & Prince 2016), a theory 

of typological structure in Optimality Theory (OT; Prince & Smolensky 1993/2004). The 

list of languages generated in an OT factorial typology shows what the theory predicts, 

but not why it does so nor how it organizes the languages in the typological space. 

Property analysis answers these questions, finding the core structure that emerges directly 

from the logic of OT. 

As a theory of formal OT typologies, Property Theory has a complex internal 

structure. The dissertation develops algorithms to translate between the formal objects of 

Property Theory (properties) and those of OT (ranking conditions). It examines cross-

property dependencies and sufficient conditions on a set of properties for it to generate 

OT grammars, and thus an OT typology.  

In taking typologies themselves as objects of study, property analysis leads to a re-

conception of core constraint relationships and identification of classes of intensionally 
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equivalent systems that share an internal formal structure while differing in the empirical 

areas analyzed. The dissertation develops a typological definition of stringently-related 

constraints and shows that systems with such constraints have a common structure, 

explaining diverse data in the same way. It shows that this organization characterizes 

analyses deriving the Final-Over-Final Condition, a typology of possible cross-linguistic 

syntactic structures.  
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1 Introduction 

1.1 Introduction 

Linguistic theories define a space of possible grammars, predicting the extent and 

limitations of variation between human languages—the typology. The grammars it 

generates instantiate distinct combinations of choices along the possible dimensions of 

variation. Knowing the predicted typology is crucial for assessing any hypothesis, often 

evaluated by comparison to the attested empirical one. However, knowing what the 

theory predicts is insufficient without understanding why it does so: how do the 

assumptions of the theory give rise to the predicted languages, and how does it explain 

and classify them? Answering these questions requires study of the internal structure of 

the typological space, analyzing the formal factors grouping and distinguishing the 

grammars. 

This dissertation analyzes the formal structure of a specific concept of typological 

organization: Property Theory (PT; Alber & Prince (A&P) 2016a, in prep., Alber, 

DelBusso & Prince 2016). The results build on A&P's founding work to advance two 

central goals: formal development of the theory and its usability, and demonstration of 

the results of these advances in explicating the structure of typologies in Optimality 

Theory (OT; Prince & Smolensky 1993/2004).   

Typological analysis is inherent to OT due to the centrality of factorial typologies. An 

OT factorial typology of a given system S, TS, is all possible permutations (rankings) of a 

set of universal constraints on linguistic forms, CON, that give rise to distinct sets of 

optima (languages). While all permutations of CON, |CON|!, are possible ranking 

hierarchies, in many typologies several hierarchies result in the same extensional 
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language; not all constraints conflict and are crucially ranked in all grammars. A property 

analysis, PA, discerns the crucial rankings that classify a typology: those necessary and 

sufficient to define every grammar. PT explicates the link between these intensional 

rankings and the extensional traits exhibited in the languages they generate (Alber, 

DelBusso & Prince 2016 (ADP)). A PA explains why the predicted typology arises from 

elements of the theory—GEN and CON—and its non-arbitrary and often non-obvious 

structure.   

A PA analyzes a typology, T, into a set of properties, Ps, that antagonize sets of 

constraints in CON, X <> Y. A P generates two mutually exclusive values that rank the 

antagonists in opposing ways: α. X > Y, β. Y > X. Grammars are classified according to 

which value is instantiated in their rankings. Values often align with particular linguistic 

traits being optimal. For example, in the Elementary Syllable structure typology, EST 

(Prince & Smolensky, Prince 2016a, Merchant & Prince, A&P 2016b), languages differ 

in whether they allow onsetless syllables in optima. The extensional characteristic aligns 

with the grammar's value of a property antagonizing a markedness constraint, m.Ons—

violated by syllables lacking onsets—with one of the faithfulness constraints {f.max, 

f.dep}—violated by deletion or insertion of segments, respectively. Each property defines 

a binary partition, and the entire typology is defined by a collection of properties: it is the 

partition resulting from their consistent value combinations. Within this space, grammars 

are grouped together and distinguished based on shared and unshared values.  

PT explicates how the objects of the theory—the constraints and their interactions—

generate languages. Variation as binary choice is a common theme in linguistic theory, 

from the idea of parameters in Principles and Parameters, where languages choose 
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settings of parameters and the combinations thereof define a typology. Recent work in 

parametric theory also more explicitly seeks to understand the internal structure of 

typologies (Baker 2001, Roberts 2010, et seq., chapter 4 herein). 

Work in PT has produced significant results, both in understanding typological 

organization and in solving fundamental problems in OT (Alber 2015a,b, A&P 2017, 

Bennett 2016, Bennett & DelBusso 2017, to appear, Bennett, DelBusso & Iacoponi 2016, 

Danis 2014, DelBusso 2016, McManus 2016). Alber, DelBusso & Prince (2016) use 

properties to prove a Universal Support (US), a set of candidate sets, csets, necessary and 

sufficient to generate all grammars, exemplifying the method for the stress system nGX 

(A&P 2017). Alber (2015a,b) develops a property-based theory of grammatical variation 

and diachronic change (used in the present chapter 4). Bennett & DelBusso (to appear) 

explicate the typological effects of systematic changes to constraint definitions in a set of 

Agreement-by-Correspondence (ABC) systems through PAs. They align the resulting 

properties with specific extensional predictions, defining the formal factors that generate 

the linguistic patterns. Bennett & DelBusso (in prep.) further analyze different definitions 

of GEN, including those lacking correspondence. PT analyses of the systems show what 

aspects of a theory are crucial to deriving consonant harmony and dissimilation, and how 

these can be instantiated in various ways, with divergent assumptions.  

Data for the dissertation come from a database of analyzed typologies, both Concrete 

and Abstract OT systems. A Concrete OT (COT) system, S, analyzes some particular 

linguistic phenomenon, defining GENS, the set of allowable structures, and CONS, the set 

of constraints assessing them (Merchant & Prince 2016/to appear (M&P)). Abstract OT 

(AOT) systems start with a set of constraint filtration profiles and examines the typology 
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resulting from them. Though not intended to analyze a particular linguistic fact, study of 

AOT systems gives rise to significant formal results (as in M&P). They allow for 

generalization across extensionally diverse systems that share an intensional structure, 

and distill central interactions that may be obscured in larger systems. Analysis of AOT 

systems feeds understanding of COT systems, and some AOT systems have exact or 

near-exact COT correlates. 

The results of the dissertation are embedded within the extensive formal development 

of OT (especially Prince 2002, 2016a,b, M&P) and PT (A&P 2016a, in prep.). It uses 

terms and definitions of modern OT and assumes basic familiarity with Entailed Ranking 

Conditions (ERCs) and their logic (Prince 2002, Brasoveanu & Prince 2011). All other 

terms and abbreviations are defined on first use and key OT terms are included in the 

glossary for reference.  

1.2 OT Typologies 

As PT is a formal theory of the structure of OT typologies, its formal development 

requires understanding of such objects. The formal structure of OT typologies is well 

understood, due especially to the results of Merchant & Prince (2016/to appear), 

reviewed in this section.  

Extensionally, a typology is the set of languages of a system, S, where each language 

is a set of optima. Intensionally, it is a partition of the set of total orders over CONS, the 

set of constraints of a system S, where each part of the partition is a grammar (Γ). OT 

grammars are antimatroids, delineated by a set of rankings (ERCs) (M&P p. 9, Merchant 

& Riggle 2016). This ERC set may describe a single total linear order or a set of such 

orders. Each such order is a linear extension of a grammar, a leg, λ. 
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The core analytical objects are defined in (1); following M&P (p. 9), grammars are 

distinguished from languages. The former is a set of intensional rankings characterized 

by an ERC set; the latter is the set of extensional forms that are optimal under those 

rankings. Typological analysis can occur at both levels: extensionally, examining the list 

of languages generated, and intensionally, studying the rankings generating them.  

1) Definitions: Language, Grammar, Typology  

a. Language (L): the set of optima under a given constraint hierarchy.  

b. Grammar (Γ): an ERC set delineating a set of linear orders, λs, on CON that 

select the same set of optima (a language). 

c. Typology (T): extensional: the languages of the system. 

  intensional: the grammars of the system. 

There is a natural geometry on the set of total orders, represented by a graph called a 

permutohedron in which each total order is a vertex connected to those from which it 

differs by a single adjacent transposition of two elements (M&P §6.1). For a set of n 

elements, the permutohedron is an n−1 dimensional object. The permutohedron for a 3-

constraint system is shown in (2); it is a 2-dimensional hexagon with six vertices.  

2) 3C permutohedron  
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A typology maps to a permutohedron of the total orders over CONS, with Γs represented 

as connected regions, sets of adjacent total orders. The AOT system called the 'tops' in 

M&P (p.169) and T.1|2 in DelBusso & Prince (in prep.), has three Γs, each defined by a 

ranking in which a single constraint dominates the other two, which are not themselves 

crucially ordered. When all total orders that lie within the same grammar are collapsed 

into a single node the resulting object is a typohedron (M&P §6.2). In T.1|2, each Γ 

covers two adjacent vertices of the 3C permutohedron, producing the typohedron in (3). 

3) T.1|2 typohedron 
Γs on permutohedron Typohedron 

 

 
 

 

 

Adjacency between two grammars Γ1 and Γ2 in a typohedron is defined by a border point 

pair (BPP): a pair of λs differing in the single adjacent transposition of two constraints, 

that belong to different Γs ((4), from M&P:81 (104)).  

4) Def. Border Point Pair (BPP). For a typology T on a set of constraints CONT, a 

pair of λs, (λ1, λ2) is a border point pair for two Γs, Γ1 and Γ2 iff λ1 = PXYQ and λ2 = 

PYXQ, with P,Q sequences of constraints from CONT, X,Y ∈ CONT, λ1 ∈ Γ1 and λ2 ∈ 

Γ2. 
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For example, in T.1|2, λs, λ1 = xyz and λ2 = yxz are a BPP for Γs x-top and y-top: the two 

legs differ in the adjacent transposition of x and y, and one belong to each Γ (P is empty, 

Q = z).  

A partition of a permutohedron where all parts are defined by ERC sets is a 

grammatical partition. OT typologies are a subclass of such partitions, proven by M&P 

(Theorem (189)) to be those that can be represented with a Unitary Violation Tableau 

(UVT; Prince 2016a, (5) from M&P:16 (8)), or, equivalently, an acyclic MOAT ((6) from 

M&P:17 (12)). 

5) Def. Unitary Violation Tableau (UVT). A violation tableau in which each row 

gives rise to a distinct grammar. 

6) Def. OT Typology (TOT). A partition of the set of orders on a set of constraints 

CONS is a typology iff there is a UVT U, with columns corresponding 1:1 to the 

constraints ∈ CONS and rows corresponding 1:1 to the Γs ∈ T, such that each block in 

the partition T is the ranking grammar of a row in U.  

Each C in a T filters the candidate set, assigning a non-negative value to each 

candidate. The set of candidates with the minimal value assigned are those that pass 

through its filtration, survivors of C; all others are rejected. As with a constraint, so with 

an ordered sequence of Cs, a hierarchy, h: each C in h successively filters the candidates 

surviving the preceding Cs (M&P p. 77ff). A hierarchy is decisive if is determines a 

violation-profile unique optimum (co-optima have the same violation profile).  

7) Filtrations 

For a set of candidates, K: 

a. C[K] = {k∈K: ∄q∈K, C(q) < C(k)} (M&P p. 77 (99)) 
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b. h[K]: for h = an ordered sequence of Cs ∈ Con, (X, Y, Z), h[K] = Z[Y[X[K]]] 

c. Def. Decisive hierarchy: a hierarchy h is decisive for K if |h[K]| = 1. 

A MOAT (Mother of all tableaux) is a collection of Equivalence-augmented 

Privileged Orders (EPOs) that encodes the filtration patterns of each constraint in CON 

over the set of Γs ∈	T as an order and equivalence structure (M&P). As an example, the 

MOAT of the simple stringency system T2Core (chapter 3) is shown in (8). Order relations 

are indicated by arrows, labeled for the other C in the BPP giving rise to the arrow. 

Double blue lines represent equivalence; the connected grammars are in an equivalence 

class. In this system, C2 and X order pairs (L1, L3) and (L2, L3) differently; C1 and X 

order (L1, L2) differently; L2 and L3 are equivalent for C1; L1 and L2 are non-

comparable for C2.  

8) T2Core MOAT 
EPO(C1) EPO(C2) EPO(X) 

  

 
 
While there are many possible UVTs for a given T, there is a single MOAT: EPOs record 

the two relations that matter in optimization, order and equivalence, but no specific 

violation values, as many different ones produce the same filtration patterns (M&P). The 

present work defines a minimal UVT (mUVT) as a UVT that derives from the MOAT 

and uses the minimal possible violation values. 
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9) Def. minimal UVT (mUVT): a UVT where for each Γ in a row of U, C(Γ) is length 

of longest arrow chain separating Γ's equivalence class from the top equivalence class 

of EPO(C).  

M&P prove that the MOAT fully determines every Γ in T, allowing for argumentation 

from MOAT properties to typological properties. In chapter 3 of this dissertation, MOAT 

structure is used to identify the constraint relationships—conflict, stringency, and 

equivalence—that exist in T, deduced from comparing EPO structures. 

With the definition of a T, formal relations between Ts can also be described. Two 

Ts, T1 and T2, are equivalent if their MOATs are isomorphic: the grammars of each have 

equivalent rankings, defining a bijection between the CONs (M&P §0.3.1). Intensional 

typological equivalence is an underlying theme running throughout this dissertation. 

Analysis at the intensional level draws out the structural commonalities between systems 

of diverse phenomena, in distinct areas, thus allowing for broader generalizations about 

the organization of linguistic systems. Chapter 3 analyzes the shared structure of systems 

with stringency constraints. The results allow for understanding of an entire class of 

typologies, which explain the distribution of different extensional traits in parallel 

intensional ways. Chapter 4 analyzes a set of syntactic typologies in three related ways, 

and shows that all resulting typologies are intensionally equivalent.  

1.3 Property Theory and Analysis 

A property analysis of a typology T, PA(T), analyzes the intensional rankings structuring 

the typology, finding the grammatical choices that define the system. A PA delineates 

these rankings and aligns them with extensional linguistic structures, traits, showing how 
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the formal choices relate to the predicted languages. The properties are the intensional 

dimensions along which the system is organized. 

This section provides an overview of the core mechanisms of PT, drawing especially 

on Alber & Prince (2016a). See also Alber & Prince (2017) and Alber, DelBusso & 

Prince (2016) for introductions to the central concepts. 

1.3.1 Properties 

A Property Analysis (PA) contains a set of properties, Ps. Ps are stated in the form X <> 

Y, where X and Y are the P antagonists, and the values, α and β, are the mutually 

exclusive rankings generated by reading the ranking relation in either direction: α. X > Y 

and β. Y > X (A&P 2016a). Each value generates an ERC set (chapter 2 develops 

methods for converting a ranking statement to ERCs), partitioning the set of total orders 

in a T. A Γ in a T has a value, P.α or P.β, when it non-trivially entails the ERCs of that 

value and thus contradicts the other1. A PA is a set of Ps that define all and only the Γs ∈ 

T as the possible distinct combinations of values.  

In the most basic case, X and Y are single constraints, Cs. The P values are their two 

possible orderings, generating ERCs with a single W and L sets. Some Ts can be 

completely analyzed with such Ps; a total-order T, where each Γ is a single λ, is an 

example. However, in a given system, a pair of Cs may not conflict in all or any Γs. For 

every T, there is a defining set of crucial constraint conflicts. Groups of constraints can 

act together as a class in an antagonist so that conflict is between sets rather than 

individual pairs.  

                                                
1 When a Γ is consistent with both values, P is moot; see below. 
2This scope can be stated positively with disjunction if the P1 moot region is definable by a value 
set.   
1This chapter is also indebted to Nazarré Merchant for input and assistance, especially in the 
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X and Y abbreviate classes of constraints, κs (A&P 2016a, in prep.; chapter 2 herein). 

Properties involving classes recognize a level of shared ranking information that may not 

be representable in a single ERC: a set of Γs shares a ranking where some C in a κ is 

ranked relative to the antagonist, but the individual Γs may differ in which particular C 

that is. A specific C is determined by an operator (op), dom or sub, functions that return 

the extremes in a linear order, λ, on Cs in κ, the highest and lowest ranked, respectively 

(A&P 2016a:§II). For example, (10) shows the C returned by each op for two linear 

orders. If each λ is in a different Γ, then the Γs share that κ.op is ordered relative to the 

antagonist but differ in the C in κ. 

10) Dom & Sub operators 
κ = {x, y, z} λ1: xyz λ2: zxy 
κ.dom = {x, y, z}.dom x z 
κ.sub = {x, y, z}.sub z y 

 

The ops have quantificational force by virtue of referring to the extremes of a total order 

(A&P 2016a). If any C in a κ dominates x, then the highest, κ.dom, does, transitively. 

Conversely, if x dominates κ.dom, then it dominates all. Dom is equivalent to Boolean 

disjunction when dominant and conjunction when subordinate. The ERCs generated by 

such values have multi-W/L-sets, representing this dominator disjunction/subordinate 

conjunction. Sub is the reverse: if κ.sub, the lowest member, dominates x then all Cs ∈ κ 

do (conjunction); but if x dominates any κ C, then it dominates the lowest, κ.sub 

(disjunction). As subordinate disjunction is not ERC representable, values with a 

subordinate κ.sub generate disjunctive ERC sets, with each set having a different L. A 

value with a dominant κ.sub is a conjunctive ERC set, where ERCs share L-sets and 

differ in Ws, as exemplified in (11) for a 2C κ.op, {yz}.op.  
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11) Ops and ERCs 
a. Dom: P: x <> {yz}.dom b. Sub: P: x <> {y,z}.sub 

α. x > y and x > z       WLL 
β. y >x or z > x       LWW 

α. x > y or x > z    WLe|WeL 
β. y > x and  z > x   LWe,LeW 

 

A κ can be a singleton, in which case op is omissible, either returning the same single C.  

To give an example, in the typology of the basic syllable system EST (Prince & 

Smolensky 1993/2004, M&P, A&P 2016b), the faithfulness constraints f.max and f.dep 

are a κ in the PA. Both of the markedness constraints, m.Ons and m.NoC, are (separately) 

ranked relative to the sub of this κ (12).The values align with the extensional traits of 

onsetlessness and coda allowedness, respectively. Under each of the α values, one of the 

Cs in the κ is dominated; which is determined by the value of P3, which orders these. 

Values of P3 correlate with whether insertion or deletion of segments is optimal in 

unfaithful mappings. 

12) PA(EST): Properties 
C order in ERCs: m.Ons-m.NoC-f.max-f.dep 
P Values Extensional trait 
P1: m.Ons <> {f.max, f.dep}.sub α. WeLe | WeeL onsets required 

β. LeWe, LeeW onsetlessness allowed 
P2: m.NoC <> {f.max, f.dep}.sub α. eWLe | eWeL no codas 

β. eLWe, eLeW codas allowed 
P3: f.max <> f.dep α. eeWL insertion 

β. eeLW deletion 
 

1.3.2 Scope: property interdependencies  

Work in PT has shown how some rankings are dependent on others (A&P). This has 

correlates with extensional traits: some choices of linguistic structure are contingent on 
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others. For example, only among languages that allow codas in syllables is there a choice 

between allowing complex codas versus only single consonants. 

Intensionally, for a given P, some Γ(s) may have neither value if both are consistent 

with the ERC set, in which case P is moot (A&P). Such Ps only distinguish among a 

subset of the Γs. While all Ps are binary partitions of the entire set of λs in T, in that 

every total ordering, λ, satisfies one value or the other, they may not be such partitions of 

the set of Γs, because a Γ can include λs in both parts of P's partition. In such a Γ, the P 

antagonists are not crucially ranked, occurring in either order in some λs. A P scope, Σ(P) 

defines its domain; for a wide-scope P (wsP), all Γs have a value but for a narrow-scope 

P (nsP) some do not. These are defined by positive Boolean combinations of other P 

values (A&P 2016a:10). 

13) Def. Scope. For a PA = {P1,…Pn}, the scope of a P1 ∈ PA, Σ(P1), is the subset of 

Γs ∈ T, {Γ1,…,Γm}, that have a value of P1.  

a. Wide scope (ws): {Γ1,…,Γm} = T. 

b. Narrow scope (ns): {Γ1,…,Γm} ⊂ T & is defined by a positive Boolean 

combination of P values from other Ps ∈ PA, {P2,…Pn}. 

P value scope definitions pick out the set of Γs sharing that value description, and 

possibly differing in other values. These can be single values, value conjunctions, 

disjunctions, and combinations thereof. Negative scopes, such as ¬P1.α, are illicit. If P1 

is ws, this is equivalent to a single-value scope for the opposite value (P1.β); but if ns, 

¬P1.α includes both P1.β and Γs for which P1 is moot2. Cyclic scopes, where the scopes 

                                                
2This scope can be stated positively with disjunction if the P1 moot region is definable by a value 
set.   
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of a set of Ps are co-dependently defined by each other, are excluded by virtue of being 

undefined (a loop).  

Conjunctive and disjunctive scopes both arise frequently in analysis. Conjunctive 

scopes occur when multiple rankings are jointly necessary for antagonists to conflict; 

examples in COT systems include Danis (2014) and some of the syllable systems 

analyzed by DelBusso & Prince (2015). Disjunctive scopes occur when there are multiple 

other rankings, each independently creating the conditions for such conflict; examples 

arise in systems with antagonized sets of stringency constraints (chapter 3 and Alber 

2015ab), and in systems with overlapping subPAs (Bennett & DelBusso to appear).  

A full PA defines both the set of Ps and their scopes, producing the set of (potential) 

Γs that corresponds to all consistent value combinations given the scopes. A PA that 

generates T, defining exactly its set of Γs, is a valid PA, the central topic of chapter 2. A 

full PA is represented in two ways: in a value table and a treeoid. A value table lists Ps as 

columns and the possible combinations of their values as the rows. A treeoid is a directed 

acyclic tree graph augmented by various kinds of lines (A&P 2016a:11, 2017). Ps label 

nodes of the treeoid and are connected to their value nodes by double red lines, indicating 

a mutually-exclusive choice. The value nodes dominate any P(s) whose scope(s) they 

define, represented as single blue lines. Dotted blue lines indicate disjunctive scope in the 

sense that for a P dominated by dotted lines any Γ having a value of any of the 

dominating nodes has a value of P.  

1.4 Dissertation outline  

The core dissertation chapters focus on three major areas: formal development of PT and 

conditions under which a set of Ps generates a T (chapter 2); understanding the 
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typological structure of classes of OT systems, specifically those with stringently-related 

Cs (chapter 3); and, the PT explanation of typological organization, as exemplified by a 

word order typology, compared to a recent parametric theory (chapter 4).  

1.4.1 Valid Property Analyses 

A PA analyzes a particular typology, T. Of a set of Ps, two questions can be asked: first, 

does it generate all and only the Γs of a given system under analysis, S? and second, does 

it generate any OT T? Chapter 2 defines two kinds of valid PAs, aligning with these two 

questions. It then examines the conditions for a set of Ps to be a valid PA in the second, 

more abstract sense, generating an OT partition of a set of λs.  

Since the objects of PT—sets of property values—and OT—ERC sets—are distinct, 

formally precise methods are needed to convert one to the other. Chapter 2 presents 

algorithms to calculate predicted grammars from a set of values in a property analysis, 

building on DelBusso & Merchant (in prep.). It proposes the Join-Disjunct-Grammars 

(JDG) algorithm, which is used in assessing PA validity by determining if the value sets 

generate non-overlapping Γs. The algorithms provide computational analytical tools that 

facilitate Property Analysis automation, and are incorporated into OTWorkplace (Prince, 

Merchant & Tesar 2007-2017), a software package for rigorous OT analysis. 

Automations ensure accuracy and extend the reach and utility of the theory, allowing for 

analysis of large and complex systems where manual approaches are untenable.  

The chapter also defines a relationship between properties within a PA, formalized in 

the concept of a resolver P, resP. A resP is a property that antagonizes the Cs in a class, 

κ, in another P. Such Ps are shown to establish sufficient conditions for a set of Ps to 

generate a grammatical partition. 
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1.4.2 The structure of stringency systems 

Analyses of a wide range of systems identify intensional structural equivalences across 

systems modeling distinct extensional phenomena. The typological perspective also gives 

rise to a reconceptualization of core constraint relationships. Typological structure 

depends on the set of filtration patterns of the Cs ∈ CON, which may be the same across 

systems in which different Cs evaluate different structures. OT systems can be 

understood and classified according to kinds of C relationships that occur therein, 

discovered through property analysis. Such relations are not limited to conflict. Chapter 3 

is a detailed analysis of the structure of typologies involving constraints in a stringency 

relationship, a relation of non-conflict.  

Stringently-related Cs are common in OT analysis, used to derive implicational 

universals: if a language has trait x, it has trait y, but not vice versa. The chapter develops 

a new formal definition of stringency inherently linked to OT typological structure by 

referring to filtration patterns rather than violation counts or C definitions. Two Cs may 

appear to be in a stringency relationship based on their definitions, but fail to behave as 

such within a given system due to other factors, such as GEN. Filtration stringency is 

identifiable from a MOAT. This leads to a further identification of a relation of partial 

stringency, where Cs stand in the relation over only some but not all Γs in T. The chapter 

further classifies the MOAT and property correlates of other constraint relations, conflict 

and equality.  

Detailed development of the PA structure stringency system shows the core set of 

interactions that occur in all systems with such Cs: a typology of segmental faithfulness 

(Alber 2015ab, chapter 3) is intensionally identical to one of syntactic structure (chapter 
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4), despite non-comparable extensional languages. Expanding the basic system in 

systematic ways refines or iterates the structure. The same properties also occur in the 

PAs of partial stringency, though in the context of other Ps. These Ps align with 

extensional traits of linguistic scales, characterizing how a scale manifests in a language.  

Analyzing the core relations allows for understanding of a range of phenomena and 

provides analytical tools. When stringency relations are identified, a set of properties can 

be immediately stated, yielding complete understanding of some simple systems and 

providing a hook into the structure of more complex cases.  

1.4.3 The Final-over-final condition and typological structure 

While previous chapters focus on formal aspects of PT and intensionally equivalent 

classes of systems, chapter 4 analyzes the PAs explanation of both a specific system and 

typological organization more generally. This is compared to a recent proposal for the 

structure of syntactic typologies in parametric theory: Parameter Hierarchies 

(Reconsidering Comparative Syntax project (ReCoS), Roberts 2010, 2012, et seq.).  

In the theory of Parameter Hierarchies (PH), parameters and their settings define the 

dimensions of variation, and the predicted typology is the possible combinations of 

settings. Parameters are organized in a common hierarchical structure, resulting in a fixed 

set of ordered choices among their settings. There is an intuitive conceptual similarity 

between parameters, settings, and hierarchies in parametric theories, and properties, 

values, and treeoids in PT.  

The chapter develops a set of analyses of the Final-Over-Final Condition (FOFC, 

Biberauer et al. 2014), a cross-linguistic generalization of possible word orders and a 

systematic gap therein. The analyses use sets of stringency constraints; their intensional 
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and extensional equivalences show the essential components required to derive the 

condition. These are compared with Biberauer et al.'s (2014) analysis. The PA structure 

closely resembles the Parameter Hierarchy of the FOFC typology, but diverges in ways 

that show deeper differences between the theories. In PT, typological structure follows 

directly from the objects and logic of OT itself: the constraints and their conflicts over a 

set of candidates that define the Γs.  
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2 Valid Property Analyses 

2.1 Introduction 

A Property Analysis of a typology of a system S, PA(TS), analyzes TS into a set of 

properties whose values generate all and only the grammars (Γs) of TS. A central, more 

general question in Property Theory is the conditions under which a set of properties, Ps, 

generates any OT typology at all. As Merchant & Prince (2016/to appear) show, OT 

typologies are a certain class of partitions of the set of total orders of constraints in 

CON—those having an acyclic MOAT/UVT. A given set of Ps is not guaranteed to yield 

such an object. This chapter examines conditions on set of Ps to be a valid PA(T) in this 

sense. It is deeply embedded in and indebted to the extensive development of Property 

Theory (Alber & Prince 2016a, in prep. (A&P), DelBusso & Merchant in prep.), and on 

OT typologies in Merchant & Prince (2016/to appear; M&P), and building on concepts in 

these works.1 

The results rest on 1) having formally explicit methods to translate between property 

value sets and ERC grammars (Γs); and 2) the notion of a resP. The first, left implicit in 

previous work, is complicated by the fact that P antagonists are often not single 

constraints, Cs, generating ERCs with a single W and L, but constraint classes. These 

were developed by A&P (2016a, in prep.), further analyzed in DelBusso & Prince (in 

prep.; D&P) as binary hierarchical tree structures over C sets. The present chapter refines 

and formalizes that conception, generalizing to (non-binary) trees (§2.3). 

                                                
1This chapter is also indebted to Nazarré Merchant for input and assistance, especially in the 
formalization of classes and class trees, and in the proofs in §2.5. Merchant wrote code for the 
JDG algorithm in the PA checker function of OTWorkplace (Prince, Merchant & Tesar 2007-
2017).  
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As discussed in chapter 1, a specific C in a class is designated in a given total order 

by the operators dom and sub. These operators result in complex ranking conditions that, 

in the case of sub, are not representable by an ERC set. Both operators generate 

disjunctions in ERCs, but they crucially differ in whether the disjunction is grammatical. 

A dominant κ.dom in a value, P.v, κ.dom>x, generates single ERCs with dominator (W) 

disjunction, a possible OT grammar, Γ.2 However, a subordinated κ.sub, x>κ.sub, has 

subordinate (L) disjunction, and any such property value generates a disjunction of ERC 

sets, with each disjunct differing in the specific C(s) dominated. As A&P have shown, 

such a value does not define a Γ.  

This chapter presents two algorithms to generate ERC sets from the PA value sets. 

The P-values-to-ERCs algorithm (PvE; §2.4.1, DelBusso & Merchant in prep.) converts a 

P value, a statement of a ranking condition, to (sets of) ERC sets. This formalizes a step 

implicitly assumed in work PT, allowing for automatization. The chapter then introduces 

the Join-Disjunct-Grammars algorithm (JDG; §2.4.2), which takes a set of values and 

returns the ERC set it describes. JDG uses core elements of OT logic: the Fusional 

Reduction algorithm (Brasoveau & Prince 2011) and join operator (Merchant 2008, 

2011), from which it draws its name.  

JDG provides a solution to the issue of generating a single OT Γ from a PA value set 

that includes disjunctive values and is central to assessing PA validity. For a valid PA, 

each value set defined by the PA must result in a conservative output of JDG. Merchant 

(2008, 2011) shows that a join is conservative when it is equal to the union of the ERC 

sets joined, excluding any additional total orders that are not in any of these sets. In §2.5, 

                                                
2Recall that a ΓOT is an antimatroid described by an ERC set, not necessarily a total or partial 
order (Merchant & Riggle 2016).  
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the conditions for JDG conservativity are examined. The presence of Ps with values that 

generate disjunctive ERC sets results in cross-property dependencies; the PA must 

include some other Ps in order for JDG to be conservative.  

The needed Ps are examined in §2.6, which introduces the concept of resP, defined as 

Ps that draw their antagonists from a constraint class in another P, and antagonize the Cs 

within this class. These are argued in §2.7 to be sufficient for conservative JDG outputs, 

leading to a Theorem of sufficient conditions for a set of Ps to generate a grammatical 

partition, crucial for validity.  

2.2 Valid Property Analyses 

A Property Analysis, PA, contains a set of properties, Ps (1), defining two opposing 

ranking conditions (A&P 2016a).  

1) Def. Property, P: antagonized constraints classes, κα.op <> κβ.op, with values, α: 

κα.op > κβ.op and β: κβ.op > κα.op, generating ERC sets defining mutually exclusive 

rankings that partition the set of λs. 

A P is a binary partition of the set of total orders, λs: every λ satisfies the ERCs generated 

by one value and is inconsistent with the other. Neither value can be empty because a 

value describes a ranking between Cs. Since a typology is a partition of the set of all 

possible linear orders, some orders instantiate one ranking and some the other. In the 

context of a given T, some Γs may include λs in both halves. In this case, P is moot in 

these Γs, as the ERC set of either value if consistent with Γ.   

A valid PA analyzes a typology, generating grammars. Of a set of Ps, two questions 

can be asked: 1) does is generate the typology of a given system S, TS? and, 2) does it 

generate any OT typology? This correlates with M&P's two definitions of a typology as: 
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1) as the collection of grammars of a system (p. 9); and 2) a subset of partitions of the set 

of total orders over CON that has a UVT/acyclic MOAT (p. 17 (12), definition repeated 

from chapter 1 in (2)).   

2) Def. OT Typology (TOT). A partition of the set of orders on a set of constraints 

ConS is a typology iff there is a UVT U, with columns corresponding 1:1 to the 

constraints ∈ ConS and rows corresponding 1:1 to the Γs ∈ T, such that each block in 

the partition T is the ranking grammar of a row in U.  

Corresponding, there are two concepts of a valid PA. A system-specific valid PA(TS) is a 

PA that generates the typology of particular system S, following the definition of Alber & 

Prince (2016a:1) in (3).  

3) Def: Valid PA(TS): a PA(TS) of a typology T = {Γ1,…Γn} is a set of properties, 

{P1,…,Pn}, such that each allowed, logically consistent choice of values yields a 

Γ∈T and each Γ∈T is so described. 

In a valid PA(TS), there is an bijection between the possible value sets of the Ps and the 

Γs ∈ T. In many cases, there are multiple valid PAs of a given T. D&P show this in detail 

for Weak Order Typologies (WOTs) and work in PT—including the present text—

broadly demonstrates it. Determining if a set of properties is an analysis of S requires 

calculating the ERC sets resulting from each P value, using the algorithms developed in 

§2.4, and checking whether there is such a bijection. This validation can be done with the 

Property Analysis checker in OTWorkplace (Prince, Merchant & Tesar 2007-2017). 

The second concept of a valid PA is more abstract: whether a set of Ps, and the sets of 

their value combinations, generates any OT partition. Each possible value combination is 
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the P characterization of a grammar; since these are not guaranteed to be OT Γs, the 

notation pΓ is used (4); each pΓ is a row of a PA value table. 

4) Def. pΓ: Given a set of PA, {P1,…,Pn}, a pΓ is a unique set of scopally allowed 

consistent P values of Ps ∈ PA. 

The definition of a valid PA(TOT) is a P set that describes an OT partition, absent a 

particular system under analysis. To be so, two conditions must be met: a) each possible 

value set, pΓ, generates an OT Γ, an ERC set defining a set of λs; and b) the Γs can co-

exists in an OT partition.  

5) Def: Valid PA(TOT): A valid PA(TOT) is a set of Ps, {P1,…,Pn} and the set of their 

possible value combinations, {pΓ1,…,pΓm}, s.t.:  

a. Each pΓ generates an OT Γ, an ERC set that delineates a set of λs, total orders 

over CON; 

b. The set of Γs is an OT typological partition of the set of permutations of total 

orders over CON (a partition with a UVT). 

Meeting the conditions for a valid PA(TS) entails meeting those for a PA(TOT), since S is, 

by assumption, a T and so an OT partition. Conversely failing to be a PA(TOT) entails 

failing to be a PA(TS) for any S, as the failed PA does not describe any OT T. However, 

it is possible for a set of Ps to describe a TOT, meeting (5), but fail to generate a given 

system.  

To satisfy the first condition, (5)a, all value sets, pΓs, must generate OT Γs. A pΓ is a 

set of ranking condition statements. Each value must be converted to a (set of) ERC sets, 

using the PvE algorithm (24), and then the entire set of values into a single ERC set. As 

Ps can generate disjunctive ranking conditions, the individual value ERCs cannot simply 
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be amassed. The Join-Disjunct-Grammar algorithm, JDG (26) uses Merchant's (2008) 

join operator to produce a non-disjunctive ERC set for a pΓ.  

To satisfy the second condition, (5)b, the set of pΓs joined be an OT partition. As a 

partition, pΓs are necessarily disjoint value sets, with none defined by a superset of the 

values defining another. An OT partition is one having an acyclic MOAT or, 

equivalently, a UVT (M&P). It is sometimes possible for a grammatical partition to 

describe a Harmonic Serialism typology, THS; for example, M&P's single split bot 

(§5.2.1) is a possible THS, though it cannot be a TOT.  

Failure to meet these criteria can result from the presence of Ps that generate 

disjunctive rankings. These arise from the presence of constraint classes, κs, with the 

operator sub in the P antagonists. 

2.3 Constraint classes 

C-classes are central in PT. As A&P establish and much subsequent work show, P 

antagonists are not always single Cs, but sets of Cs (sets). Such classes recognize a higher 

level of grammatical similarity, where grammars share not that a specific C is dominated, 

but that one in a set is. For example, in the PA of basic syllable system EST (PA from 

A&P 2016b; see also chapter 1), the faithfulness constraints, f.max of f.dep are a class. 

The extensional trait of onset-requiredness in syllables correlates with P values where the 

markedness constraint m.Ons is ranked relative to the subordinate of the class (6). 

6) EST properties 

P1: m.Ons <> {f.max, f.dep}.sub 

α: m.Ons > f.max OR m.Ons > f.dep onsets required 

β. f.max & f.dep > m.Ons  onsetlessness  
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The present treatment of classes builds on the significant development in A&P (2016a: 

§III), and further analyzed in D&P (in prep.). D&P develop the internal structure of 

classes as uniform branching binary trees. This chapter builds on this, defining classes, 

κs, as hierarchical tree structures more generally. Hierarchical structure is necessary to 

recognize internal organization to classes, which are not always unorganized sets. For 

example, in the PA of nGX (A&P in prep., 2017; also ADP), the P Mult has antagonist 

{{AFL, AFR}.dom, {Iamb, Troch}.sub}.dom, which includes two classes within a class. 

This is an intensional concept of C class, distinct from other concepts of C groupings 

based on definitional or extensional criteria, such as faithfulness, alignment, or 

correspondence. To distinguish these, the latter are termed C families. Whether the two 

concepts align depends on the specific system. In PA(EST), the faithfulness Cs f.max and 

f.dep act as a κ, but markedness Cs, m.Ons and m.NoC, do not.  

2.3.1 κ and κ trees3 

κs are defined as hierarchical structures over subsets of Cs ∈	CON, represented as κ trees 

(7), with a set of subtrees, rooted at non-terminal nodes, and leaves labeled with Cs. Non-

terminal nodes are labeled with the set of the labels of their immediate child nodes. 

7) Def. A κ tree is a rooted acyclic tree with leaves labeled by Cs ∈	CON and non-

terminal nodes labeled by the set of the labels of their child nodes.  

A subtree n of a κ tree is the tree rooted at a non-root node n and all nodes dominated 

by n in κ tree. The edges are those that connect these sub-nodes in κ tree. 

A κ is defined as the label of the root node (8). It is the set of the labels of its child nodes, 

which are themselves subtrees or leaves.  
                                                
3Formal definitions of concepts in this section were developed jointly with Nazarré Merchant. 
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8) Def. Given a κ tree, a class κ is the label of the root node κ, the set of immediate 

child nodes of the root. A sub-κ is the label of a dominated node n, the set of 

immediate child nodes of the subtree rooted at node n.   

The immediate child nodes, whose labels form the set naming κ, are the daughters (9).  

9) Def. Given a κ tree, the daughters of κ, {d1,…,dn}, are the labels of the n 

immediate child nodes of the κ root.  

The example κ tree in (10) has root node κ = {x, {y, z}}. The two daughters are d1 = {y, 

z}, a non-terminal node, and d2 = x, a leaf. The daughters of sub-κ {y, z} are y and z.  

10) Example: κ tree  
{x, {y, z}}    ty 
x      {y, z}                    ty 

                 y          z 
 
A tree has a height, the longest chain of edges between the root and a leaf.  

11) Def4: the height of tree, h, is the number of edges between the root node and the 

deepest leaf.  

A singleton κ, a leaf, has a height of 0. For κ with only terminal daughters h = 1; one 

dominating at least one height-1 sub-κ, h = 2, etc. The κ height is always one more than 

the height of its daughter with the highest h. In (10), h = 2 for the root-node, dominating 

one daughter {y,z} with h =1 and one h = 0.  

2.3.2 κ valuations 

A κ is the set of daughter node labels in a κ tree, itself a hierarchical structure over a set 

of Cs ∈ CON. To be interpreted as an antagonist in a P value and converted to an ERC set, 

                                                
4 https://en.wikipedia.org/wiki/Tree_(graph_theory). 
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specific daughters within this set are picked out by operators dom and sub (12). A κ tree 

is valued when all nodes are assigned an operator, op. A P antagonist is a valued κ, 

following A&P (2016a: p. 3, (15)).  

12) Def. A valuation of κ, is the assignment of op, dom or sub, to each κ tree node.  

13) Def. A P antagonist is a valued κ, κ.op.  

As defined by A&P (p. 2; see also chapter 1), the operators dom and sub are functions 

taking a total order, λ, and returning a specific C ∈ CON by virtue of its ranking position 

relative to the other Cs in λ (14).  

14) Def. dom and sub functions. For CON, a set of Cs, Ord(CON), the set of all total 

orders on Cs ∈ CON, the dom/sub operator is a function from Ord(CON) → CON 

where S.dom/sub(λ) = the greatest/least element of S in λ.  

A κ is a restrictor on the set of possible outputs to the function, limiting it to the subset of 

CON that are leaves of a κ tree (15) (following A&P (2016a: (17), (21)). The position of 

any non-κ-leaf in λ is irrelevant.  

15) Def. κ.op: Given a valued κ, κ.op, and a linear order λ, κ.op(λ): 

a. If κ is singleton, then κ.op(λ) = C ∈ κ.  

b. If κ is non-singleton, with valued daughters, d1.op1,…,dn.opn, then, for  U =  

⋃{d1.op1(λ),…,dn.opn(λ)}, κ.sub/dom(λ) = lowest/highest ranked C ∈ U in λ. 

When κ is a singleton, valuation is trivial: either op returns the same single C. In the 

representations below, ops are omitted on leaves. For a tree with n non-terminal nodes, 

including the root, there are 2! possible valuations of non-terminal nodes, a binary choice 

of op at each of the n nodes. A κ1 has two distinct valuations; a κ2 has minimally four 
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(depending on the structure of the daughters). For the κ tree in (10), there are two non-

terminal nodes, yielding four possible valuations are those in (16). 

16) Valuations of κ = {x, {y, z}.op1}.op2 
     op2 
op1 

dom sub 

dom 

{x, {y, z}.dom}.dom   ty 
x {y, z}.dom            ty 
          y          z 

{x, {y, z}.dom}.sub   ty 
x {y, z}.dom            ty 
          y          z 

sub 

{x, {y, z}.sub}.dom   ty 
x {y, z}.sub            ty 
          y          z 

{x, {y, z}.sub}.sub   ty 
x {y, z}.sub            ty 
          y          z 

 
For λ = xyz, where linear ordering represents order, the C returned for each of these 

valuations is shown in (17).  

17) λ = xyz 

a. {x, {y,z}.dom}.dom(λ) = x 

b. {x, {y,z}.dom}.sub(λ) = y 

c. {x, {y,z}.sub}.dom(λ) = x 

d. {x, {y,z}.sub}.sub(λ) = z 

There is a set of linear orders that all return the same C, differing in the permutations of 

both any Cs that are not κ leaves, and of some of the leaves among each other. For 

example, (d) returns z for any λ in which both x & y > z, regardless of their relative 

ordering, and that of any other Cs, e.g. wxvyzu, uvyxzw, etc.  

In EST, for example, onsets are required under P1.α: m.Ons > {f.dep, f.max}.sub. 

There are multiple λs for which {f.dep, f.max}.sub returns f.dep, differing in the order of 
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m.Ons, f.max, and m.NoC. The λs consistent with P1.α are all those in which both m.Ons 

and f.max precede f.dep, with any order between them, and m.NoC.  

A&P (2016a:§III) further introduce the distinction of public and private classes. A 

class is public if its daughters are the antagonists of another P; else it is private. This 

chapter makes a similar but distinct classification of κs as conflicting or non-conflicting, 

depending on the conflicting status of their daughters. For a pair of Cs, conflict is defined 

as the existence of a Border Point Pair (BPP; M&P (70)) in	T involving their adjacent 

transposition (18) (also chapter 3, §3.2.1). 

18) Def: Conflicting Cs: Two constraints, X and Y, are conflicting in T if ∃(Γ1, Γ2) ∈ 

T, s.t. there is a BPP for Γ1 and Γ2, defined by the adjacent transposition of X and Y: 

λ1 = PXYQ ∈ Γ1, λ2 = PYXQ ∈ Γ2. Else X and Y are non-conflicting in T. 

The conflicting status of a κ is defined by that of its leaves (19). 

19) Def. Conflicting κs: A class κ is conflicting if for every pair of leaves (X, Y), X 

and Y are conflicting in T. A class κ is non-conflicting if for every pair of leaves (X, 

Y), X and Y are conflicting in T.5 

Conflicting status aligns with whether there can or must be a P in the PA antagonizing the 

daughters. Thus conflicting κs, which generally have such a P, are similar to public 

classes, and non-conflicting, which do not, to private classes. This relates to resPs, the 

topic of §2.6, which are Ps that antagonize daughters of a κ in another P. 

 

                                                
5 Note: this allows a κ to be neither. 
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2.3.3 κs and Ps 

All Ps antagonize two valued κ.ops, κα.op <> κβ.op (A&P). Values are the ranking 

conditions resulting from reading the domination relationship in either direction, which 

generate ERCs.  

The operators, dom and sub, have Boolean correlates (A&P 2016a:4, D&P, DelBusso 

& Merchant 2016, in prep; reviewed in chapter 1). Dom correlates with disjunction when 

dominant, conjunction when subordinate; sub correlates with conjunction when 

dominant, disjunction when subordinate. Following from these Boolean relations, 

multiple P statements can result in logically equivalent P value ERCs, for Ps having 

distinct κ trees for their antagonists. In (20), the Ps differ in their κβ.ops, but generate the 

same ranking conditions, shown by converting one to the other using the Boolean 

distributive law (see also A&P, D&P, DelBusso & Merchant 2016 in prep.).  

20) Logically equivalent P forms 
κβ tree  {x, {y, z}.sub}.dom   ty 

x {y, z}.sub            ty 
          y          z 

{{x,y}.dom {x,z}.dom}.sub            ru 
   {x,y}.dom {x,z}.dom       ty ty 
     x          y x         z 

P: w <> κ.op w <> {x, yz.sub}.dom w <> {xy.dom, xz.dom}.sub 
v α  w > x ∧ (y ∨ z) 

 
LLeW | LeLW  

w > (x ∧	y) ∨ (x ∧	z)  
= w > x ∧ (y ∨	z)    
LLeW | LeLW 

β  x ∨ (y ∧	z) > w 
 
WWeL,WeWL 

(x ∨	y) ∧ (x ∨	z) > w  
= x ∨ (y ∧	z) > w        
WWeL,WeWL  

 
All Boolean expressions can be converted, using the laws of Boolean algebra, into two 

normalized forms, disjunctive normal form, DNF, and conjunctive normal form, CNF.  
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21) Normal Forms6  

a. DNF: the disjunction of conjunctions of literals. 

b. CNF: the conjunction of disjunctions of literals.   

Similarly, any P antagonist can be converted to a normalized two-level form, in which the 

outer root node is valued with sub and all daughters with dom, as in the second tree in 

(20). When subordinated, such a form generates a disjunction of conjunctive ERC sets, 

similar to DNF (when dominant, it reverses to a conjunction of disjunctions; A&P) 7. This 

form is called Dκ.sub (22). It is used in the PvE algorithm to normalize antagonist form 

for ERC conversion.  

22) Def. Dκ.sub: a valued κ, κ.op, with a height h = 2, where the root is valued with 

sub and n daughter nodes, each valued with dom, {d1.dom,…,dn.dom}.sub. 

Conversion of any κ.op to a Dκ.sub changes the makeup of the daughters. Conversion 

uses laws of Boolean algebra, specifically associativity and distributivity, to redistribute 

and flatten trees (23) (A&P 2016a, in prep., D&P). 

23) Dκ.sub conversion 

a. Associativity:  

{{xy}.sub, {zw}.sub}.sub = {{xz}.sub, {yw}.sub}.sub = {xyzw}.sub 

b. Distributivity:   

{x, {yz}.sub}.dom = {{xy}.dom, {xz}.dom}.sub   dom over sub 

{x, {yz}.dom}.sub = {{xy}.sub, {xz}.sub}.dom  sub over dom 
                                                
6 https://en.wikipedia.org/wiki/Disjunctive_normal_form; 
https://en.wikipedia.org/wiki/Conjunctive_normal_form. 
7Conversely, the 2-level form {{}.sub, {}.sub…}.dom is DNF when dominant, CNF when 
subordinate. 
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c. κ simplification:    Boolean equivalent when dominated 

κ.op  = {x, {y, {zw}.dom}.sub}.dom  x ∧ (y ∨ (z ∧	w))   

         = {x, {{yz}.sub, {yw}.sub}.dom}.dom x ∧ ((y ∨ z) ∧	(y ∨ w)) dist. 

         = {x, {yz}.sub, {yw}.sub}.dom  x ∧ (y ∨ z) ∧	(y ∨ w)  assoc. 

   Dκ = {{xy}.dom, {xzw}.dom}.sub  (x ∧ y) ∨ (x ∧	z ∧ w)  dist. 

2.4 Algorithms for generating Γs from PAs  

Ps state ranking conditions antagonizing two valued κ.ops. Each possible value 

combination, pΓ, is a set of such values. OT ERC Γs are sets of ERCs. This section 

defines two algorithms for translating between these distinct objects, allowing for their 

automation.8 The first, P-values-to-ERCs (PvE), developed by DelBusso & Merchant (in 

prep.), converts the values of a P to sets of ERCs. The second, Join-Disjunct-Grammars 

algorithm (JDG), proposed in this dissertation, takes a full pΓ value set and returns a Γ.  

2.4.1 Generating value ERCs: PvE 

The P-values-to-ERCs (PvE) algorithm takes a P value—antagonized κ.ops—and returns 

the (set of) ERC sets that characterize it. The algorithm first converts the antagonists to 

Dκ form (22). It then creates a disjunctive set of ERC sets for each value, consisting of 

sets of ERCs sharing an L-set that is defined as one of the daughters of the subordinated 

antagonist. The algorithm is given in pseudo-code form (24), followed by an example of 

its application.  

 

 

                                                
8As of this writing, Merchant has implemented JDG in the PA checker functions in 
OTWorkplace. PvE is partially implemented.  
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24) Pseudo-code of PvE  

Input: P: κα.op <> κβ.op, and CON, a set of Cs that includes all leaves of κα and κβ 

trees. 

0. Convert the antagonists, κα.op and κβ.op, to the logically equivalent forms Dκα.sub 

and Dκβ.sub, where Dκα.sub has n dom-valued daughters, and Dκβ.sub has m dom-

valued daughters. 

1. Generate α ERCs:  

For each of the m daughters of Dκβ.sub,  

Set Eαi as an empty set. 

For each of the n daughters of Dκα.sub, create an ERC, ϵj where 

For all Cs in that daughter, add C to W(ϵj) 

For all Cs in the Dκβ.sub daughter, add C to L(ϵj) 

For all other Cs ∈ CON, add C to e(ϵj) 

If NOT(W- and L-sets overlap), then add ϵj to Eαi. 

  End  

  Return Eαi. 

 End   

 Set P.α as the disjunction of the m Eαs. 

2. Generate β ERCs: repeat (1), swapping α/β.  

3. Return P.α, P.β.   

PvE produces a disjunction of ERC sets for each value. Under P.α, the set consists of n 

disjuncts, one for each daughter of Dκβ.sub, where each disjunct is an ERC set of m 

ERCs, one for each daughter of Dκα.sub. Each of the n sets has a distinct L-set, but all 
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share the same m W-sets. The L-sets are necessarily distinct, but may be overlapping if 

the sets of Cs in the daughters overlap. Each of the m ERCs in each set has a distinct W-

set, but all share the same L-set. Similarly for P.β, switching α/β and n/m. If either 

Dκα.sub or Dκβ.sub is a singleton, then the ERC set produced by PvE consists of a single 

disjunct where that antagonist is subordinated, as it is the only possible L-set. If both 

antagonists are singletons, this ERC set contains a single ERC, for the only W-set.  

P antagonist classes, κα and κβ, must have non-overlapping sets of leaves. If they 

overlap, then some C in some ERC must be in both W- and L-sets, which is not a 

possible ERC, and PvE halts. 

PvE is applied in (25). In the input P, κβ.op is a singleton, equivalent to its Dκβ.op 

form, so P.α generates a single ERC set. For P.β, however, PvE generates a disjunctive 

set because the dominated antagonist, κα.op, is not a singleton.  

25) PvE applied 

Input: P: {x, {yz}.sub}.dom <> w 

0. Convert to Dκv.sub:  

Dκα.sub: {{xy}.dom, {xz}.dom}.sub  2 daughters:  {xy}.dom, {xz}.dom 

Dκβ.sub: {w.dom}.sub = w   1 daughter: w 

1. Generate α ERCs:  

For the single Dκβ.sub daughter, w,  

Set Eα1 as an empty ERC set. 

For each of the 2 Dκα.sub daughters, {xy}.dom, {xz}.dom, create an ERC, 

ϵi, where  

For all Cs in that daughter, add C to W(ϵj): W(ϵ1) = {xy} 
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      W(ϵ2) = {xz} 

For all Cs in the Dκβ.sub daughter, add C to L(ϵj): 

L(ϵ1) = L(ϵ2) = {w} 

For all other Cs ∈ CON, add C to e(ϵj): e(ϵ1) = z 

e(ϵ2) = y 

   Add ϵi to Eα1.  

End 

Return Eα1 = {WWeL, WeWL} 

 End   

 Set P.α = Eα1 = {WWeL, WeWL} 

2. Generate β ERCs. 

For Dκα.sub daughter {xy}.dom,  

Set Eβ1 as an empty ERC set. 

For each the single Dκβ.sub daughter, w, create an ERC, ϵ1, where  

For all Cs in that daughter, add C to W(ϵ1):  W(ϵ1) = w 

For all Cs in the Dκβ.sub daughter, add C to L(ϵ1):  L(ϵ1) = {xy} 

For all other Cs ∈ CON, add C to e(ϵ1):  e(ϵ1) = z 

   Add ϵ1 to Eα1. 

End 

Return Eβ1 = LLeW. 

For Dκα.sub daughter {xz}.dom,  

Set Eβ2 as an empty ERC set. 

For each the single Dκβ.sub daughter, w, create an ERC, ϵ2, where  
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For all Cs in that daughter, add C to W(ϵ2):  W(ϵ2) = w 

For all Cs in the Dκβ.sub daughter, add C to L(ϵ2): L(ϵ2) = {xz} 

For all other Cs ∈ CON, add C to e(ϵ2):  e(ϵ2) = y 

Add ϵ2 to Eβ2. 

  End 

  Return Eβ2 = LeLW. 

 End   

 Set P.β as the disjunction Eβ1 | Eβ2 = {LLeW}|{LeLW} 

3. Return P.α = {WWeL, WeWL}, P.β = {LLeW}|{LeLW}. 

For this P, PvE produced one disjunctive value, P.β, with disjuncts differing in L-sets, 

and one non-disjunctive value, P.α, a conjunctive set of two ERCs with distinct W-sets.  

The PvE algorithm is used in the Join Disjunct Grammars algorithm to calculate the 

full pΓs, combining the sets of ERCs for each of the values. 

2.4.2 Join-disjunct-γs (JDG) algorithm 

The Join-Disjunct-Grammars (JDG) algorithm produces an ERC Γ from a pΓ. The 

algorithm uses PvE and fundamental operations of ERC logic, first taking the pΓ set of P 

values, and converting them to ERC sets. It then calculates the Γ that results, using the 

Fusional Reduction algorithm (FRed; Brasoveanu & Prince 2011) on the ERC set 

produced by PvE. This is uncomplicated when the PA does not include any disjunctive 

Ps. However, if some of the values in pΓ are disjunctive, and do not describe a unique 

ERC set, they cannot simply be amassed and FRed-ed. JDG draws its name from its 

treatment of these cases: the algorithm produces a separate ERC set, a γ, for each 
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disjunct, then runs FRed on that disjunct in combination with the other P values of pΓ. 

When there are multiple disjunctive values, a γ is produced for every possible 

combination of disjuncts from each such value. The algorithm then uses Merchant's 

(2008, 2011) join operator, ⊕, to join the set of all γs, producing an ERC set.   

The join of a set of ERC sets is the smallest ERC set that is separately entailed by 

each of the joined sets, extracting their shared ranking information (Merchant 2008, 

2011). All linear orders, λs, that satisfy any of the sets joined, the joinards, also satisfy 

the join. A join is conservative when it is equal to the union of these λs. If, however, there 

are other λs in T that are consistent with the join but not with any of the joinards, the join 

is non-conservative, being larger than their union. JDG output is not guaranteed to be 

conservative but conservativity is necessary for PA-hood (§2.5). The algorithm is given 

in pseudo-code in (26).  

26) Pseudo-code of Join-disjunct-grammars (JDG) 

Input: a set of Ps, {P1,…,Pn}, and a pΓ, a possible combination of P values, 

{P1.v1,…,Pn.vn}. 

a. For each P value, P.v, of pΓ, generate the P.v ERCs, by PvE. 

b. For each of the m distinct combinations of disjuncts of each of the P values of pΓ, 

create an ERC set, γi, consisting of the ERCs of those disjuncts and all value 

ERCs from non-disjunctive P values in pΓ.  

c. Run FRed on each γi ERC set.  

d. Join the set of all FRed(γi)s, producing ERC set jΓ.  

e. Return jΓ.  
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When pΓ has no disjunctive values, there is a single γ generated by step (b), the sole 

possible combination. The joining step (d) is trivial in this case, as the join of any Γ with 

itself is Γ. The example in (27) shows a case with a single disjunctive P, requiring non-

trivial use of the join step.9  

27) Example: JDG applied 

Input: a set of Ps, {P1, P2}, P1: x <> yz.sub, P2: y <> z, and pΓ = {P1.α, P2.α}. 

a. For each P value of pΓ, generate the P.v ERCs (by PvE). 

• P1.α is a disjunctive value, with two ERC sets: PvE(P1.α): α1: WLe | α2: WeL. 

• P2.α is non-disjunctive, a single ERC: PvE(P2.α): eWL 

b. For each of the 2 distinct combinations of disjuncts of P1.α, create an ERC set 

consisting of that disjunct and the P2.α ERC: γ1 = {WLe,eWL} 

γ2 = {WeL,eWL} 

c. Run FRed on each of γ1 and γ2.  FRed(γ1) = {WLL,eWL} 

FRed(γ2) = {WeL,eWL} 

• γ2 is a subset of γ1. The first ERC in γ1 entails the first in γ2 by L-retraction.  

d. Join FRed(γ1) and FRed(γ2), producing ERC set jΓ.  

jΓ = {WLL,eWL} ⊕ {WeL,eWL} = {WeL,eWL}. 

• Since γ2 is a superset, entailed by γ1, it is the smallest ERC set jointly 

entailed by both; jΓ is equal to γ2. 

e. Return jΓ = {WeL,eWL}.  

                                                
9 Details of the FRed and join algorithms are not shown here; see Brasovenau & Prince (2011) 
and Merchant (2008). 
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While the output of JDG, jΓ, is guaranteed to be an ERC Γ by the join logic, it is not 

guaranteed to be conservative and non-trivial. It fails to be so in the case in (28) (the 

invalid cup, §2.6). This example includes the same P1 as in (27), but lacks P2, whose 

value ERCs resulted in there being a superset γ. Without P2, each γi consists solely of a 

disjunct ERC set; their join is a trivial ERC, as the L-sets are non-overlapping, and is 

non-conservative because it includes all Γs in T, larger than the union of the joinards.  

28) Example: non-conservative jΓ  

Input: P1: x <> yz.sub, and pΓ: {P1.α}. 

a. Convert values to ERCs.  PvE(P1.α): α1: WLe | α2: WeL. 

b. Generate γs:  γ1: {WLe} 

γ2: {WeL} 

c. FRed γs.  FRed(γ1): {WLe} 

FRed(γ2): {WeL} 

• Since γs are single ERCs, FRed trivially returns that ERC. Neither is a superset 

of the other: in γ1, x > y; in γ2, x > z.  

d. Join: jΓ =  γ1⊕γ2  = {Wee}. 

• The join, jΓ, is trivial.  

e. Return jΓ = {Wee}.  

Conservativity tracks PA validity: if jΓ is non-conservative, the PA is invalid. The ERC 

set described by that pΓ includes additional λs. This occurs when no disjunct is entailed 

by, and a superset of, the others. As a result, ranking information from the disjunctive P 

value is lost in the join; in the case above, the join included no rankings from P1, and so 
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the Γ generated is consistent with either value. The following section establishes that a 

superset γ ensures conservativity and conservativity means a grammatical partition.  

2.5 Conservativity conditions  

This section presents a set of lemmas establishing the conditions for a jΓ to be 

conservative. It then proposes a proposition of necessary conditions for a set of Ps to 

describe a grammatical partition, necessary to be a valid PA that generates an OT T. 

 A jΓ for a pΓ that includes a disjunctive P value, P1.α, is conservative when it is 

inconsistent with the opposing value, P1.β (Lemma (31)). Inconsistency is ensured when 

one of the γs of pΓ, γi, the ERC set using the ith disjunct of the set characterizing P1.α 

(or, with multiple such Ps, the ith combination of their disjuncts), is a superset of all 

other γ (Lemma (32)). Putting these together, a superset γ entails jΓ conservativity 

(Lemma (33)).  

Definitional preliminaries: superset-hood is based λs.  

29) Def. Superset γ: γ1 is a superset of γ2 iff the set of λs delineated by the γ1 ERC set 

is a superset of the set delineated by the γ2 ERC set, {λ| λ ∈ γ1} ⊇ {λ| λ ∈ γ2}.  

Recall that a Γ is an ERC set that defines a set of λs. TOT(ERC set) is a function that 

returns this λ set for the ERC set argument. For a disjunctive P value, P.v, 

TOT(PvE(P.v)) denotes the union of the λs sets consistent with any disjunctive set. 

30) Def: TOT(ERC set) = the set of total orders consistent with the ERC set. 

31) Lemma. jΓ conservativity and inconsistency with P1.β. Let PA = {P1,… Pn}, s.t. 

there is at least one P, P1, where PvE(P1.α) is a disjunctive set of ERC sets, 
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α1|α2|…|αn, and let pΓ be a possible value combination, s.t. P1.α ∈ pΓ. Recall that 

JDG(pΓ) = jΓ. If TOT(jΓ) ⋂ TOT(PvE(P1.β)) is empty, then jΓ is conservative. 

Proof. The lemma TOT(jΓ1) ⋂ TOT(PvE(P1.β)) = {} ⇒ conservative is proven by 

establishing the contrapositive: if non-conservative, then jΓ is consistent with P1.β 

(¬conservative ⇒ TOT(jΓ) ⋂ TOT(PvE(P1.β)) ≠ {}).  

• The values of P1, α & β, partition the set of total orders on CON10. P1.α generates 

the disjunctive set of ERC sets α1|…|αn, so TOT(PvE(P1.α)) is the union of all 

total orders satisfying any of the ERC sets, α1 to αn.  

• Suppose P1.α is the only disjunctive value in pΓ. Then the sole locus of variability 

between the γs joined in jΓ is in the disjunctive ERC sets, α1 to αn. All other P 

value ERCs are shared in all γs and satisfied in TOT(jΓ). If jΓ is non-

conservative, then TOT(jΓ) is strictly larger than P1.α and includes a total order, 

λ, that does not satisfy any of the disjunctive P1.α ERC sets. Because P1 values 

partition the set of total orders, then λ must be in P1.β. Therefore, TOT(jΓ) ⋂ 

TOT(PvE(P1.β)) ≠ {}, because TOT(jΓ) ⋂ TOT(PvE(P1.β)) = λ. 

• Suppose there are m disjunctive values, {P1.α,…Pm.α}. The combination of these 

values is the intersection of the unions of all total orders satisfying any of the 

disjunctive ERC sets for each P. If jΓ is non-conservative, then TOT(jΓ) is larger 

than this intersection. Since all other P value ERCs do not differ across γs, jΓ 

must include a total order, λ, that does not satisfy any of the disjunctive ERC sets 

of at least one of the m disjunctive values, Pi.α. So λ must satisfy Pi.β and 

TOT(jΓ) ⋂ TOT(PvE(Pi.β)) ≠ {}.  

                                                
10 Recall that values always partition the entire set of total orders, regardless of scope. Whether Γ 
has a P value depends on if TOT(Γ) includes total orders consistent with one or both (moot).  
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Lemma (32) establishes that if there is a superset γ, then γ = jΓ. This follows from the 

logic of the join, which finds the smallest ERC set that includes all the joinards. A proper 

superset is not required, so the condition is met if there are multiple equivalent γs that are 

supersets of the others.  

32) Lemma. Superset γ = jΓ. Let PA = {P1,… Pn}, s.t. a subset of m P.α values 

generate disjunctive ERC sets, and let pΓ be a value combination of Ps ∈ PA that 

includes these disjunctive values. If ∃γi, the γ of pΓ produced by JDG (b) with the ith 

combination of disjunct ERC sets, s.t. γi is a superset of all other pΓ γs, then γi = jΓ. 

Proof. From Merchant (2008:101, 2011:12), the join of a set of ERC sets is the 

smallest set entailed by all. If γi is a superset of all other γs, then it is also entailed by 

all, and is the smallest such set, as any smaller set would exclude some λ of γi. 

The proof that existence of such a γ entails jΓ conservativity follows (Lemma (33)). 

33) Lemma. Superset γ ⇒ jΓ conservativity. If there is a superset γi in the set of pΓ γs, 

then jΓ is conservative.  

Proof. From Lemma (32), if γi is a superset of all other γs of pΓ, then γi = jΓ. Since γi 

is calculated with a disjunct ERC set from each disjunctive P value in pΓ, the λs 

satisfying γi, and jΓ, satisfy a disjunct for each disjunctive P value, P.α, and so is 

inconsistent with P.β: TOT(jΓ) ⋂ TOT(PvE(P.β)) = {} and jΓ is conservative by 

Lemma (31).  

If there is no superset γi, then, since γs differ in the disjunct of some Pi.α, ranking 

information from Pi.α is not retained in the join, jΓ, so inconsistency with Pi.β—and 

therefore conservativity—is not guaranteed. An example was given in (28). Building on 
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the above Lemmas, the following Proposition states that if jΓ is conservative for all pΓs, 

then the set of Ps is a partition of the set of λs into Γs. 

34) Proposition. Let PA = {P1,…Pn}, with m possible distinct value combinations, 

{pΓ1,…,pΓm} and CON = the set of Cs that are leaves in the κ tree of any antagonist 

in a P ∈ PA. If ∀pΓi, the output of JDG(pΓi), jΓi, is conservative, then PA partitions 

the set of total orders over CON into Γs. 

Proof. As joins, all jΓs are ERC sets, so all pΓs generate OT Γs. 

To to show that they partition the λ-set, every λ must be in one and only one Γ:  

a. The intersection of any two Γs, Γ1 and Γ2 is empty, TOT(Γ1) ⋂ TOT(Γ2) = {}.  

Γ1 and Γ2 are produced by JDG(pΓ1) and JDG(pΓ2). As distinct value 

combinations, pΓ1 and pΓ2 differ in at least one P value, Px. By Lemma (31), jΓ 

for a pΓ with value Px.v is conservative if it is inconsistent with Px.v̅; by 

assumption all jΓs are conservative. If pΓ1 includes Px.v and pΓ2 includes Px.v̅, 

then every λ in jΓ1 is inconsistent with Px.v̅ and every λ in jΓ2 is inconsistent 

with Px.v, so the intersection of their λ sets is empty. 

b. All λs are in some Γ, ∀λ, ∃Γ: λ ∈ TOT(Γ).  

Since Ps partition the set of λs, a given total order, λ, is consistent with one and 

only one value of each P. So there is a set of values, {P1v,…,Pnv}, s.t. λ is in the 

ERC set delineated by this set of values. If this value set is instantiated by one of 

the pΓs, pΓ1, then λ is in jΓ1. Suppose there is no pΓ1 that instantiates the set. 

Since λ exists, the value set is consistent and cannot be ruled out by contradiction, 

so it must be eliminated by scope. Then for a pΓ2 that is described by a subset of 

the values describing λ, λ is in jΓ2, since λ satisfies all these values.  
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Finally, Lemma (35) establishes that other P values besides the disjunctive value(s) are 

necessary and must result in a ranking in which κα.op > di.op, for some κβ.op daughter 

di.op, being entailed in all γs. If there are no other values, then each γ is simply one of the 

disjunct ERC sets, which are not sub/supersets of each other. 

35) Lemma. Other Ps needed. Let PA = {P1, P2, …, Pn}, with at least one disjunctive 

P, P1: κα.op <> κβ.op, so that PvE(P1.α) is a disjunctive set of ERC sets, α1|α2|…|αn. 

If ∃γi, the pΓ γ calculated with disjunct αi of P1.α, s.t. γi is a superset of all other pΓ 

γs, then pΓ must include some value(s) from a subset of {P2,…,Pn}; they cannot all 

be moot. 

Proof. In the ith disjunct ERC set of P1.α, the ith κβ.op daughter, di.op, is the L-set. 

In γi, calculated using this ERC set, κα.op > di.op in all λs satisfying γi.  

Since by assumption γi is a superset of all other γs, this ranking must be entailed by 

all. Each γ differs in P1.α disjunct, which have distinct L-sets, so di.op is not the L-set 

of the ERCs from the P1.α disjunct for any other γj, j ≠ i. The ranking thus cannot 

come from P1.α. Therefore, γs must have a value of some other P(s) ∈ PA to establish 

this ranking. 

The following section introduces resPs, which are used in establishing this ranking.  

2.6 ResPs 

This section introduces ResPs, which antagonize the daughters of a κ that occurs in 

another P. The concept is partly inspired by A&P's (2016a) public classes, as public 

status depends on there being another P in which C in the class are antagonized. A P 

value ranks some daughter in one antagonist with some daughter in the other, but it does 

not establish order among the daughters of each antagonist. A resP does so. The term 
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abbreviates 'resolver' because the values assist in 'resolving' a disjunction generated by 

the P values. For example, the values of P1: x <> {yz}.sub, rank x relative to whichever 

of y and z is subordinate in a given λ. A resP for {yz}.sub is P2: y <> z, antagonizing the 

daughters: P2.α: y>z and P2.β: z>y. This is exactly the previously cited case of EST, with 

x = m.Ons, and y and z = f.max and f.dep. 

Before delving into formal details, an example is given in (36). There are two Ps, with 

different valuations of the same κ. The value ERCs produced by PvE are shown for each, 

along with their partition of the 3C permutohedron. P.12 values generate single ERCs, 

with dominator disjunction for β. P.21 values generate multi-ERC sets, conjunctive for β 

but disjunctive for α, which is satisfied when x dominates either of y or z.  

36) P: x <> yz.op 
P Values Partition 
a. P.12: x <> {yz}.dom  α. WLL  

β. LWW 

 
b. P.21: x <> {yz}.sub α. WLe|WeL  

β. LWe,LeW 

 
 
P.12 is a grammatical partition and a valid PA of the valid cup (Merchant & Prince, p.c.). 

P.12.α is a top consisting of two λs, {xyz, xzy}, where x > {yz}, in either order. P.12.β is 

the complement λ set, {yxz, yzx, zxy, zyx}, all λ in which y or z > x. In neither Γ are y 

and z consistently ordered in all λs.  

In contrast, P.21 does not make a grammatical partition and thus cannot constitute a 

valid PA. This is the invalid cup (Merchant & Prince, p.c.). P.21.β characterizes two λs in 

which both y and z, in either order, dominate x, {yzx, zyx}, a possible Γ. The 

xyz xzy P.12.α

yxz zxy

yzx zyx P.12.β
xyz xzy P.21.α

yxz zxy

yzx zyx P.21.β
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complement, {xyz, xzy, yxz, zyx}, cannot be defined by a non-disjunctive ERC set: there 

is no C that is dominated in all λs. As with the valid cup, no order is established between 

y and z. This is the case shown in (25) to have a non-conservative JDG output. 

A resP for {yz}.op is P.11 (37). This P antagonizes the two daughters of κ, y and z. 

Combined (narrow scope) with each of P.12 and P.21 yields the values tables in (38), 

valid PAs of T.1|2 and T.2|1, respectively. The Γs of each are shown on the 3C 

permutohedron.  

37) P.11: y <> z 
α. eWL  β. eLW 

 
38) PA(T.1|2) and PA(T.2|1) 

a. Value tables 
PA(T.1|2) P.12 P.11 Γ   PA(T.2|1) P.21 P.11 Γ 
x-top α   WLL  x-bot β   LWe, LeW 
y-top β  α  LWL  y-bot α  β  WLe, eLW 
z-top β  β  LLW  z-bot α  α  WeL, eWL 

 
b. Γs on 3C permutohedron 
T.12 T.21 

  
 

The Γs of T.1|2 are 'tops', in which a single C dominates the other two, splitting P.12.β of 

the valid cup; κ daughters, y and z, are ordered in y-top and z-top, as nominally indicated. 

The T.21 Γs are 'bots', in which a single C is dominated by both the other Cs, splitting 

P.21.α of the invalid cup; y and z are ordered in y-bot and z-bot, but not in x-bot, where 

P.21.β generated a non-disjunctive ERC set.  

Adding the resP P.11 to P.12 refines a valid PA(TOT), since P.12 alone describes an 

OT partition. In contrast, P.21 alone does not describe a grammatical partition and 

xyz xzy

yxz zxy

yzx zyx

xyz xzy

yxz zxy

yzx zyx
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requires the resP to be a valid PA(TOT). A κ.dom does not impose the same requirements 

for validity as a κ.sub. However, the concept of a resP generalizes to both operators, and 

may be required for a κ.dom to be a valid PA(TS).    

2.6.1 ResPs 

ResP-hood is a relation between Ps, as a resP antagonizes daughters of a κ.op antagonist 

in another P. The definition of a resP is given below. P̂ is the set of all daughters of both 

antagonists: {dα1,…,dαn} ⋃ {dβ1,…dβm}.   

39) Def: resP: Given a P1: κ1α.op <> κ1β.op, P2 is a resP for a κ1v if:  

a. the daughters of the P2 antagonists, κ2α.op and κ2β.op, are all daughters of some 

P1 antagonist, P̂2 ⊆ P̂1;  

b. ∃(d1vi, d1vj) ∈	κ1v: d1vi ∈ κ2v & d1vj ∈ κ2v̅.  

The definition requires that all resP antagonists are daughters of those of P1 ((39)a). For 

example, for P.21: x <> {yz}.sub, the antagonists of resP, P.11: y <> z are the set of κβ 

daughters. A P2: y <> {zw}.dom is not a resP for P1 because it includes w, not in a P1 

antagonist (nor is {zw} as a sub-κ).11 It further requires that the daughters of the κ1v for 

which it is a resP be split among the antagonists of P2, and thus antagonized, entailing 

that P1 ≠ P2 ((39)b). 

There are multiple distinct P forms that meet the definition. P2 antagonists may be 

drawn from one or both κ1s, and the subset included in P2 can differ in size, being either 

complete, involving all daughters of a κ1, or partial, involving a subset. 

                                                
11See Appendix A for some discussion of this kind of P, a quasi-resP. 
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40) Def. Complete resP: Given a P1 and a resP, P2, for κ1v ∈ P1, P2 is a complete 

resP if ∀d1v ∈ κ1v, d1v ∈ P̂2; else P2 is a partial resP.  

For example, consider the PA of the 4C bots, T.3|1 (M&P, D&P), which expands T.2|1 

by adding a C and a Γ. The structure of the PA is the same as PA(T.21); the relationship 

that exists between P.21 and P.11 also exists between P.31 and P.21. P.21 is a complete 

resP for P.31 and similarly for P.11 and P.21. P.21's antagonists are the two daughters of 

κβ.sub, {y, {zw}.sub}.sub, in P.31. Both P.21 and P.11 antagonize lower nodes in the 

P.31 κβ tree. 

41) Example: nsPA(T.3|1) 
x  <> {y, {z, w}.sub}.sub          ty 

     y {z, w}.sub              ty 
                      z  w                  

P.31: x <> {y, {zw}.sub}.sub 
  α. WLee|WeLe|WeeL   β. LWee,LeWe,LeeW 
P.21: y <> {zw}.sub  
  α. eWLe|eWeL               β. eLWe,eLeW 
P.11: z <> w  
  α. eeWL                           β. eeLW  

 
As the value ERCs show, P.31.α generates a disjunctive set, where x dominates one of 

{yzw}, whichever is subordinate in a λ. P.21 values establish rankings among the 

daughters of this κ, ordering y relative to the subordinate of {zw}. Finally, P.11 ranks z 

and w. The value table and ERC Γs are shown in (42). 

42) nsPA(T.3|1) value table 
 P.31 P.21 P.11 ERC Γ  
w-bot α  α α WeeL,eWeL,eeWL 
z-bot α α β WeLe,eWLe,eeLW 
y-bot α β  WLee,eLWe,eLeW 
x-bot β    LWee,LeWe,LeeW 

 
The Γ w-bot involves two disjunctive values, with six possible combinations of disjuncts, 

γs, produced by JDG. Because of the P.11 value, w is in a L-set in all γs, and in jΓ (43). 

In all γs, x, y, z > w; all except γ6 include additional orderings among {x, y, z}. The first, 
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γ1, defines a total order; γ2 has a 211 structure; γ3, γ4, and γ5 have one additional 

ranking between two daughters of {x, y, z}. As a result, γ6 delineates a superset of the λs 

delineated by the other γs, entailed by all and identical to jΓ. The join is conservative. 

43) JDG(ααα) = wbot 
P γ1 γ2 γ3 γ4 γ5 γ6 
31 WLee WeLe WeeL WLee WeLe WeeL 
21 eWLe eWLe eWLe eWeL eWeL eWeL 
11 eeWL eeWL eeWL eeWL eeWL eeWL 
MIB WLLL 

eWLL 
eeWL 

WeLL 
eWLL 
eeWL 

WeeL 
eWLL 
eeWL 

WLeL 
eWeL 
eeWL 

WeLL 
eWeL 
eeWL 

WeeL 
eWeL 
eeWL 

jΓ  WeeL 
eWeL 
eeWL 

 
The bots are also analyzed with a fully wsPA, using a different form of resP, in which the 

resP relation is symmetric: two Ps are each a resP for a κv.op in the other. In 

wsPA(T.2|1), both Ps share the same set of daughters jointly across their antagonists, but 

distribute them into different antagonists, mapping to distinct κ tree structures. In P1, x is 

a singleton κ and {yz} a κ1; in P2, y is a singleton and {xz} a κ1. While both Ps have a 

disjunctive value, all consistent combinations produce Γs, using JDG, as shown for αα, 

the pΓ with two disjunctive values. Of the four γs, one is inconsistent (γ1), while the last, 

γ4, is the superset, equal to jΓ. A third possible grouping of the three Cs, P3: z <> 

{xy}.sub, is possible but not necessary to derive the Γs.  

44) Example: wsPA(T.2|1) 
P1: x <> {yz}.sub 
x <> {y,z}.sub ty 
           y         z 

P2: y <> {xz}.sub 
y <> {x,z}.sub ty 
           x         z 

α. WLe|WeL 
β. LWe,LeW 

α. LWe|eWL 
β. WLe,eLW 
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45) JDG(αα) = zbot  
P γ1 γ2 γ3 γ4 
21x WLe WeL WLe WeL 
21y LWe LWe eWL eWL 
MIB LLe LWL 

WeL 
WLL 
eWL 

WeL 
eWL 

jΓ  WeL 
eWL 

 
As the example of resPs in (41) shows, more than one resP may be needed when a resP 

itself generates disjunctive values. A full resP set, resΦ, for a κ1v in P1 is a set of resPs 

whose values jointly order all the daughters of κ1v. This is defined in (46) as a set of 

resPs such that under each of their possible value combinations, a unique daughter of the 

normalized form, Dκ1v.sub, is returned as sub.  

46) Def. Let P1: κ1α.op <> κ1β.op be a P such that PvE(P1.α) generates a disjunctive 

ERC set. Let {P2,…,Pn} be a set of resPs for P1. Then {P2,…,Pn} is a full resP set, 

resΦ, for κ1β if for every allowable, consistent value combination of its values, 

generating ERC set Ei, ∃dβi.op ∈ Dκ1β.sub, s.t. ∀λ(Ei), Dκ1β.sub(λ) = dβi.op.   

The definition entails that every pair of daughters must occur in distinct antagonists in 

some P in the set, as they are ordered under some combination. The same daughter must 

be returned for every λ consistent with the resΦ value ERC set. For each daughter, there 

is a value combination defining it as the subordinate. Since all are antagonized in some P 

in the resΦ, there is a value combination in which each daughter is dominated by all 

others.  

The examples above showed full sets; for nsPA(T.3|1) (42), P.21 and P.11 jointly 

constitute a resΦ for P.31. Lacking either results in non-conservativity for some pΓ. 

Example (47)a shows the ERC sets that result from each value combination when P.21 is 
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omitted. The first pΓ, β-, is a Γ (xbot), but jΓs for the others are non-conservative. Under 

P.11 values, z and w are ranked, but not ordered relative to y. In λs consistent with 

P.11.α, y and w can occur in any order, including both xzwy and xzyw. But 

Dκ1β.sub(xzwy) = y and Dκ1β.sub(xzyw) = w, so P.11 is not a resΦ for P.31 because the 

λs return different Cs. Both pΓs with P.31.α value result in non-conservative jΓs, shown 

for αα in (47). While γ3 is a superset of γ2, it stands in no such relationship relative to γ1.  

47) No resΦ: invalid PA(T.3|1)  
a. Value combinations 
P.31: x<>yzw.sub 
α. WLee|WeLe|WeeL 
β. LWee,LeWe,LeeW 

P11: z<>w 
α. eeWL 
β. eeLW 

jΓ  conservative? 

β   LWee,LeWe,LeeW yes 
α β eeLW no  
α α eeWL no 

 
b. JDG(αα) 
P γ1 γ2 γ3 
31 WLee WeLe WeeL 
11 eeWL eeWL eeWL 
MIB WLee 

eeWL 
WeLL 
eeWL 

WeeL 
eeWL 

jΓ  eeWL 
 

2.6.2 ePs 

ResPs 'resolve' a disjunction by ordering daughters of a κ; an alternative way of picking 

out a unique daughter is through entailment. This section examines ePs, which stand in 

entailment/contradiction relationships with a P1. Entailments occur when P2 antagonists' 

daughters are drawn from P1 antagonists but P2 does not divide a κ1v across antagonists. 
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48) Def: eP: Given a P1: κ1α.op <> κ1β.op, P2 is a eP for a κ1v if:  

a. the daughters of the antagonists of P2, κ2α.op <> κ2β.op, consist only of 

daughters of the P1 antagonists, P̂2 ⊆ P̂1; 

b. ∄	(d1vi, d1vj) ∈ κ1v: d1vi ∈ κ2v & d1vj ∈ κ2v̅. 

The definition parallels that of resPs, sharing the first clause, and negating the second; 

additionally, both types of Ps are shown below to establish sufficient conditions for 

conservative JDG outputs, but they do so in distinct ways. To see this, consider the 

example of ePs in (49). Both Ps share the same antagonist trees, but differ in the 

valuations of the non-singleton {yz}. This results in entailments between values: P.12.α 

entails both disjuncts of P.21.α (by L-retraction), and P.21.β entails P.12.β (by W-

extension). For a pΓ with P.12.α, either choice of disjunct results in the equivalent output 

of JDG, and jΓ is conservative, even though the daughters of κ {yz} are not crucially 

ordered. Note, however, that these two Ps alone are insufficient for a valid PA; the value 

combination {P.21.α, P.12.β} results in a non-conservative jΓ, as the γs share no Ls.  

49) Example: P.12 and P.21 
P.12: x <> {yz}.dom 
x <> {y,z}.dom 

ty 
           y         z 

P.21: x <> {yz}.sub 
x <> {y,z}.sub 

ty 
           y         z 

α. WLL 
β. LWW 

α. WLe|WeL 
β. LWe,LeW 

 

A second example of this type is shown in (50). The Ps share κα (x), but P.11 κ11β = y is 

a subset of P.21 κ21β = {yz}. P.11.α entails the first P.21.α disjunct, and is inconsistent 

with P.21.β. P.11.β is inconsistent with the first P.21.α disjunct, entailed by P.21.β.    
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50) Example: ePs 
P.21: x <> yz.sub P.11: x <> y  
α. WLe|WeL 
β. LWe,LeW 

α. WLe 
β. LWe 

 
As with resPs, there is a concept of a full eP set, based on entailment in this case (51). 

51) Def. Let P1: κ1α.op <> κ1β.op be a P1 such that PvE(P1.α) generates a 

disjunctive ERC set. Let {P2,…,Pn} be a set of ePs for P1. Then {P2,…,Pn} is a full 

eP set, eΦ for a κ1v if every allowable, consistent value combination of the set entails 

or is inconsistent with a disjunct in the PvE(P1.α) ERC set. 

2.7 Sufficient PA conditions for conservativity 

Proposition (34) claimed that complete jΓ conservativity results in a grammatical 

partition. This section presents a set of new results showing that resPs and ePs establish 

sufficient conditions for such conservativity. Lemma (35) established that no PA can 

include only a disjunctive P; other Ps are necessary to rank κα.op > di.op for some di.op 

for there to be a superset γ. The ranking cannot come from the disjunctive P since each γ 

is calculated with a different the disjunct. 

The needed rankings can be established in two ways: by values that directly rank 

κα.op > di.op or by values that rank all other daughters of κβ relative to di, so that if 

κα.op dominates any of them, it transitively dominates di.op. These conditions are met 

when the PA includes an eΦ or a resΦ, respectively. 

Lemma (52) establishes the sufficiency of an eΦ. This case is clear: if the non-

disjunctive P values shared by the γs entail one of the disjuncts, then it is also entailed by 

jΓ, following from the logic of the join. The γ calculated using this disjunct is then 
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entailed by other γs, and is a superset. Conservativity follows from Lemma (33) above. 

Note that eΦ values may entail multiple disjuncts, so that there are multiple superset γs.   

52) Lemma. eΦ ⇒ superset γ. Let PA = {P1,…, Pn}, where P1 is a disjunctive P, so 

PvE(P1.α) generates a disjunctive set of ERC sets, α1|α2|…|αm; and let pΓ be a 

possible value combination s.t. P1.α ∈ pΓ. If ∃eΦ ∈ PA & pΓ includes eΦ values, 

then ∃γi of pΓ s.t. γi is a superset of all other γs.   

Proof. Recall that an eΦ is the set of m Ps, {eP1,…, ePm}, such that every allowable, 

consistent value combination of its values entails or is inconsistent with a disjunct in 

the PvE(P1.α) ERC set.  

Suppose that the pΓ eΦ values generate ERC set Ek that entails or is solely consistent 

with P1.α disjunct ERC set αi, where di.op ∈	κβ = L-set, so κα.op > di.op. If so, then 

γi, the γ calculated with αi, is a superset.   

• Entailed: all γs share eΦ values, Ek. If these entail disjunct αi, then all γs entail αi. 

In γi, P1.α ERCs do not contribute any additional rankings not entailed by Ek. All 

other γs, calculated with distinct disjuncts, also entail P1.α ERCs in which κα.op 

dominates some other κβ daughter dj.op, so the λs satisfying these γs are subsets 

of those satisfying γi. 

• Sole consistent: if αi is the only disjunct consistent with Ek, then γi is a superset of 

all other γs, because no λs satisfy them, and γi = jΓ.  

Lemma (53) establishes sufficiency of a resΦ, through the second means, of ordering the 

daughters of the κ. The result is that there is some daughter that is dominated by κα.op in 

all γs, and the γ in which it is the only daughter so dominated is a superset of the others.  
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53) Lemma. resΦ ⇒ superset γ. Let PA = {P1,…, Pn}, where P1 is a disjunctive P, so 

PvE(P1.α) generates a disjunctive set of ERC sets, α1|α2|…|αm; and let pΓ be a 

possible value combination s.t. P1α ∈ pΓ. If ∃resΦ ∈ PA & pΓ includes resΦ values 

then ∃γi that is a superset of all other pΓ γs.  

Proof. Recall that an resΦ is the set of m Ps, {rP1,…, rPm} s.t. every allowable, 

consistent value combination of its values, generating ERC set Ei, ∃d1βi.op ∈ 

Dκ1β.sub, s.t. ∀λ(Ei), Dκ1β.sub(λ) = d1βi.op. Suppose that in pΓ, the resΦ values 

generate ERC set Ek, where in all λ satisfying Ek, κβ.op(λ) = dβi.op. All γs share 

these values. In γi, the P1.α ERC gives that κα.op > dβi.op. 

∀dβj.op, j ≠ i, dβj.op > dβi.op, since dβi.op is the lowest ranked among the daughters. 

In each γj, the P1.α ERC generates a ranking κα.op > dβj.op. From Ek, in all γs, 

dβj.op > dβi.op, so κα.op also dominates dβi.op by transitivity. Therefore, the λs 

satisfying each γj are subsets of those satisfying γi, since they also satisfy κα.op > 

dβj.op.   

The Lemmas above are amassed to give the following Theorem on sufficient PA 

conditions.  

54) Theorem. Let PA = {P1,…Pn}, with m possible distinct value combinations, 

{pΓ1,…,pΓm}, and CON = set of all Cs that are leaves of the antagonists of Ps ∈ PA. 

If, for every P ∈ PA, s.t. PvE(P.v) is a disjunction of ERCs, there is a resΦ or eΦ for 

P, then PA describes a partition of the set of permutations of CON into OT Γs.  

Proof. By Lemmas (52) and (53), the existence of eΦs and resΦs for a disjunctive P 

in a PA results in superset γs. By Lemma (33), a superset γ results in a conservative 
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jΓ. By Proposition (34), if jΓ is conservative for every pΓ, then the PA describes a 

partition of the set of permutations of CON into OT Γs. 

The Theorem states sufficient conditions for a grammatical partition, but not for an OT 

partition, which M&P show to be a subset of grammatical partitions. To further guarantee 

such a partition, the generalized MOAT (GMOAT12) of the set of Γs generated must be 

acyclic, in which case it is an OT partition by M&P, Thesis (177) (p. 110).  

2.8 Summary 

This chapter defined a valid Property Analysis, both for a given system, a valid PA(TS), 

and as a set of Ps that generates an OT typology, a valid PA(TOT). It then examined the 

conditions under which a set succeeds or fails to be so.  

 Assessing PA validity of a set of Ps requires formal methods of translating between 

the objects of Property Theory—properties and value sets—and those of OT—ERC set 

grammars and typologies. These conversions have been assumed in previous work, and 

this chapter sharpens them by developing algorithms to convert values into ERC sets 

(PvE), and combinations of values into grammars (JDG). The JDG algorithm is of further 

import because of its role in determining PA validity. When the output is a conservative 

join for all value combinations, then all of these describe non-overlapping grammars. The 

set of Ps creates a grammatical partition. 

 The chapter then developed the concepts of resPs and ePs, formalizing types of 

relationships between properties in a PA. The proposed Theorem claims that the presence 

of sets of these Ps in a PA supplies sufficient rankings for the set of Ps to result in 

conservative JDG outputs and so be a grammatical partition.  

                                                
12A generalized MOAT, GMOAT, consists of generalized EPOs (GEPOs) (M&P). 
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A. Appendix: quasi-resPs 

While a resΦ is sufficient for JDG conservativity, it is not argued to be strictly necessary 

because it is sometimes possible to establish the necessary rankings through some 

combination of rankings from other P values. This appendix examines such a case where 

the Ps involved are not resPs as defined here; however, they do antagonize daughters of a 

κ in another P. They fail to be resPs because their antagonists also include additional Cs. 

These are thus called quasi-resPs.  

The example in (55) illustrates, using the AOT system QR, which derives from an 

early iteration of Alber's (2015b) truncation system and Prince's (p.c.) PA thereof, 

simplifying by removing some Ps to isolate the relations of interest. Here, P.12 is not a 

resP for P.21 because while its antagonists include those from P.21 κβ, {z, w}, y intrudes, 

grouped in a κ.dom with z. P.12.β ranks w>z, but P.12.α does not guarantee the reverse, 

since y is also a possible dominator of w (W-disjunction). However, JDG(ααα) is 

conservative. The reason is the P.11 value, which establishes x>y. The γ2, using the 2nd 

disjunct where w is κ.sub, is the superset. Without P.11, the PA is invalid because JDG is 

non-conservative for αα. Note that in L4, z and w are not consistently ordered in all λs: in 

5, z>w, but in the last w>z (xywz). A resP of the form z<>w cannot be used, as it is moot 

in L4.  

55) PA(TGR) 
a. Ps and value table  
Γ  P.11: x<>y 

α. WLee 
β. LWee 

P.21: x<>zw.sub 
α. WeLe|WeeL 
β. LeWe,LeeW 

P.12: yz.dom<>w 
α. eWWL 
β. eLLW 

L1 β    
L2 α β  
L3 α α β 
L4 α α α 



  58 
   

 

 
b. JDG(ααα) = L4 
P γ1 γ2 
11 WLee WLee 
21 WeLe WeeL 
12 eWWL eWWL 
MIB WLLL 

eWWL 
WLeL 
eWWL 

jΓ  WLeL 
eWWL 
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3 The Structure of Stringency Systems 

3.1 Introduction 

Stringency constraints formalize the notion of markedness scales in linguistic typologies. 

A scale is a linear ordering; markedness scales arise from implicational relations in cross-

linguistic comparison. A particular trait x is 'more marked' than trait y if any language 

that has x also has y, but not vice versa.  

Much OT work aims to derive the typologies predicted by empirical markedness 

scales, beginning with Prince & Smolensky's (1993/2004, esp. ch. 8; P&S) analysis of 

harmonic margin and peak segments in syllables. The markedness of a segment in a 

position depends on its sonority: more sonorous segments are more 'harmonic' (cross-

linguistically preferred) peaks, and less sonorous are less harmonic peaks, v.v. for 

margins. Generally, if x is a possible peak in some language, then so are all more 

sonorous segments, and reverse for margins. P&S derive this scale through two constraint 

sets, *P/x and *M/x, violated by segments of different sonority in peak and margin 

positions, and fix rankings within these sets. *P/t (no stop peaks) universally dominates 

*P/n (no nasal peaks); the ranking runs in the opposite direction for *M/x constraints. 

Subsequent work used the scales to directly generate constraint sets, allowing for full 

free interaction of constraints in accord with OT logic (see Prince 2002:3-4 on building 

such Cs by moving from an element to inclusion hierarchy). A reworking of P&S's 

analysis would have a constraint *P/tn (violated by both stop and nasal peaks) in place of 

*P/n; violation of *P/t entails violation of *P/tn, but not vice versa. *P/tn is said to be 

more stringent than *P/t, because the range of structures violating the former are a 

superset of those violating the latter.  
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This chapter develops a formal definition of stringency intrinsic to the structure of 

OT, defining it as a relation between constraints' filtration patterns within a typology, 

rather than their violation counts or definitions. Constraint (C) definitions are insufficient 

to determine the existence of stringency, even when intuitively suggesting it, without also 

knowing the forms they evaluate and the other Cs they interact with. The relation is 

defined in the context of a full typology. Misalignments can arise between intuitive and 

formal notions of stringency.   

Stringency filtrationally-defined is recognizable by a characteristic MOAT structure, 

as EPOs in the MOAT represent Cs' filtrations over the grammars (Γs) of the typology. 

The identification of a MOAT realization of stringency raises the question of how other 

kinds of constraint relations—conflicting and non—manifest in this structure, the topic of 

§3.2.1. It further leads to the discovery that the same general EPO signatures can occur in 

subtler, modified forms in a MOAT. This gives rise to the definition of partial 

stringency: rather than the Cs being stringently related for all filtrations, there is some 

filtration product—and thus some Γs—in which the same subset relation between their 

filtrations is manifested. Partial stringency highlights the complexity of C interactions 

within a T: multiple kinds of relations can co-occur.   

The shared intensional structure of stringency systems—those having stringently 

related Cs in CON—is explicated through Property Analysis. Cs in this relation are non-

conflicting among themselves, and interact with other Cs in the typology in characteristic 

ways. The chapter develops the general PA structures of a range of such systems, 

showing how PAs explicate the relationship. This PA structure recurs in modified form in 

the cases of partial stringency, along with other PA motifs. 
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Beyond the inherent interest in understanding the organization of typologies 

instantiating different types of C relations, the PAs show how intensional typological 

structure is independent of the linguistic system analyzed, whether phonological, 

syntactic, or another nature. Extensionally non-equivalent typologies are intensionally 

equivalent. Intensional structure depends on the filtration patterns of Cs ∈ CON, a 

particular set of which is realized in stringency systems. Thus when stringency structures 

are identified in any typology, the same basic units of analysis occur—the properties 

developed in this chapter.   

A typology-based definition connects with the typological nature of scales, which 

arise from comparison of grammars within a typology. The PAs link a common 

intensional structure to extensional traits in the languages' optima. The general 

extensional classification of stringency systems is characterized by a set of inter-related 

choices regarding the degree to which the scale-defining trait is exhibited in a language's 

optima: all, none, or (degrees of) some. In the word-order typologies analyzed in the 

following chapter, languages differ in the degree of complement -head (head-final) order 

in syntactic phrases in optima: in all phrases (all head-final), in none (all head-initial), or 

in some phrases, at specific positions in the syntactic structure. This classification 

recognizes the same set of extensional choices that the Parameter Hierarchies theory 

argues to structure all syntactic typologies (proposed and developed under the 

Reconsidering Comparative Syntax project (ReCoS), Roberts 2010, 2012, et seq.). The 

proposal is compared to PT in the context of the word-order typology in chapter 4.  

The chapter is deeply indebted to Prince (2000, 2001), an invaluable source on 

stringency. 
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3.1.1 Stringency in OT analyses of linguistic systems 

Sets of stringently related Cs, stringency Cs, are common in OT analyses of diverse 

phenomena. The table in (1) surveys several that have been analyzed within PT. The 

analyses derive scales describing an implicational relationship of the presence of some 

trait(s) cross-linguistically. The languages of the typologies differ in the degree to which 

that trait occurs. The table schematizes the empirical markedness scale and lists the 

corresponding stringency Cs (see the cited sources for full CONs; some C names are 

modified; current presentation is based on independent examination of the works).  

1) PT Analyzed COT stringency systems 
System Empirical implicational scale 

 (>m: more marked) 
Stringency Cs  
(>s: more stringent) 

S-retraction, simple 
(Alber 2015a) 

sC1 ∈ {k,p,t} >m sC2 
∈{r,l,n,m,w} 

2C: m.C1 >s m.C1,C2 

S-retraction, full 
(Alber 2015a; 2 
interacting scales) 

sC1 ∈{k,p.t} >m sC2 ∈{r,l,n} 
>m sC3 ∈{m,w} 
_s → _ʃ >m #s → #ʃ 

3C: m.C1 >s m.C1,C2 >s 
m.C1,C2,C3 
2C: f >s f.in 

Vowel Harmony (D 
ms. from Tessier & 
Jesney 2014) 

V+low ∈ _σ >m V+low ∈ #σ  
(_ = non-initial, # = initial) 
 

2C: m.NoLow >s 
m.NoInitLow 

Complex stops (Danis 
2014; 2 overlapping 
scales) 

c >m k >m t     
kp >m p >m t   
 

3C: m.CKP >s m.CK >s m.C 
3C: m.CKP >s m.CK >s 
m.CKPT 

Consonant harmony/ 
dissimilation (Bennett 
et al. 2016) 

 [d1t1] >m [d1d1]  
(subscripts = correspondence) 

2C: cc.σEd >s cc.Id.V 

LingPulm Alt (§3.3.3 
modifying Bennett 
2017) 

_N >m #N (N = nasal click) 
 

2C: f.ons >s f.init 

Agreement with 
conjuncts (Mitchley 
2016, Mitchley & 
DelBusso in prep.) 

Subj: 4h&3h: 3>m 4 >m 2;  
(# = Noun Class) 
Subj: 8h&8h: 8>m 2 (8:-h, 2:+h) 

3C: CCA >s dp.NC1 >s 
mx.NC 
2C: mx.H >s dp.I 

                                                
1CCA and dp.NC are in a partial stringency relation (§3.2.2), resulting in grammars with anti-Paninian 
rankings (§3.4.1).  
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FOFC word order (ch. 
4) 

TC >m VT >m OV  3C: HdL.VTC >s HdL.TC >s 
HdL.C (see ch. for variations) 

 
These systems analyze diverse empirical phenomena, from segmental features to 

morpho-syntax. However, the results of this chapter show that all systems with stringency 

Cs have a common intensional structure, elucidated by PAs. The languages are precisely 

characterized by a set of property values correlating with degree of existence of the 

marked trait.  

This chapter concerns the formal structure of stringency, and much of the following 

uses AOT systems to distill the core interactions independent of quirks of GEN and CON 

and to generalize over typologies. Some COT exemplification with Alber (2015a) and 

variations thereof is used for expository purposes. The following chapter studies a set of 

specific stringency systems of cross-linguistic word orders, and examines the extensional 

force of such systems in greater detail.    

3.2 Stringency Constraints 

Stringency is an ordered relationship between constraints2. This chapter develops a 

definition of the relation in terms of filtration patterns, which differs from the more 

common violation sub/superset definition3. A filtration-definition is inherently 

typological. Each C in a typology filters the candidate set, rejecting all candidates to 

which it assigns non-minimal violations. A C2 is qualitatively more stringent than 

another C1 if C2 rejectees are a superset of C1 rejectees: C1 allows more candidates 

                                                
2The relationship can also exist between a C and a set of other Cs. See Appendix A for cases of this ilk. 
3Prince's (2000:2) definition: "|G| = |S| + |D|. A constraint G is more stringent than S if the violations 
assessed by G can be partitioned into those assessed by S and those assessed by some other descriptor D = 
G\S. NB: The violations assessed by S and D must be disjoint." 
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through its filtration. As filtration patterns are represented in the MOAT, this definition 

directly connects stringency and EPO structure.  

For stringency to exist between C2 and C1, C2 must impose a tighter filtration than 

C1 over the set of possible optima. In any given hierarchy, C2 and C1 may be preceded 

by a non-empty set of other Cs whose sequential filtration narrows the set of possible 

optima. A decisive hierarchy determines the optimum (or co-optimum); a non–decisive 

hierarchy does not (2). When evaluating over a UVT, where rows are grammars, filtration 

by a decisive h results in a single Γ. 

2) Def. Decisive hierarchy. A hierarchy, h, of Cs ∈ CON is decisive iff for K, a cset 

of violation profile-distinct possible optima, |h[K]| = 1. 

In typological or global stringency, constraints are in a stringency relationship for all 

non-decisive hierarchies. A partial stringency relation exists when they are stringently-

related for only a subset (§3.2.2). The unmodified stringent is used throughout for the 

global relationship. Stringency is first defined relative to a hierarchy (3), and global by 

universal quantification over all possible hierarchies (4); its properties are examined 

below.  

3) Def. Filtration stringency. For a system, S = GEN.S, CON.S;  

K̂ = {K1,…Kn}, the set of all csets of possible optima admitted under GEN.S;  

For a pair of Cs, C2, C1 ∈	CON.S, and an h, a (possibly empty) ordered set of Cs 

∈ CON.S\{C2, C1}:  

a. C2 is stringent with respect to C1 relative to h if	∀K ∈ K̂, h.C2[K] ⊆ h.C1[K].  

b. C2 is strictly more stringent than C1 relative to h if ∃K ∈ K̂: h[K] is non-

decisive & h.C2[K] ≠ h.C1[K].  
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4) Def. (Global) Stringency. For a system, S = (GEN.S, CON.S), and a pair of Cs, C2, 

C1 ∈	CON.S: 

a. C2 is globally stringent with respect to C1 in S if ∀h, C2 is stringent with 

respect to C1 (∀h, ∀K ∈ K̂, h.C2[K] ⊆ h.C1[K]);  

b. C2 is globally strictly more stringent than C1 in S if ∀h,	C2 is strictly more 

stringent than C1 (∀h, ∃K ∈ K̂: h[K] is non-decisive, h.C2[K] ≠ h.C1[K]).  

Note that when considering a UVT rather than multiple csets, there is single K ∈ K̂. Since 

the UVT is constructed from the collection of csets, the two objects instantiate the same 

C relations (Prince 2016a). If C2 and C1 are stringently related in all individual Ks, they 

are in the UVT; if there is some crucial cset for which they are not stringent, then this too 

is evident in the UVT.  

The first clause of the global definition, (4)a, establishes a possibly symmetric 

relation between Cs. The second, strict stringency (4)b, establishes asymmetric, proper 

stringency, where for any h, the two C filtrations are not equal in some K∈K̂. Where 

filtrations are equivalent, neither C is more or less stringent than the other—they are 

equivalent. If this holds for all h and K, then Cs are equivalent in T (see §3.2.1). This 

chapter focused mainly on the asymmetric, strict relation and uses stringency to 

characterize this. Where two Cs are fully symmetric, they are called equivalent; when 

both relations exist in T, conjunction of terms is used. Equivalence and stringency 

relations co-exist in complex ways, the full range of which is not analyzed here.  

Strict stringency defines a T-internal irreflexive ordering relation over a set of Cs, 

inheriting the properties of subset relations4. For a scale of n stringency Cs, {C1, C2,…, 

                                                
4Non-strict relations have subset-equivalence properties: reflexivity, antisymmetry, transitivity. 
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Cn̅, Cn} where for each pair (Cx̅, Cx), Cx is stringent with respect to Cx̅, Cn is the 

greatest element, the most stringent, and C1 the least element, the least stringent: Cn >s 

Cn̅ >s … >s C2 >s C1. 

5) Stringency ordering relation  

Strict stringency is a binary ordering relation, R, over a set of n Cs, {C1,…Cn}: 

a. Irreflexive: ¬(Cx >s Cx).  

• ∀h, K, h.Cx[K] = h.Cx[K], failing (3)b; a C cannot be more strictly stringent 

than itself. 

b. Asymmetric: Cx >s Cx̅ => ¬(Cx̅ >s Cx). 

• If Cx[K] ⊂	Cx̅[K], then Cx̅[K] ⊄	Cx[K]. 

c. Transitive: Cx >s Cx̅ & Cx̅ >s Cx̅-1 => Cx >s Cx̅-1. 

• If Cx[K] ⊂	Cx̅[K] and Cx̅[K] ⊂	Cx̅-1[K], then Cx[K] ⊂ Cx̅-1[K]. 

The relation is assessed over all filtration products under a hierarchy, h, of K̂, the set of 

all csets of possible optima, K (removing Harmonically Bounded candidates), that arise 

in the process of optimization. Violation-wise, the set of candidates in h[K] that have a 

minimal value of C2 is a subset of those having a minimal value of C1, though the 

minimal values need not be equivalent. The definition derives a survival version of 

Prince's (2002: 36) 'Satisfaction guaranteed' result: survival of C2 entails survival of C1. 

A candidate k survives C2 if k ∈ C2[K], receiving the minimal number of violations 

(M&P:78); this need not be 0 if no candidate fully satisfies a C. 

6) 'Survival guaranteed': If candidate q survives C2 then it survives C1: 

If h.C2[K] ⊆ h.C1[K], then ∀k∈K, k ∈ h.C2[K] => k ∈ h.C1[K].  
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Generalizing, following from the transitivity of the relation, survival of any Cx entails 

survival of all less stringent, Cj, j < x, and rejection by Cx entails such for all more 

stringent, Ck, k > x. All C2 survivors are thus C1 survivors; C1 cannot distinguish 

between these, where a C distinguishes two candidates, q1, q2 if C(q1) ≠ C(q2). It only 

distinguishes among C2 rejectees, so that C1 ranking is only decisive if the set of 

remaining candidates does not include C2 survivors. That is, where C2 is crucially 

dominated.  

Violation count subset does not entail filtration subset, nor vice versa. For example, 

McCarthy (2008:65-6) defines stringency as: "Constraint Const1 is more stringent than 

constraint Const2 if every violation of Const2 is also a violation of Const1, but there are 

some violations of Const1 that aren't violations of Const2." A main point of breakdown 

between a filtration and a violation-subset definition arises when C1's minimal value is 

greater than C2's. In OT, it is how the constraints distinguish the candidates that 

determines the typology, not the exact number of violations assigned.  

To see how raw violation counts can obscure relations, consider the violation profiles 

for the two Cs in (7). C2 assigns a violation to every candidate; its minimal value in this 

cset is 1. C1's violation counts are always less than or equal to C2's (every violation of C1 

is a violation of C2), but C1's filtration is a proper subset of C2's (final row).5  Reducing 

violations to the minimum value respecting filtration patterns, (1,0,0) for C2 (recomputed 

VT in (b)) shows the relations. C1 is more stringent than C2 (provided all candidates are 

possible optima). C1(k) ≤ C2(k) does not guarantee that C2[K] ⊆ C1[K].  

                                                
5 This situation arises in COT systems where a C cannot be fully satisfied in a cset by GEN. For example, in 
Danis' (2014) system, the C m.CKPT is violated by all places of articulation, but GEN requires all output 
segments to have such a place. The system illustrates the distinction between violation count and filtration 
subsets: on the former, m.CKPT is more stringent than m.CKP (violations ≥); on the latter, it is less 
(filtration ⊆). 
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7) Violation subset ≠ filtration subset 
a. Full violations        b. Violations, minimized  
K C1:m.a C2:m.ab  C1 C2 
aa 2 2  2 1 
a 1 1  1 0 
b 0 1  0 0 
C[K] {b} {a,b}  {b} {a,b} 

 

A basic example of a stringency system meeting the definition is shown in (8), a 3C 

subset inclusion hierarchy, in which the set of structures violating each Cx is a proper 

superset of those violating Cx̅, and a single antagonist, X. This set derives a markedness 

scale a >m b >m c. The lower rows show filtrations for possible non-decisive h[K]s (for h 

= X: {a}, C3: {d}, C1.X: {b}, C2.X: {c}). X values are the minimal possible for all 

candidates to be possible optima (if (0, 1, 1, 1), (b) and (c) are harmonically bounded). 

Lacking X, (d) is the sole possible optimum. 

8) 3C inclusion hierarchy stringency scale VT 
K C1:m.a C2:m.ab C3:m.abc X 
a 1 1 1  
b  1 1 1 
c   1 2 
d    3 
h = ∅  {b, c, d} {c, d} {d} {a} 
h = C1 -- {c,d} {d} {b} 
h = C2 {c,d} -- {d} {c} 

 
This example underscores the typological contextualization of stringency. In COT, this 

requires a fully specified system with a complete definition of GEN and Con; in AOT, it 

requires the complete UVT. Importantly, the relationship must hold not for every possible 

subset of the possible optima in a cset, but only the filtration products resulting from 

filtration by a possible h, as these are the sets arising in the course of evaluation and 

optimization. In the above example, some subsets of K such as {b,c} do not arise under 
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filtration by any h. If it did, the Cs fail the conditions because C2 is more stringent than 

C3 (filtrations {c}, {b,c}, respectively).  

The necessity of considering all csets and filtration products thereof in COT is further 

brought out by an example. In the Lombardi voicing typology (Lombardi 1999, LVT; 

also Prince 2000) the C definitions suggest a stringent relation that does not hold under 

all filtrations. The system contains two faithfulness constraints: a general f.V and a 

positional f.hd.V, violated, respectively, by change in voicing between input-output 

correspondents in segments in all or only onset positions (9).  

9) LVT: Constraints 
C Def Prose: 1 violation for each (in, out) s.t.: 
f.V *(i, o): [αV] ∈ i & [¬αV] ∈ o. in & out have differ in [±V] value. 
f.hd.V *(i, o): [αV] ∈ i & [¬αV] ∈ o & 

o = σ hd. 
in & out have differ in [±V] v & out is a 
syllable head. 

 
Recall that the definition of stringency must be met for a pair of Cs in all csets in order to 

obtain in the UVT and in the entire T. In this, f.V and f.hd.V fail. The VT below 

illustrates the critical cases. In either cset, if the Cs stand at the top of the hierarchy, 

f.V[K] ⊆ f.hd.V. However, for K /ad.ta/, under h = m.Agr, the subset relation reverses: 

f.hd.V[K] ⊆ f.V[K]. Furthermore, for K /att.da/, and the same h, the Cs have non-

overlapping, conflicting filtrations. Their relative ranking determines the choice between 

b and c (/att.da/→[att.Ta]~[aDD.da] = eLWL).6 

 
 
 
 
 
 
 
 
                                                
6Prince identified the omission and its consequence. Full LVT PA: Prince (2013) (also DelBusso 2015 ms). 
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10) VT 
Input Output m.Agr f.V f.hd.V m.ObV Comment: unfaithful 
ad.ta a. ad.ta 1   1 none 
 b. ad.Da  1 1 2 onset 
 c. aT.ta  1   coda 
h = m.Agr {b, c}  {b, c} {c}   
att.da a. att.da 1   1 none 
 b. aDD.da  2  3 2 codas 
 c. att.Ta  1 1  onset 
h = m.Agr {b, c}  {c} {b} {c} f.hd,V[{b,c}] ⊈	

f.V[{b,c}] 
 
As in the crucial csets, so in the UVT, where the effect of m.Agr filtration is clear (11). 

Over filtration product L3-L7 no subset relationship exists between f.V and f.hd.V (final 

row).7 

11) LVT UVT8 
 m.Agr f.V f.hd.V m.ObV 
L1 1   2 
L2 1 1  1 
L3  1 2 1 
L4  2  3 
L5  1 1 2 
L6  3  2 
L7  2 1  
h = m.Agr  L3, L5 L4, L6  
 

These Cs illustrate a case of partial stringency (§3.2.2). The definition is met for h = ∅, 

but crucially not for all h.  

As the number of possible filtration products grows rapidly as |CON| increases and 

can be hard to determine even in small systems with complex interactions, deduction 

from UVT scrutiny becomes infeasible. However, stringency is detectable from the 

MOAT: EPOs of the Cs in the relation have a characteristic set of properties, the topic of 
                                                
7Violation-subset does not hold in this UVT: in L2, f.hd.V(k) > f.V(k). However, this is fragile: the UVT 
constructed from a typology calculated with cset /.dad./ added reverses the relation, f.v(L2) = f.hd.V(L2). 
8Further complications arise in LVT because of a partial stringency (§3.2.2) relation between m.Agr and 
m.ObV. For present purposes, this is not focused on here. 
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the next section. The MOAT motif underscores the typological-dependency of the 

relation, a dependency intrinsic to OT; no relation—conflict, stringency or otherwise—is 

established in isolation, and, as Grimshaw (p.c.) observes, core relations such as 

harmonic bounding similarly obtain system-internally, upsettable with change to GEN 

and/or CON.  

3.2.1 Stringency in the MOAT and C (non-)conflict relations 

In OT, the main action is in constraint conflict: where two Cs filtrations are non-

overlapping, no candidate survives both filtrations, so their ranking determines the 

optimum. Rankings define Γs. However, in a T, not all constraints conflict with all others. 

For Cs in a stringency relation, survival of the more stringent entails survival of the less. 

Non-conflict, however, is not limited to stringency, and other types are examined below. 

Understanding non-conflicting relations is essential to understanding typological 

structure more generally.  

Recall (chapter 1, reviewing M&P) that the MOAT is the collection of EPOs, one for 

each C ∈ CON, representing its filtration over the set of Γs of T. As M&P show, OT 

filtration depends on equivalence and order relations only and "the EPO contains the 

privileged relations that lead to an order on the grammars of the typology" (p. 67). These 

relations arise from the border point pairs (BPPs): two λs belonging to distinct Γs that 

differ in a single adjacent transposition of Cs (M&P:81 (104)). BPPs are connected to 

filtrations in that if λ1 = PXYQ and λ2 = PYXQ, then for K = UVT, PXYQ[K] = Γ1 and 
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Γ2 ∉ PXYQ[K], and vice versa (i.e., PYXQ[K] = Γ2)9. M&P prove that the MOAT fully 

determines all Γs in T, so that properties of the MOAT are properties of T itself. 

In a given EPO(C), two Γs may be equivalent, Γ1 ~C Γ2; ordered, Γ1 →C Γ2; or non-

comparable (unconnected). Equivalence, represented as double blue lines, establishes 

equivalence classes of Γs, EqCs: C does not distinguish among members of the class; they 

jointly survive or are rejected. Order, shown with a red arrow between Γs, indicates that 

one, Γ1, survives a filtration from which the other, Γ2, is ejected. Arrows are labeled in 

the EPO by the C(s) in the BPP(s).  

Comparing EPOs shows C relations. If there is an arrow reversal, where X and Z 

order adjacent nodes oppositely, then X and Z conflict because the Cs are in a BPP for 

those Γs. For example, in the EPOs in (12) (from the system T2Core, §3.3.1.1), there are 

two such reversals, between L1 and L3, L3→C2L1 and L1→XL3, and between L2 and L3, 

L3→C2L2 and L2→XL3. Two constraints Y and W have a shared arrow if they both 

order L1 over adjacent L2, L1→YL2 and L1→WL2; they evaluate the pair equivalently 

and either ordering of them in a hierarchy selects L1. Both are in a BPP with an 

antagonist, for the same Γs. The antagonist’s EPO has multiple labeled arrows between 

L1 and L2, for each.  

12) EPO arrow reversals 
EPO(C2) 

 

EPO(X) 

 
                                                
9Hereafter, the notation departs from M&P in using h for P for a BPP prefix for consistency throughout and 
to distinguish from P = property.  
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C conflict is defined in (13) (see also chapter 2)10. As with stringency, conflict is T-

dependent. Note that all Cs are ordered in the individual λs ∈ T; whether they conflict and 

are ordered in Γs depends on the distribution of λs into Γs, leading to the presence or 

absence of Border Point Pairs (BPPs) defined by their adjacent transposition. As with all 

C relations, conflict is relative to a particular typology T, necessary to determine BPPs. 

Conflict appears in the MOAT as a direct arrow reversal between adjacent nodes in 

EPO(X) and EPO(Y).  

13) Def. Conflict. Two Cs, X & Y, conflict in T iff ∃(Γ1, Γ2) ∈ T, s.t. there is a BPP 

for (Γ1, Γ2) defined by the adjacent transposition of X and Y, λ1= PXYQ ∈ Γ1, λ2= 

PYXQ ∈ Γ2. In the MOAT, Γ1→XΓ2, Γ2→YΓ1. Else X & Y are non-conflicting in T. 

If X and Y conflict for every pair of Γs, then they are global conflicters in T. Subtleties of 

this definition arise because the existence of a BPP does not entail that X and Y are 

ordered the same way in all λ(Γ). When the ERC set defining a Γ includes W disjunction, 

it is satisfied by all λs in which any, not necessarily all, Cs in the multi-W-set dominates 

those in the L-set. 

The simple AOT system of the valid cup, VC (see also chapter 2) illustrates. TVC 

contains three constraints, two are which are equivalent, and two Γs mapped to the 3C 

permutohedron in (14). In the x-top Γ (blue λs) x > y & z (WLL); its complement (orange 

λs) is defined by the ERC LWW, where either y or z dominates x. Both y and z separately 

conflict with x by the definition here, with BPPs [xyz, yxz] and [xzy, zxy], respectively. 

                                                
10Conflict is defined here in terms of Γs. A. Prince (p.c.) points out that stringency could be defined 
similarly: for a Γ, a C2 is stringent relative to a C1 if in every h∈Γ, h.C2[K]⊆h.C1[K]. Typological 
stringency results when this is true for all Γ ∈ T. 
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But the Γ contains λs in which x > y and in which x > z, so it is not the case that x and y 

are ordered the same way in all λs. 

14) Valid cup Γs  

 
 

Though conflict is a binary relation between two Cs, it does not entail the existence of 

a binary W/L ERC in Γs in which they conflict for those Cs. BPPs produce ERCoids 

(M&P §3.4), which differ from ERCs in having a fourth value, u for undetermined, for 

Cs in the suffix, Q, of BPP. In fusion, u replaces e as identity, X◦u = X, for X ∈ {W,L,e}. 

When two ERCoids each have a W where the other has a u, their fusion results in an ERC 

with W disjunction, i.e., LWu◦LuW = LWW. Conflict entails the existence of an ERCoid for 

X and Y, not an ERC.  

Cs for which no such BPP exists in T are non-conflicting. Stringency is a non-

conflicting relationship; as (15) proves, two stringently-related Cs, are never in BPP.  

15) Stringency => non-conflicting. If C1 and C2 are in a stringency relationship in T, 

then they are non-conflicting in T. 

Proof. Proof by contradiction: assume that C2 and C1 define a BPP.  

a. By the def. of stringency, ∀h, K, h.C2[K] ⊆ h.C1[K].     

b. By the def. of BPP,	∃(L1, L2) ∈ T: L1 ∈ h.C2.C1.Q[K] & L2 ∈ h.C1.C2.Q[K].   

c. Therefore, L2 ∉ h.C2[K] and L1 ∉ h.C1[K], directly contradicting (a), since if 

h.C2[K] ⊆ h.C1[K], then h.C1[K] cannot contain anything not in h.C2[K]. 

d. Thus C2 and C1 cannot define a BPP, and by (13) cannot conflict.   

WLL
xyz xzy

yxz zxy
LWW

yzx zyx
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Non-conflict is not the only feature of stringency. For a pair of Cs, C2, C1, where C2 is 

strictly more stringent than C1, C2 >S C1, EPOs have the four properties in (16).  

16) MOAT features of stringency relations 

a. Equivalence Maintenance: ∀pairs of Γs, A, B, A~C2B => A~C1B. 

b. Increased Ordering: ∃(A, B): A~C1B and A→C2B. 

c. No conflict: ∀(A,B), A→C2B => B↛C1A. 

d. No sharing: ∀(A,B), A→C2B => A↛C1B.  

If a pair of EPOs have this set of properties, then the Cs are in a global strict stringency 

by the filtration definition in (4), as shown in (17). 

17) Deriving stringency from MOAT features 

a. Filtration subset-equality by (16)a and (16)c: C2 survivors survive C1. 

i. By (16)a: ∀Γ {A,B…} ∈ h.C2[K]: A~C2B, in h.C1[K], A~C2B. This gives that 

the survivors of h.C2 are equivalent under h.C1, but does not guarantee that 

they are the survivors, receiving the minimal value.  

ii. Assume the contrary, that they do not survive h.C1[K]. If so, then C2 and C1 

must conflict, contradicting (16)c.  

• Suppose {A,B} ∈ h.C2[K] & ∉ h.C1[K]. Then ∃Γ ∈ UVT, Z, Z ∈ h.C1[K] 

& ∉ h.C2[K], since by assumption, equivalent h.C2[K] => equivalent in 

h.C1.  

• Then for any h: {A,B,Z} ∈ h, h.C2[K] ⋂ h.C1[K] = ∅. Minimally, one h 

meets this condition: h = ∅.  

• If h.C2[K] ⋂ h.C1[K] = ∅	then h.C2.C1.Q ≠ h.C1.C2.Q, so (C1, C2) are in a 

BPP, λs of distinct Γs. But by non-conflict (16)c) (C1, C2) cannot be in a 
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BPP (an arrow reversal), so this cannot hold and so h.C2[K] survivors must 

also be h.C1[K] survivors.  

b. Strictness by (16)b and (16)d: C2 ejects some C1 survivors, ordering them. 

i. From (b) ∃A, B: A~C1B and A→C2B. This gives that for some h, h.C2[K] ⊂ 

h.C1[K]. 

ii. No sharing (d) ensures that this holds for all h:  

Suppose the contrary, for some pair of Γs (A,B), A→C2B & A→C1B. Then 

both C2 and C1 define BPPs with an antagonist, X: h.X.C2.Q[K] = 

h'.X.C1.Q'[K] = B, & h.C2.X.Q[K] = h'.C1.X.Q'[K] = A.  

If this holds, there is a hierarchy where C2 and C1 filtrations are equivalent.  

• Consider h'.X. First, C2 ∉ h' because both A and B must survive h' if 

h'.X.C1.Q'[K] = B, and by assumption, C2 rejects B. So C2 ∈ Q'.  

• If h'.X.C2[K] ⊂ h'.X.C1[K], then ∃W ∈ T: W ∉ h'.X.C2[K] & ∈ 

h'.X.C1[K], so that B~C1W. Since B ∈ h'.X.C1[K], B~XW, giving the 

following relations for h'[K]: 

h'[K] X C1 C2 Q'\C2 
A 1   … 
B  1 1 1(+)11 
W  1 2 … 

This mean that h'.C1[K] = h'.C2[K] = A, so for h'[K], C1 and C2 

filtrations are equivalent.  

This set of properties results in EPO structures in which all Γs in the top EqC2, the tops, 

are necessarily tops in EPO(C1). These are also unordered, with no arrows in EPO(C1). 

Order relations in EPO(C1) exist only between non-comparable Γs in EPO(C2). Basic 

                                                
11Since W ∈ T, ∃Y ∈ Q'\C2, W→YB, else W is harmonically bounded. 
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stringency EPO structures are shown in (18), taken from the simplest core AOT system, 

T2Core (§3.3.1.1). EPO(C2) orders EqC1 = {L2, L3}; EPO(C1) only orders non-

comparable Γs in EPO(C2), {L1, L2}. The EPOs represent the filtration subset 

relationship: each EqC2 is a subset of a corresponding EqC1. Here, C2[K] = {L3} ⊂ C1[K] 

= {L2, L3}.  

18) 2C core stringency system EPOs 
EPO(C2) EPO(C1) 

  
 
The transitivity of the stringency relation comes out in the EPOs of larger scales. EPOs of 

each successive pair display the MOAT correlates, so that for the least stringent, C1, any 

Γ that is a top in any more stringent C EPO is an unordered top in EPO(C1). The EPOs 

for the system T4Core show this recursive effects with a 4C stringency set.  

19) T4Core EPOs 
EPO(C4) EPO(C3) 

  
EPO(C1) EPO(C2) 

  
 

While stringency entails non-conflict, the reverse does not hold. Two Cs may be non-

conflicting but non-stringency. Cs are equivalent if their filtrations are the same: 

surviving either entails surviving the other (and likewise for rejection). This is the 
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relationship realized by fully symmetric stringency, where the first clause of the 

definition is met in both directions, for each C. Non-conflicting C filtrations can also lack 

any cross-entailments, being distinct but partially overlapping (allowing for their joint 

survival), a relationship here termed unrelated. Like stringency, conflict and equivalence 

have defining MOAT features; the EPOs of unrelated Cs are characterized by the lack of 

the features of the other kinds of relations, ordering distinct sets.  

20) MOAT motifs of C relations: for a pair of Cs, X,Y: 

a. Arrow reversal: conflict 

• If for a pair of Γs (A,B), A→XB & B→YA, then ∃BPP, (hXYQ, hYXQ) (by 

M&P's p. 81 (105): Base relations from a BPP). 

• The existence of a BPP establishes conflict by the definition in (13). 

b. Shared order and equivalence: equivalent (identical EPOs) 

• If ∀(A,B) ∈ T, if A→XB ó A→YB & A~XB ó A~YB, then all privileged 

relations are equivalent. Under any h, h.X[K] = h.Y[K].  

Each relation has a characteristic PA manifestation, and imposes restrictions on the Ps 

that must or cannot be in the PA. Conflicting Cs are antagonized in a P, while non-

conflicting are not; equivalent Cs are in a κ.dom in all Ps in which they are an antagonist; 

unrelated Cs occur in separate Ps.  

The MOAT and PA structures are shown in (21). EPOs for the first three cases—

conflicting, equivalent, unrelated—derive from the AOT system TCrel analyzed 

immediately below; those of the last—stringency—are repeated from above from T2Core 

(§3.3.1.1). 
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21) Types of C relations 
Type: MOAT structure EPOs PA 
Conflicting 
Arrow reversals: 
{L1, L3} & {L2,L4} 

EPO(X) 

 

EPO(Y/W) 

 

Antagonists 
in some P(s) 

Non-
conflicting 
No arrow 
reversals 

Equivalent 
Shared arrows 
and Eqs 

EPO(Y) 

 

EPO(W) 

 

κ.dom in Ps 

Unrelated 
No shared or 
reversed 
arrows 

EPO(Z) 

 

EPO(Y/W) 

 

Separate Ps  
 

Stringent 
EPO(C2) 
orders EqC1s  

EPO(C2) 

 

EPO(C1) 

 

κ.op or nsPs 

 
The AOT system generating the X, Y, Z and W EPOs, TCrel (UVT (22)), instantiates 

multiple C relations. It is analyzed below to illustrate these and their PA manifestations. 

X conflicts with all other Cs, as the labeled arrows in the EPOs show. Y and W are 

equivalent in all arrows and equivalence classes. As their filtrations never differ, there is 

no basis for ranking one versus the other. They conflict, as a class, with X: over all Γs 

X[K] = L1, and Y/W[K] = {L3, L4}—the arrow reversal between L1 and L3. Under h = 

Z = {L2, L4}, they also filter differently, resulting in the L2/L4 arrow reversal. X 

similarly conflicts with Z when h = ∅ or Y/W. Z does not conflict with Y/W: L4 survives 
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filtration by either, as seen in its presence in the top equivalence class of both EPOs. 

They are not related by conflict, equivalence, or stringency. 

22) TCrel UVT 
 X Y W Z 
L1  1 1 1 
L2 1 1 1  
L3 1   1 
L4 2    
 

PA(TCrel) has two Ps, antagonizing X and Z, P1, and X and YW.dom, P2. Both are ws; C 

relations in this system are global, holding under all filtrations and thus all Γs, and neither 

conflict depends on the other (leading to nsPs). Values combine freely to generate 4 Γs. 

23) PA(TCrel) 
P α  β   P1 P2 MIB  
P1: X <> Z WeeL LeeW L1 α α WLLL 
P2: X <> YW.dom WLLe LWWe L2 β α LLLW,WLLe  
 L3 α β LWWL,WeeL 

L4 β β LeeW,LWWe 
 

The PA has the key features of each relation, listed in the final column of (21). 

Conflicting Cs are antagonized in a P (X and its two antagonists). Equivalent Cs are a 

κ.dom in Ps (YW.dom in P2). Unrelated Cs are in separate Ps (Z and YW.dom).  

That conflicting Cs must be antagonists in some P(s) aligns with intuition: a P can 

only generate ERCs in which the conflicting Cs are in opposing L/W sets if they are in 

distinct antagonists of P. The result cannot be guaranteed from the rankings from other P 

values in the PA; these may transitively order the Cs by ranking them independently and 

distinctly with respect to another shared antagonist, but they cannot be ranked directly—

as they are in some Γ(s) ∈ T. 

The subtleties of the conflict relation discussed above are matched by the definition 

of P antagonization (24), which requires that the conflicting Cs be in opposite antagonist 
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sets of some P, but not that they be the sole members of those sets. They may be in κ.ops 

with other Cs. Recall that κv is the antagonist set of one side of a P, κv̅ that of the other. 

24) Def. P antagonization. Two Cs, X and Y, are antagonized in P if X ∈ κv, Y ∈ κv̅. 

This definition does not guarantee that the P values generate ERCs that non-disjunctively 

order the C pair. It only entails that for each value, one member of the conflicting pair is 

in the L-set and one in the W-set for some ERC in the value ERC set, though the W/L-set 

need not be singleton. This is necessary because P values generate ERCs, not ERCoids. 

To produce cases of W disjunction, and thus generate Γs as in the valid cup T, TVC, an 

antagonist must be a κ.dom.12 In TCrel, X and Y are conflicting (XY[K] ∈ L1, YX[K] ∈ 

L3). But if there were a P2': X <> Y, L3 cannot be assigned a value because it also 

contains the λ WXYZ, where X > Y.  

Non-singleton κ.ops are required when Cs act jointly relative to some antagonist. 

Equivalency is the most basic such relation. When C filtrations are the same, dominance 

by either results in the same set of surviving candidates, and both must be subordinated 

for their rejectees to be optimal. These rankings are generated when the equivalent Cs are 

a κ.dom, as YW.dom exemplifies.  

When Cs are unrelated they occur in distinct Ps, though they may have common 

antagonists.13 In this case, there is no filtration under which their ranking is decisive, and 

thus no grounds for their ordering. These kinds of cases arise in COT when Cs assess 

distinct traits of optima. For example, in the basic syllable system EST (introduced in 

                                                
12 For L-disjunction, generating a disjunctive ERC set, the Cs must be in a κ.sub. See also ch. 2. 
13It is sometimes also possible to construct an alternative PA that groups unrelated Cs together if they 
conflict with the same antagonists. For example, in EST, it is possible to have a P {m.Ons, 
m.NoCoda}.dom <> {f.max, f.dep}.sub, with the values distinguishing Γs with only .CV. syllables from 
others. However, the PA must also have either a P antagonizing (non-conflicting) m.Ons and m.NoCoda, or 
separate Ps antagonizing each of these with {f.max, f.dep}.sub, as in the original PA (A&P 2016b).  
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Prince & Smolensky, analyzed in A&P 2016b, M&P), m.Ons and m.NoCoda are 

unrelated in this way: each conflicts with a set of faithfulness Cs to determine the 

mappings of onsetless and codaful inputs, respectively. In TCrel the unrelatedness of Z and 

Y/W results in the absence of any Ps antagonizing them.  

In the simple system above, the C relations hold over entire T. This is not always the 

case: two Cs can instantiate multiple relationships within a T. For example, a set of Cs 

that assess equally under some hierarchy may conflict in another, resulting in the PA 

features of both relations. The next section examines a case of such complex relations: 

partial stringency, where stringency coexists with another relation.  

3.2.2 Partial Stringency  

The definition of stringency, and its MOAT detectability, leads to identification of partial 

stringency relationships between Cs. Two Cs are stringently-related for some hierarchy, 

but not all. The core MOAT motif exists within larger EPO structures.  

Such cases are of interest for both their formal properties, and their predictions about 

the scalar behavior that the stringency systems derive. Prince (2001) analyzes the ways a 

scale is realized in languages. For a scale x >m y > m z, a language can distinguish all three 

levels: z less marked than y, y less marked than x. Conversely, the scale may be fully 

collapsed in a language, with no distinction made between the categories, {x,y,z}. Finally, 

a language may partially collapse a scale, distinguishing some but not all categories. 

Prince characterizes two different ranking structures that produce distinct collapses. In 

Paninian rankings, where a more stringent C is transitively dominated by a less, the 

associated languages group together less marked levels, distinguishing only x from {y, z}. 

Other coarsenings of the order is anti-Paninian, grouping together more marked {x, y} in 
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opposition less, z, a ranking in which a more stringent C is transitively dominated a less. 

By the filtration definition of stringency developed here, an anti-Paninian ranking only 

occurs in the case of partial stringency, specifically, under those hierarchies where the Cs 

are not stringently related (see §3.4.1 for analysis of an AOT T with anti-Paninian 

rankings). 

Partial stringency is defined below. For partial stringency, quantification over 

hierarchies is existential, not universal as for global. Global stringency thus entails 

partial, but not vice versa.  

25) Def. Partial Stringency. For a system, S = GEN.S, CON.S, and a pair of Cs, C2, C1 

∈	CON.S: 

a. C2 is partially stringent with respect to C1 in S if ∃h for which C2 is stringent 

with respect to C1 (∃h:	∀K ∈ K̂, h.C2[K] ⊆ h.C1[K]). 

b. C2 is partially strictly more stringent than C1 in S if for h, C2 is strictly more 

stringent that C1 (∃K ∈ K̂: h[K] is non-decisive and h.C2[K] ≠ h.C1[K]).  

The properties of global stringency relations hold for the h subset where the C filtrations 

meet the conditions. This corresponds to a subset of Γs ∈ T: those optimal under the 

relevant filtration(s) of a UVT.  

Two cases of partial stringency are classified here: 'lost' and 'derived', relative to the 

stringency status of a C1 and C2 when h = ∅, unfiltered K. The 'lost' case occurs when 

the Cs are stringently related for h = ∅, but not for an h' ≠ ∅. These can produce anti-

Paninian rankings or cases like LVT, where C1 and C2 conflict under h'. In the reverse 

case, 'derived' stringency, the relation holds only for a non-empty filtration h', but not h = 

∅ (see also Prince & Tesar 2004 for discussion of this kind of relation). If there is no h 
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for which the filtration subset relation holds, no stringency occurs (see §3.2.1 on kinds of 

relations). The cases are tabulated in (26). 

26) Global and partial stringency  
Type Stringent for: 

h = ∅ h' ≠ ∅ 
global √ √ 
partial: lost √ X 
partial: derived X √ 
non-stringent X X 

 
In partial cases, the core MOAT features appear embedded or otherwise slightly mangled 

in the C1 and C2 EPOs. This is shown below, using two cases from AOT systems that are 

the topics of §3.4.2 and §3.4.3. In the first, (27)a, the stringency structure occurs between 

L4, L3 and the unordered set of {L1, L2}. However, over {L1, L2} the Cs conflict (arrow 

reversal), as in LVT above. In the second, (27)b, the EPO structure is embedded, over 

{L3, L2, L1}. Over the whole T stringency does not hold because C1 orders the 

equivalence class {L4, L5} of C2. Only among the rejectees of C2, eliminating these Γs, 

is it more stringent than C1.   

 
27) Partial stringency system EPOs 

a. Lost stringency (conflict) b. Derived stringency 
EPO(C2) EPO(C1) EPO(C2) EPO(C1) 

   

 

 
Identification and analysis of partial stringency shows how Cs interact in multiple ways 

within a T. PAs of lost or derived stringency (§3.4) have features of these multiple 

relations: stringency Ps alongside those characteristic of the other relationship(s).  
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3.3 Structure of stringency systems 

Property Analysis (PA) brings out the common core of stringency systems and shows 

how this C relation plays out in a T. This section develops the structure of basic 

stringency systems in detail: their Γs and the crucial rankings that define them, explicated 

by PAs. It then systematically analyzes a set of complications thereof, showing how the 

same general structures recur.  

3.3.1 Core global stringency: TnCore 

Since stringency-related Cs are non-conflicting, all Γs are defined by which Cs in the 

stringency set are ranked relative to which antagonist(s) (along with any other rankings 

among Cs ∈ Con). The ranking of a Cx̅ relative to an antagonist, X, depends on the 

ranking of a more stringent Cx and X: only in Γs in which X > Cx are Cx̅ crucially 

ranked, since Cx survival entails Cx̅ survival. The properties of the PA illustrate this: all 

stringency set Cs are antagonized with the same antagonists, but those involving a Cx̅ are 

dependent on Cx ranking, either being in a class, κ.dom (chapter 2) or occurring in nsPs. 

The most basic stringency system, the AOT system TnCore, has a single antagonist, X, 

and a set of n stringently-related Cs. This system is directly instantiated in the COT 

systems of Alber (2015a; simple) and FOFC (chapter 4), presumably among many others 

in the literature. Its structure lies at the core of all stringency systems. 

3.3.1.1 T2Core 

The simplest TnCore system is T2Core, with two stringently-related Cs, C2, C1. This system 

is first shown through a COT instantiation—Alber's (2015a) simple system—then an 

AOT system is used to generalize and further explicate the structure. 
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Alber's (2015a) simple system derives the scalar generalization that the degree of s-

retraction in modern Germanic languages, s → ʃ before a consonant, depends on the 

consonant's sonority: if s-retraction (SR) occurs before a sonorant (sn → ʃn), then it occur 

before an obstruent (sk → ʃk) but not vice versa.  

The basic SR system contains two stringently-related markedness constraints, defined 

in (28)b (from Alber 2015a:7). These are violated by s-consonant /sc/ clusters, but not by 

/ʃc/ clusters, based on the sonority of the following consonant. Where an input contains 

the violating structure, unfaithful mapping of s, retracting to ʃ satisfies the markedness 

Cs. More stringent m2 is violated by any such cluster; less stringent m1 only when the 

following consonant is an obstruent. Their antagonist is a general faithfulness constraint, 

violated by unfaithful segmental mappings. For each /sc/ input, GEN (28)a produces both 

faithful and retracted s candidates (all else is faithful).   

28) SR GEN and Con 

a. Gen: Inputs14: /sc/, c ∈ {k, n}, k = [-sonorant], n = [+sonorant] 

Outputs: {sc, ʃc}, cout = cin. 

b. Con: m2: *{sk,sn} (m.kn) 

m1: *sk (m.k) 

f: *(Sin, Sout): Sin = s & Sout = ʃ. 

The two inputs in the VT (29)a, a Universal Support, produce the UVT in (29)b, 

annotated with the degree of SR in the language: all, some (before obstruents only), or 

none. These C meet the definition of stringency: f-filtration is decisive; when h = ∅, m2 

filtration, {L3}, is a subset of m1 filtration, {L2, L3}. 

                                                
14Inputs of the form /ʃc/ are trivial: the faithful mapping candidate is the single possible optimum. 
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29) TSR  
a. VT 

Input Output f m2.kn m1.k 
sk sk  1 1 
 ʃk 1   
sn sn  1  
 ʃn 1   
 

b. UVT 
 f m2.kn m1.k Γ  SR 
L1  2 1 f > m2, m1 none (most 'marked') 
L2 1 1  m1 > f > m2 some: _k, not _n 
L3 2   m2 > f all (least 'marked') 

 
The minimal UVT (mUVT, chapter 1 (9)) reduces m2 violations to 1 for both Γs. The 

general mUVT for any T2Core system is given below, along with the Γs it generates. ERCs 

are given in VT order, with '.' separating X from C2, C2.  

30) T2Core UVT, MOAT and Γs  
a. UVT 
 X C2 C1 
L1  1 1 
L2 1 1  
L3 2   

 

b. MOAT   
EPO(C2) 

 

EPO(C1) 

 

EPO(X) 

 
 

c. Γs (ERC order: X.C2.C1) 
L1 (2λ) L2 (1λ) L3 (3λ) 
W.LL L.WL,W.eL L.eW 

 

 

 

 
L3 encompasses 3 λs, half of the total orders of the permutations of CON. Only C2 and X 

are ranked. L1 consists of 2 λs, allowing either ordering of C1 and C2 (both dominated). 
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L2 is a single total order (1 λ). The languages are mapped to the 3C permutohedron 

below; combining the nodes of each Γ yields a triangular typohedron.  

31) T2Core hedra  
a. Permutohedron b. Typohedron 

  
 
In all Γs, C2 and X are crucially ordered, and their ranking fully defines L3. In TSR this is 

the language with all SR, before all consonants, the least marked (see §3.5 and chapter 4 

on extensional traits of stringency system languages, and PA classifications). In 

PA(T2Core), the ranking is generated by the values of P2, splitting T2Core as in the value 

table (32). L1 and L2 share P2.α; their TSR correlates share having some degree of 

faithfulness (no SR for some inputs).   

32) PA(T2Core) 
a. Properties 

Property Value ERCs 
α β 

P2 X <> C2 WLe LWe 
 

b. Value table 1 
 P2 
L1 α: WLe 
L2 α: WLe 
L3 β: LWe 

 

 
C1 and X are only crucially ranked in those Γs where C2 > X (L1, L2, the P2.α Γs) (33). 

33) T2Core Rankings 

• P2.β: C2 > X     no C1 & X ranking (L3) 

Since	∀q∈K, q∈C2[K] => q∈C1[K] (C2 survival => C1 survival), C1 does not 

distinguish among q∈C2[K]: all receive minimal value; C1 ranking has no effect. 

• P2.α: X > C2     C1 & X ranking (L1, L2) 

X.C2.C1 X.C1.C2

C2.X.C1 C1.X.C2

C2.C1.X C1.C2.X

L1

L2

L3
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C2 is crucially dominated so C2[K] ⋂ X[K] = ∅. X and C1 conflict in Γs ∉ C2[K] 

(rejectees), so their ranking is decisive.  

§ C1 > X (> C2): C1 transitively dominates C2 (Paninian ranking) (L2).  

§ X > C1: X dominates both C1 and C2 (no crucial ranking between them) (L1). 

Because C1 and X are not ranked in all Γs, they cannot be sole antagonists in a wsP. In 

wsPA(T2Core), C1 is in a κ.dom with C2 in P1. C1 and X ranking thus directly involves 

C2 ranking. Since C2 and X are also ranked in P2, the values of the two Ps 

entail/contradict each other. As a result, C1 is unranked in L3, and the 4th logical value 

combination is a contradiction: the value ERCs are inconsistent and fuse to L+ (Prince 

2002). The full wsPA is in (34).  

34) ws PA(T2Core) 
a. Properties 

Property Value ERCs 
α β 

P2 X <> C2 WLe LWe 
wsP1 X <> {C2,C1}.dom WLL LWW 

 
b. Value table  

 P2 wsP1 Ranking 
L1 α: WLe α: WLL X>C2 & C1 
L2 α: WLe β: LWW C1>X>C2 
∅		 β: LWe α: WLL X>C2 & C1, C2>X 
L3 β: LWe β: LWW C2 > X 

 
The P value ERCs values derive the Γs through their entailments and contradictions: 

• P1.α => P2.α, by L-retraction: if X > C2 & C1 (P1.α: WLL), then X > C2 (P2.α: WLe) 

(L3). 

• P2.α is consistent P1.β: C1 and C2 are ranked differently wrt X (MIB: LLW, WLe) 

(L2). 
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• P2.β => P1.β, by W-extension: W(P2.β) = C2 is a singleton, requiring C2 > X (LWe) 

while the dominant κ.dom in P1.β generates an ERC with multiple W's (C2 or C1 > 

X; LWW) (L1). 

• P2.β+P1.α fuse L+ (LWe◦WLL=LLL), since P1.α => P2.α and P2.β => P1.β. These 

values require both C2 > X and X > C2.  

The same result of C1 and X non-ranking in L1 is achievable by limiting the scope 

(chapter 1) of the property antagonizing them, defining the space of their conflict by the 

ranking X > C2 (P2.α). The scope of nsP1, Σ(nsP1) is {L1, L2}, excluding L3, where it is 

moot: each ordering of its antagonists occurs in some λ(L3). In nsPA (35), possible value 

combinations are restricted by mootness, not contradiction. This PA structure uses the 

filtration entailments between the Cs themselves. The treeoid shows the nested choices: 

C1 and X ranking occurs only under P2α.  

35) nsPA(T2Core) 
a. Properties 

Property Value ERCs Scope 
α β 

P2 X <> C2 WLe LWe  
nsP1 X <> C1 WeL LeW /P2.α  

 

b. Value table  
 P2 P1 
L1 α: WLe α: WeL 
L2 α: WLe β: LeW 
L3 β: LWe  

 

 
c. Treeoid 

 
 

PA(T2_Core)
P2

α β L3

P1

α β
L1 L2
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3.3.1.2 Scaling up: TnCore 

The results of the previous section generalize systems with larger sets of stringent Cs. As 

defined above, a TnCore is a system with n Cs in the stringency set, and a single antagonist 

X. TnCore has n+1 Γs, each a 2- or 3-level ranking structure, with all crucial rankings 

between X and members of the stringency set. In any Γ, if Cx > X, then all more stringent 

Cs, Ci, i>x, are dominated by X, and all less stringent, Ck, k<x, are not crucially ranked.  

There are two 2-level Γs. Ln is defined by Cn > X; Cn and thus all other stringency 

Cs are satisfied; all Ck, k<n are freely ranked in the Γ. In L1, X dominates all stringency 

Cs. The languages of these Γs realize the extremes of the scale: none and all options, 

resp., for the occurrence of the relevant marked trait. Other Γs generate languages that 

have some degree of markedness in optima. Each Lx, for 1<x<n, is a 3-level ranking 

structures, with stringency Cs ranked on either side of X, where Cx > X and all Ci, i>x 

are dominated.  

• Ln covers half of the λs ((n+1)!/2) of the permutohedron;  

• L1 covers n! λs, an n-dimensional shape on the permutohedron;  

• Other Γs have fewer λs, 3 levels of ordering.  

The typohedron for a TnCore is an n+1 (=|Con|)-dimensional object in which all Γs are 

adjacent (an n-simplex, h/t A. Prince). The permutohedron and typohedron of T3Core are 

shown below.  
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36) T3Core Hedra 
a. Permutohedron 

 

Constraints:            
x = C3 
y = C2 
z = C1 
w = X 

Γ: 
L1 = red 
L2 = purple 
L3 = green 
L4 = blue 

b. Typohedron 

 

 
The MOAT structure repeats successively across the EPOs: for each pair in the 

stringency set, EPO(Cx) orders some Γs in an EqCx̅; any top Γs in EPO(Cx) 'float' in 

EPO(Cx̅), as shown in the T4Core MOAT below. EPO(X) shows that every Γ has some 

arrow labeled with C4—all require ranking of X and the most stringent C—while only 

{L1, L2} have a C1-labeled arrow—only in these is the least stringent C crucially ranked.  

37) T4Core MOAT 

EP
O

(C
4)

 

 EP
O

(C
3)

 

 

EP
O

(C
1)

 

 EP
O

(C
2)

 

 

WXZY	

WXYZ	

XWZY	

XWYZ	

XZWY	

WYZX	

YWXZ	

WYXZ	YWZX	

ZXWY	

ZXYW	

ZYXW	

ZYWX	

YZXW	

YXZW	

YXWZ	

XYZW	

XYWZ	

WZYX	

YZWX	

WZXY	

ZWXY	

ZWYX	

XZYW	

L1

L2 L4

L3
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EP
O

(X
) 

 
 
PA(T2Core) structures generalize to PA(TnCore). In wsPA(TnCore), each P antagonizes X 

with a κ.dom, where κ is a subset of the n stringency Cs. All κs include Cn, the greatest 

element wrt the stringency ordering; it is the sole member in Pn. In all Px, Cx defines the 

lower bound of the set in κ: all Cs more stringent than Cx are in κ. For example, in P3, κ 

= {Cn,…C3}. The less stringent the Cx, the larger the κ set. The PA is schematized in 

(38); there are n Ps, one for each member of the stringency set, where it is the lower 

bound of the κ set (ERC order: X.Cn…..C1). 

38) ws PA(TnCore) 
a. Properties 

∀Cx, ∃Px ∈ wsPA(TnCore): X <> κ.dom, κ = {Cn,…,Cx}.  
Property Value ERCs 

α β 
Pn X <> Cn WLe…ee LWe…ee 
Pn̅ X <> {Cn, Cn̅}.dom WLL…ee LWW…ee 
… … … … 
P2 X <> {Cn, Cn̅, … C2}.dom WLL…Le LWW…We 
P1 X <> {Cn, Cn̅, … C2, C1}.dom WLL…LL LWW…WW 

 
b. Value table schematized 

 Pn Pn̅ … P1 Γ  Ranking 
L1 α α … α WLL…LL X > Cn…C1 
L2 α α … β WLL…Le, LLL…LW C1 > X > Cn…C2 
… α α … β WLL…ee, LLL…We Cx̅ > X > Cn…Cx 
Ln̅ α β … β WLe…ee, LLW…ee Cn̅ > X > Cn 
Ln β β … β LWe…ee Cn > X 
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The P value ERC entailments and contradictions from wsPA(T2Core) hold for consecutive 

pairs of Ps, following from the sub/superset relation of the antagonist sets of the Ps. A 

dominant κ.dom generates an ERC with dominator disjunction, a W for each C∈κ; a 

subordinate κ.dom generates an ERC with subordinate conjunction, an L for each C∈κ 

(see chapter 2). As each κx.dom ∈ Px is a subset of κx̅.dom ∈ Px̅, there is a sub/superset 

relation between L- and W-sets of the value ERCs. Each Px.α => Px̅.α, by L-retraction, 

and each Px̅.β =>Px.β, byW-extension (39). 

39) Entailments between P values 

• Px̅.β => Px.β    LWe…ee => LWW…ee   W-extension 

• Px.α => Px̅.α    WLL…ee =>	WLe…ee   L-retraction 

• Px̅.β ◦ Px.α = L+   LWe…ee ◦ WLL…ee = LLL…ee  fusion = L+ 

Contractions and entailments eliminate many of the 2! logically possible combinations 

of wsP values. Only n+1 generate Γs; all others result in ranking contradictions, with a 

subset of the value ERCs fusing to L+. Each Px only splits one value of Px̅ (Px̅.β) 

(conversely, Px̅ only splits Px.α). The possible value combinations are shown in the value 

table above. When listed from Pn to P1, all Γs are defined by a sequence of 0 or more α 

values followed by 0 or more β (α*β*); once a Γ has Px.β, it has Pi.β for all Pi, 1≤i<x.  

Generalizing from nsPA(T2Core), nsPA(TnCore) (40) antagonizes each Cx of the 

stringency set with X in a separate Px, whose scope is defined by a value of Px+1. As in 

wsPA, there are n Ps, one for each C in the stringency set. The scopal structure is a 

uniform-branching treeoid, aligning with the scale: extensionally, the languages defined 

at the top and bottom of the treeoid realize the extreme options, having all or none of the 
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marked trait, respectively (§3.5 and chapter 4). The treeoid extends the T2Core treeoid, 

iterating the same structure over a larger set of Ps. 

40) nsPA(TnCore)  
a. Properties: ∀Cx, ∃Px ∈ nsPA(TnCore): X <> Cx, Σ(Px) = Px+1.α. 

Property Scope α β 
Pn X <> Cn  WLe…ee LWe…ee 
Pn̅ X <> Cn̅ /Pn.α WeL…ee LeW…ee 
… … … … … 
P2 X <> C2  /P3.α Wee…Le Lee…We 
P1 X <> C1 /P2.α Wee…eL Lee…eW 

 
b. Value table and treeoid schematized 

 Pn Pn̅ … P1 

 

L1 α α … α 
L2 α α … β 
… α α …  
Ln̅ α β …  
Ln β  …  

 

 
In eliminating κ.dom, nsPA eliminates dominator disjunctions and subordinate 

conjunction and thus the value entailments; possible combinations are limited to exactly 

n+1 by scope (mootness), not contradiction. A Γ has a Px value iff Px̅.α ∈	Γ. Γ are 

defined as a sequence of 0 or more α values followed by 0 or 1 β, α*(β); if a Γ has Px.β, it 

is moot for all Pi, 1≤i≤x.  

The two versions of PA(TnCore) are compared in the table below. They generate the 

same Γs using different antagonist sets and scopes. In both, each P involving a Cx is 

replicated for Cx̅ (ws or ns Ps). The same structure persists when X is a non-singleton 

κ.op, or if Cx is in a κ.op with some other non-stringency set C; Cx̅ Ps replicate these 

(Bennett & DelBusso in prep. analyze such a case).   

PA(Tn_Core)
Pn

α β Ln

Pn̅

α β Ln̅

…
P1

α β
L1 L2
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41) PA(TnCore) 
 κ Scopes Value combination limitation 
wsPA ∀Cx, ∃κ: {Cn, …,Cx} ∈ κ wide  contradiction: …βα… = L+ 
nsPA (all singleton) Σ(Px) = Px+1.α mootness 

 
3.3.2 Complexifying 

TnCore is the simplest system instantiating stringency relations. The typological structure 

changes in systematic ways when either the antagonist set or the scale itself is expanded. 

This section analyzes several expansions, showing how each manifests in different 

modifications of the core PA. The systems examined change TnCore by either altering the 

antagonist(s) (TnCoreXY, Tn×m) or the scale Cs, with two overlapping stringency sets (T-

nmCore). Each system makes a single change to fully understand its implications, though 

they may of course coexist. The AOT systems analyzed have COT instantiations, noted 

in the last table column below.  

42) Variations on TnCore stringency systems 
AOT 
name 

Description COT examples 
Scale Antagonist 

TnCore 1, nCs 
 

1 (X) Alber (2015a), simple (n=2); ch. 4 FOFC 
(n=3) 

TnCoreXY 2 (X, Y) LingPulmAlt, (n = 2) (§3.3.3) 
Tn×m Scale, mCs Alber (2015a), complex (n=3, m=2) 
TnmCore 2, nC, mC, 

overlapping  
1 (X) Danis (2014) (n/m = 3, 2C overlap in more 

stringent).  

 

3.3.2.1 Multiple antagonists: PA(TnCoreX) × PA(TnCoreY) 

When the stringency scale Cs conflict independently with multiple antagonists, the core 

PA replicates for each. Each antagonist that interacts with the stringency Cs defines a 

subPA with a PA(TnCore) structure. A subPA is a subset of Ps in a PA, involving the 

interaction of a subset of Cs, that acts independently of the other Ps in the PA. Any nsP is 
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in a subPA with those Ps that define its scope. With COT systems, the subPA value 

combinations often determine the optimal mappings for a specific set of inputs (see also 

Bennett & DelBusso to appear, using 'subsystem'). The full PA is the union of the 

subPAs; the set of Γs generated is the product of their consistent value combinations.  

The AOT system T2CoreXY is constructed to realize the multiple-antagonist structure, 

with X and Y each interacting with C2 and C1, but not with each other. In the mUVT 

(43)a, X and Y each establish three 'blocks' of grammars (distinguished by bolded lines 

for X), receiving 0, 1 or 2 violations, parallel to the three-way divide of X in T2Core. The 

EPOs (43)b show the stringency characteristics: each equivalence class in EPO(C1) is 

ordered in EPO(C2). The same structures that hold between the three Γs of T2Core recur 

between {L9, L8, L7} and {L3, L2, L1} with Y, and {L9, L6, L3} and {L7, L4, L1} with 

X. 

43) T2CoreXY  
a. mUVT 

 

Γ X Y C2 C1 
L1   2 2 
L2  1 2 1 
L3  2 1 1 
L4 1  2 1 
L5 1 1 2  
L6 1 2 1  
L7 2  1 1 
L8 2 1 1  
L9 2 2   

b. EPOs 
C1 

 
C2 
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Each subPA is a PA(T2Core), generating three Γs (value combinations); free combination 

of these values defines the 9 Γs ∈ T2CoreXY. The wsPA and nsPA are given in parallel in 

(44), as the properties are familiar from T2Core; Ps are subscripted by subPA antagonist. 

44) PA(T2CoreXY): Properties 
SubPA Ps ws ns 
X P2X X <> C2 X <> C2 

α. WeLe / β. LeWe α. WeLe / β. LeWe 
P1X X <> {C2, C1}.dom X <> C1         /P2X.α 

α. WeLL / β. LeWW α. WeeL / β. LeeW 
Y P2Y Y <> C2 Y <> C2 

α. eWLe / β. eLWe α. eWLe / β. eLWe 
P1Y Y <> {C2, C1}.dom Y <> C1         /P2Y.α 

α. eWLL / β. eLWW α. eWeL / β. eLeW 
 
The compositional relationship between T2CoreXY and T2Core is highlighted by the nsPA 

treeoid. It is exactly two copies of the nsPA(T2Core) treeoid, the two subPAs, joined under 

a root node. The scope of each P1 is defined by a single P2.  

45) nsPA(T2CoreXY) treeoid 
        T2CoreXY 

 
 
The values multiply out as shown in the value table. Each of the three possible 

combinations of values in each subPA (X-centric combinations boxed in bold) is 

trifurcated by those of the other. For example, P2X.α+P1X.α (=L1 ∈ T2Core) splits into 

L1.1, L1.2, and L1.3 by Y subPA values.  

 

 

 

T.xy.9

P2x P2y

α β α β

P1x P1y

α β α β



  99 
   

 

46) Values tables, annotated 
Γ  ws PA ns PA Rankings Γ (X.Y.C2.C1) 

2X 1X 2Y 1Y 2X 1X 2Y 1Y 
L1.1 α α α α α α α α X&Y > C2&C1 WeLL, eWLL 

L1.2 α α α β α α α β X > C1 > Y > C2 WLLL,eLLW,eWLe  

L1.3 α α β β α α β  X > C2&C1; C2 > Y WLLL,eLWe 

L2.1 α β α α α β α α Y > C1 > X > C2 LWLL,LeLW,WeLe 

L2.2 α β α β α β α β C1 > X&Y > C2 LLLW,WeLe,eWLe 

L2.3 α β β β α β β  C1 > X > C2 > Y LLLW,WLLe,eLWe 

L3.1 β β α α β  α α Y > C2&C1; C2 > X LWLL,LeWe 

L3.2 β β α β β  α β C1 > Y > C2 > X LLLW,LWLe,LeWe 

L3.3 β β β β β  β  C2 > X&Y LLWe 

 

Each Γ is the union of the rankings of the stringency set relative to each antagonist, 

determined independently. Only in L3.3, defined by all β values, is C1 completely 

unranked relative to both X and Y, as C2 dominates both. In nsPA, both P1are moot in 

this Γ. Each P1 is moot in 3 Γs; in these, C1 is crucially ranked relative to only one of X 

and Y, whichever dominates C2. This same structure generalizes both to any TnCore, n>2, 

expanding each subPA accordingly, and to systems with more antagonists, X, Y, Z…, 

increasing the number of subPAs.  

3.3.2.2 Stringency set antagonist: Tn×m  

In the second variation, the antagonist is itself a set of stringency Cs, so that CON consists 

of two sets of n and m Cs. The structure of such systems depends on the relationship of 

the scales the sets are defined by. The nC and mC sets can be defined in opposing orders 

along the same scale. In this case, the nCs become equivent, not stringent, under the 

filtrations by mCs and vice versa. An example would be a set of markedness Cs violated 

by [+voi] scaled by sonority, (e.g., a C m.d = no voiced stops, m.dv = no voiced stops or 

fricatives, etc.), and a set of faithfulness Cs violated by changed voicing value scaled in 

the opposite direction (e.g., f.v = faith to fricatives, f.dv = faith to stops and fricatives). 
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The nC and mC sets can also realize distinct scales, as in the system below, in which case 

such an equivalence relation is not derived. The T in these cases, Tn×m, cross combines Ps 

of a TnCore and TmCore. Classification of intermediate cases is beyond the scope of the 

present chapter. 

In Alber's (2015a) full SR typology, a markedness scale is defined by sonority, and a 

faithfulness scale by position (initial or internal). Her full system has 3 markedness Cs, 

for 3 levels of sonority, and 2 faithfulness Cs, general and positional. TSR2 simplifies to a 

2C markedness set, instantiating the most basic Tn×m system, where n, m = 2.15 ConSR2 

includes all of the constraints of ConSR, repeated below with the added faithfulness C, f1, 

violated by unfaithful mappings in internal positions only. GEN includes candidates with 

both initial (#) and internal (_) /sc/ clusters.  

47) SR2 GEN and Con 

a. Gen:   Inputs: /sc/, c ∈ {k, n}, k = [-sonorant], n = [+sonorant] 

Outputs: {#sc, #ʃc, _sc, _ʃc}, cout = cin. 

b. Con: m2: *{sk,sn} (m.kn) 

m1: *sk (m.k) 

f2: *(Sin, Sout): Sin = s & Sout = ʃ. 

f1: *(Sin, _Sout): Sin = s & _Sout = ʃ. 

The UVT and MOAT show that both stringency sets in this system meet the stringency 

definition. In the EPOs, isomorphic across the sets, each EPO(2) orders both EPO(1) 

equivalence classes; red boxes show the ordering in a top class, and blue in a lower.  

                                                
15For the full system, with a 3C markedness scale, see Alber's (2015a) insightful analysis. The current 
presentation departs from hers in the use of disjunctive scopes in nsPA, instead of repeating Ps in the 
treeoid. 
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48) TSR2  
a. UVT 

 f2 f1 m2 m1 
L1   2 2 
L2 1  2 1 
L3 2  1 1 
L4 1 1 2  
L5 2 1 1  
L6 2 2   

 
b. MOAT 

 C2 C1 
m EPO(m2) 

 

EPO(m1) 

 
f EPO(f2) 

 

EPO(f1) 

 
 

The wsPA cross-multiplies T2Core Ps in that each stringency set antagonist of one scale, 

C2 and {C2, C1}.dom, is antagonized with each such antagonist for the other, resulting in 

four properties. As in wsPA(TnCore), consistent value combinations are restricted by 

entailments and contradictions between the P values, generating 6 Γs (value table).  

49) wsPA(TSR2)  
a. Properties 

Properties α β  
P2.2:                 f2 <> m2 WeLe LeWe 
P2.1:                 f2 <> {m2,m1}.dom WeLL LeWW 
P1.2: {f2,f1}.dom <> m2 WWLe LLWe 
P1.1: {f2,f1}.dom <> {m2,m1}.dom WWLL LLWW 
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b. Value table 
Γ  P2.2 P2.1 P1.2 P1.1 
L1 α  α α α 
L2 α β α α 
L3 α β α β 
L4 β β α α 
L5 β β α β 
L6 β β β β 

 
The nsPA(TSR2) antagonizes each C from the n set with each from the m set individually 

(50). The scopes of nsPs are defined disjunctively: either of the rankings under which a 

more general C is dominated for either stringency set. For example, P1.1 antagonizes the 

less stringent Cs, m1 <> f1; a Γ has a value of P1.1 if either f1 > m2 (P1.2.α) (m2 is 

dominated; m1 and f1 conflict) or m1 > f2 (P2.1.β) (f2 is dominated, f1 and m1 conflict). 

The scope of P1.1, Σ(P1.1) is P2.1.β ⋁ P1.2.α. P1.2 and P2.1 scopes are defined by single 

P values, as both involve one of the more general Cs as an antagonist.  

50) nsPA(TSR2)  
a. Properties 

Properties Scope α β  
P2.2: f2 <> m2  WeLe LeWe 
P2.1: f2 <> m1 P2.2.α  WeeL LeeW 
P1.2: f1 <> m2 P2.2.β eWLe eLWe 
P1.1: f1 <> m1 P2.1.β ⋁ P1.2.α eWLe eLWe 

 
b. Value table 

 P2.2 P2.1 P1.2 P1.1 Ranking in Γ  
L1 α α   f2 > m2 & m1 
L2 α β  α f1 > m1 > f2 > m2  
L3 α β  β m1 > f2 & f1; f2 > m2 
L5 β  α α f1 > m2 & m1; m2 > f2 
L5 β  α β m1 > f1 > m2 > f2 
L6 β  β  m2 > f2 & f1 

 
The scopes are shown in the treeoid, reflecting the overlapping nature of the Ps. There are 

four overlapping T2Core-type treeoids embedded: P2.2 with each of P2.1 and P1.2, and 
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each of these with P1.1. The structure is distinct from the compositional nature of 

nsPA(T2CoreXY), with two independent T2Core structures. Dotted lines indicate disjunction 

in that for a P dominated by dotted lines, choice of any of dominating node requires 

choice of P value.  

51) Treeoid 

 
 
TSR2 is a T2×2; as with PA(T2Core) and PA(TnCore), the PA structure generalizes to 

PA(Tn×m) for any n and m values. The PA cross-combines Ps of PA(TnCore) and 

PA(TmCore) as above, essentially substituting each mC antagonist for X in a PA(TnCore) 

and vice versa. This multiplies the Ps, n×m total. Formally: 

∀(Pn, Pm): Pn ∈ PA(TnCore), Pm	∈PA(TmCore), 

 ∃Pn.m ∈ PA(Tn×m): α(Pn.m) = β(Pn) & β(Pn.m) = β(Pm).  

In a wsPA(Tn×m) each κ.dom from the n set, {A1,…,An} (red), is antagonized with each 

κ.dom from the m set,{B1,…, Bm} (blue) (ERC order: An.…A1|Bm….B1).  

52) wsPA(Tn×m) 
P α β 

Pn.m                   An <> Bm Wee…|Lee… Lee…|Wee… 
Pn.m̅                   An <> {Bm, Bm̅}.dom Wee…|LLe… Lee…|WWe… 
Pn̅.m {An, An̅}.dom <> Bm WWe…|Lee… LLe…|Wee… 
… … … … 
Pn.1                       An <> {Bm,…B1}.dom Wee…|LLL… Lee…|WWW… 
P1.m {An,…A1}.dom <> Bm WWW…|Lee… LLL…|Wee… 
… … … … 
P1.1 {An,…A1}.dom <> {Bm,…B1}.dom WWW…|LLL… LLL…|WWW… 
 

P2.2

α β

P2.1 P1.2

α β α β

P1.1

α β
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In nsPA(Tn×m) (53), the scope of each nsPx.y is defined by the disjunction of Σ(Px) in 

PA(TnCore) and Σ(Py) in PA(TmCore): Σ(Px.y) = Px+1.yβ ⋁ Px.y+1.α, the values that define, 

for each set, the rankings under which the more stringent C in that set is dominated.16  

53) nsPA(Tn×m) 
P Scope α β 

Pn.m An <> Bm  Wee…|Lee… Lee…|Wee… 
Pn.m̅ An <> Bm̅ Pn.m.α Wee…|eLe… Lee…|eWe… 
Pn̅.m An̅ <> Bm Pn.m.β eWe…|Lee… eLe…|Wee… 
… … … … … 
Pn.1 An <> B1 Pn.2.α Wee…|ee…L Lee…|ee…W 
P1.m A1 <> Bm P2.m.α  ee…W|eLe ee…L|Wee… 
… … … … … 
P1.1 A1 <> B1 P1.2.α ⋁	P2.1.β ee…W|ee…L ee…L|ee…W 

 

3.3.2.3 Multiple overlapping scales 

In the systems analyzed above, all stringency-related Cs are in the same ordered set. With 

multiple overlapping sets, a C1a and C1b may both be less stringent than C2, but lack a 

stringency relationship between them, defining two distinct ordered stringency sets, C2 > 

C1a and C2 > C1b. In COT, this may occur when the sets realize a scale over distinct 

domains. For example, consider two Cs, f.V.rt, root-faithfulness to [±voi], and f.+V, 

faithfulness to [+voi], not [-voi]. Both may be less stringent than a general [±voi] 

faithfulness, f.V, but are likely in no such relation relative to each other: f.V.rt refers to 

morphological structure, f.+V to a feature value17.  

In the AOT system T2.2core, there are two 2C stringency sets, sharing C2 as the more 

stringent in each. The mUVT and EPOs of these Cs are shown below. Each of the 

                                                
16The generalized PA does not lend itself to an easily representable treeoid structure, because it depends on 
n and m, ranging from uniform branching to lattice-like. See also §3.6 on treeoidal similarities with certain 
WOT PAs. 
17Whether these could end up in a derived stringency relationship depends on the particulars of the system. 
Prince & Tesar (2004:§6) construct an example where a stringency relation emerges between an f.σ1 (first 
syllable) and f.σ' (stressed syllable) under a hierarchy.   
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EPO(C1)s have the MOAT mark relative to EPO(C2): EPO(C2) orders the equivalence 

classes {L2, L4} in EPO(C1a) and {L3, L4} in EPO(C1b). The two C1 EPOs illustrate 

unrelated Cs.  

54) T2.2Core  
a. mUVT 

 C2 C1a C1b X 
L1 3 1 1  
L2 2  1 1 
L3 2 1  1 
L4 1   2 
L5    3 

 
b. EPOs 
EPO(C2) 

                
EPO(C1a) EPO(C1b) 

  
 

PA(T2.2Core) expands PA(T2Core) through replicating P1 for each C1. In wsPA, each occurs 

in a κ.dom with C2, but not with the other C1. In nsPA (below), the two P1s have the 

same scope: for either C1, its ranking relative to X depends on that of C2 and X (P2α). P1 

values combine freely, generating four Γs in which X > C2. The treeoid shows the 

duplication: the T2Core structure is refined through the lower-level split of a single P1 to 

separate Ps, both dominated by the same value. The structure is also a top-level 

collapsing of the two wsP nodes for nsPA(T2CoreXY), having a single P2.  
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55) nsPA(T2x2Core) 
a. Properties 

Property α β 
P2 X <> C2 WLee LWee 
nsP1a X <> C1a WeLe LeWe 
nsP1b X <> C1b WeeL LeeW 

 
b. Value table   

 P2 P1a P1b 
L1 α α α 
L2 α β α 
L3 α α β 
L4 α β β 
L5 β   

 

c. Treeoid    

 
 

The variations on the core structure examined here do not exhaust the possibilities—for 

example, the overlapping sets in the last case could have distinct antagonists—but serve 

to show how the intensional structure recurs across different systems with Cs in a 

stringency relation. Additional cases in the appendix involve a relation holding between a 

C and a set of Cs. The final subsection shows how understanding these core structures 

facilitates analysis of COT systems. In §3.4 cases of partial stringency are analyze; while 

greater departures from the core structure, the main characteristics emerge, alongside 

those of other relations.  

3.3.3 Stringency PAs in action: analyzing LingPulmAlt (LPA) 

As the previous sections show, stringency systems are characterized by a fundamental set 

of Ps, that expands in various systematic ways. Identification of a stringency relation in a 

system provides a near immediate analysis and understanding of its typology. Such a 

strategy is illustrated here for the COT system LingPulmAlt (LPA), a modification of 

Bennett (2017) LingPulm system analysis. It differs from his analysis in using general 

faithfulness Cs, rather than separate Cs specific to features [±lingual] or [±pulm].  

PA(T_2.2Core)
P2

α β

P1a P1b

α β α β
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The system derives Bennett's insight of the cross-linguistic distribution of nasal 

clicks. Oral clicks are more marked than nasal: any language with oral clicks also has 

nasal, but not vice versa. Additionally, some languages contextually restrict the 

distribution of clicks: they are less marked word-initially than in non-initial positions (see 

Bennett 2017 for detailed empirical typology). GEN and CON are given in (56); following 

Bennett, clicks are [+ling]; click nasality is distinguished by [±pulm]. Clicks are 

represented orthographically by capitals, N and Q, non-clicks by lowercase k and q. 

56) LPA: GEN and CON 
a. Segmental feature representations 

 +ling −ling 
+pulm N k 
−pulm Q q 
 

b. GEN: Inputs/outputs: Xa.Ya: X, Y ∈ {N, Q, k, q}  

c. CON  

m.L: *Q,N   violated by clicks 

m.Agr.P: *Qa,qa,aQ,aq  violated by adjacent segment [±pulm] disagreement  

f.F: *(Sin, Sout): [αF] ∈ Sin & [¬αF] ∈ Sout, F ∈ {[ling], [pulm]}. 

f.in.F: *(#Sin, #Sout): [αF] ∈ Sin & [¬αF] ∈ Sout, F ∈ {[ling], [pulm]} 

GEN produces 16 possible inputs, with 16 outputs each; 4 of these are a Universal 

Support18. These are shown below; HB candidates are removed, leaving 2 possible 

optima. 

 

 

 

                                                
18This was established after calculating the system with the full GEN. For all other csets, there is either a 
single optimum, or the mapping is predictable based on those of the 4 US csets.  
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57) LPA: US csets 
Input Output m.L m.Agr.P f.F f.in.F 
Naka Naka 1    
 kaka   1 1 
kaNa kaNa 1    
 kaka   1  
qaka qaka  1   
 kaka   1 1 
kaqa kaqa  2   
 kaka   1  

 

The stringency relation is identifiable from the mUVT and EPOs (58), which are 

equivalent to those of T2CoreXY. Over unfiltered K, f.F[K] = L9 ⊂ f.in.F[K] = {L5, L6, 

L9}; subset relations also hold for h = m.L and m.Agr.P.  

58)  LPA 
a. mUVT   
Γ m.L m.Agr.P f.F f.in.F 
L1   2 2 
L2  1 2 1 
L3  2 1 1 
L4 1  2 1 
L5 1 1 2  
L6 1 2 1  
L7 2  1 1 
L8 2 1 1  
L9 2 2   
 

b. EPOs 
EPO(f.F) EPO(f.inF) 

  
 



  109 
   

 

TLPA exactly instantiates T2CoreXY, with the markedness Cs, m.L and m.Agr.P, as X and Y. 

The full analysis follows (nsPs in (59)). The value table is extended to show the contexts 

in which N and q are faithful. The three choices of degree of faithfulness—none, initial # 

only, or all—are independently determined for each segment by the three value 

combinations in each subPA.  

59)  PA(LPA) 
a. Properties 

SubPA Ps  
L P2L m.L <> f.F                      

P1L  /P2L.α m.L <> f.in.F                                 
A P2A m.Arg.P <> f.F 

P1A   /P2A.α m.Arg.P <> f.in.F                 
 

b. Value table 
Γ  2L 1L 2A 1A N q 
L1 α α α α -- -- 
L2 α α α β -- #q 
L3 α α β  -- q 
L4 α β α α #N -- 
L5 α β α β #N #q 
L6 α β β  #N q 
L7 β  α α N -- 
L8 β  α β N #q 
L9 β  β  N q 

 

 
The results of the PA developments in this section thus provide the basic units of analysis 

for any system where a stringency relationship is shown to exist. Mitchley & DelBusso 

(in prep.) use this strategy in analyzing a very large and complex typology with 7 Cs and 

348 languages (from Mitchley 2016), by identifying a core stringency relation therein.  

3.4 Partial stringency 

In cases of partial stringency, two Cs are stringently-related under some, but not all 

hierarchies. Under those where they are not, other conflict or non-conflict relations 

between the Cs can obtain. But as stringency is somewhere present, so too are its 

characteristic structures, in MOATs and PAs, coexisting with the characteristic structures 

of other relations. This section analyzes three cases: two where stringency is 'lost' under 

some filtration product (TAP, TConf), the last where it is 'derived' (Tder). All are AOT 
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systems, constructed to isolate the relations of interest, generally resulting from 

simplifications of COT cases, as noted in the sections.  

3.4.1 Lost: stringency + non-conflict  

Prince (2000, 2001) characterized rankings in which a more stringent C dominates a less 

as anti-Paninian (AP). With a filtration definition, AP rankings do not occur with global 

stringency, but only where C2 filtration is not a subset of C1 filtration. For this loss of 

stringency to arise, there must be a hierarchy, h, such that h.C2[K] ⊈ h.C1[K] and under 

h[K], both C1 and C2 conflict independently with another antagonist X. For an AP 

ranking, C2> … >C1, C2 dominates X and h.C2[K] must be non-decisive so that C1 and 

X ranking determines optimum.  

In the AOT system TAP, h = Y, seen in the mUVT. Under this filtration, Y[K] = 

{L1.1, L2.1, L3.1.1, L3.1.2} there is no subset relationship between the filtrations of C2 

and C1. While L3.1.2 is in both, and L1.1 in neither, they split on L2.1 and L3.1.1, both 

conflicting with Y. Neither is stringent with regard to the other. As a result, TAP refines 

T2CoreXY by splitting a Γ in which C1 and X are not ranked into two distinct Γs.  

60) TAP mUVT 
 Y X C2 C1 
L1.1   3 2 
L2.1  1 3 1 
L3.1.1  2 2 2 
L3.1.2  3 2 1 
L1.2 1  2 1 
L1.3 2  1 1 
L2.2 1 1 2  
L2.3 2 1 1  
L3.2 1 2 1  
L3.3 2 2   
Y.C[K] -- L1.1 L3.1.1 

L3.1.2 
L2.1 
L3.1.2 
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In nsPA(TAP), all Ps are the same as in nsPA(T2CoreXY) (61). However, as Cs are not in a 

stringency relation under Y filtration, the scope of P1X, ranking C1 and X, expands to the 

P value defining h[K]: P2Y.α.The scope is the disjunction of P2X.α and P2Y.α, resulting in 

an additional possible value combination that splits L3.1 into L3.1.1 (a ΓAP) and L3.1.2. 

As with unrelated Cs generally (§3.2.1), each of C1 and C2 is separately antagonized 

with their joint antagonist X. The treeoid (61) shows the scope relations (recall from 

above that a P dominated by dotted lines is non-moot under any of the dominating 

values). 

61) PA(T1AP) 
a. Properties 

 Ps Scope α Β 
X P2X X <> C2         WeLe LeWe 

P1X X <> C1        P2X.α ⋁	P2Y.α WeeL LeeW 
Y P2Y Y <> C2         eWLe eLWe 

P1Y Y <> C1          P2Y.α eWeL eLeW 
 

b. Value table 
Γ P2X P1X P2Y P1Y Rankings 
L1.1 α α α α X & Y > C2 & C1 
L1.2 α α α β X > C1 > Y > C2 
L1.3 α α β  X > C2 & C1, C2 > Y 
L2.1 α β α α Y > C1 > X > C2 
L2.2 α β α β C1 > X & Y > C2 
L2.3 α β β  C1 > X > C2 > Y 
L3.1.1 β α α α Y > C2 > X > C1 
L3.1.2 β β α α Y > C2 & C1 > X 
L3.2 β β α β C1 > Y > C2 > X 
L3.3 β  β  C2 > X & Y 

 
c. Treeoid 

 

PA(T_1AP)

P2a P2b

β α α β

P1a P1b

α β α β
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A fully-wsPA is not possible: wsPA(T2CoreXY) cannot be manipulated to generate any 

additional Γs, as scopes cannot be widened and all unsubstantiated value combinations 

are inconsistent. In wsP1, domination of C1 entails domination of C2: any dominated 

κ.dom that includes C1 also includes C2. It is impossible to rank X and C1 to the 

exclusion of C2, ruling out any Γ where C2 > X > C1. To generate a ΓAP nsP1(s) are 

necessary, moot in some Γ(s).  

Further complicating, in AOT system T2AP, each of Y and X acts as a stringency-

losing h for the other antagonist. As with X, C1 ranking relative to Y occurs when 

X>C2>Y. Σ(P1Y) expands in a parallel way, generating an additional possible value 

combination, previously precluded by mootness that splits L1.3 of T2CoreXY by C1 and Y 

ranking.19 Only when C2 dominates both antagonists—P2X.β+P2Y.β—are nsP1s moot.  

62) PA(T2AP) 
a. Properties 

 Ps α β 
X nsP1X X <> C1         /P2X.α ⋁ P2Y.α WeeL LeeW 

P2X X <> C2        WeLe LeWe 
Y nsP1Y Y <> C1         /P2Y.α ⋁	P2X.α eWeL eLeW 

P2Y Y <> C2        eWLe eLWe 
 

b. Value table 
Γ P2X P1X P2Y P1Y Rankings 
L1.1 α α α α X & Y > C2 & C1 
L1.2 α α α β X > C1 > Y > C2 
L1.3.1 α α β α X > C2 > Y > C1 
L1.3.2 α α β β X > C2 & C1 > Y 
L2.1 α β α α Y > C1 > X > C2 
L2.2 α β α β C1 > X & Y > C2 
L2.3 α β β β C1 > X > C2 > Y 
L3.1.1 β α α α Y > C2 > X > C1 
L3.1.2 β β α α Y > C2 & C1 > X 
L3.2 β β α β C1 > Y > C2 > X 
L3.3 β  β  C2 > X & Y 

                                                
19Other logically possible combinations are transitively contradictory, i.e., X > C2 > Y and Y > C1 > X.  
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The treeoids highlight the difference to the PA structure between nsPA(T2CoreXY) and 

nsPA(T2AP). In the former, each antagonist-defined subPA involves distinct Ps; in the 

latter, the disjunctive scopes indicate P sharing. The result of such sharing widens the set 

of possible value combinations, though total free combinability is curtailed by 

contradictory rankings.  

63) nsPA(T2CoreXY) and nsPA(T2AP) treeoids  
        PA(T2CoreXY)       PA(T2AP) 

  
 

Partial stringency can coexist in the same system as global, for different sets of Cs (e.g. 

Mitchley 2016; also Mitchley & DelBusso in prep.).  

3.4.2 Lost: stringency + conflict 

While C2 and C1 in TAP are not globally stringent, they do not conflict. Any ordering 

between them in Γs is by transitivity of other rankings. Two Cs can also be related both 

stringently and conflictingly, an apparent contradiction. However, recall that partial 

stringency holds for some filtration products only; over these, the Cs cannot conflict, by 

the stringent relationship, but non-conflict is not entailed for other h[K]s where no 

stringency exists. LVT (9) illustrates such a case: for h = ∅, the stringency-defining 

filtration subset relation holds; however, under a non-empty h[K], C2 and C1 conflict.  

A simplification of LVT is modeled by the AOT system TConf, (UVT in (64), EPOs 

repeated from (27)a), which refines T2Core by splitting L1, where C2 and C1 are 

T.xy.9

P2x P2y

α β α β

P1x P1y

α β α β

T.xy.11

P2x P2y

α β α β

P1x P1y

α β α β
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dominated but not themselves ordered. The splittees, L1.1 and L1.2 in TConf, are the 

filtration product under h = X. Clearly, C1 and C2 ordering is crucial to deciding between 

these. C1 and C2 conflict by the definition of conflict: λ1 ∈ L1.1 = X.C2.C1.Q and λ2 ∈ 

L1.2 = X.C1.C2.Q. 

64) TConf  
a. UVT 
 X C2 C1 
L1.1  1 2 
L1.2  2 1 
L2 1 1  
L3 2   

 

b. EPOs 
EPO(C2) EPO(C1) 

  
 

 

The PA shows the dual stringency + conflicting relationship between the Cs in having the 

hallmarks of both stringency systems (T2Core Ps) and conflicting Cs (antagonists in P1|1C). 

In TConf, h = X, so the scope of the conflict, Σ(P1|1C) is P2.α, X > C2; the conflict 

between C2 and C1 is limited to Γs in which C2 is dominated. Either wsP1 or nsP1 is 

possible, but P1|1C is necessarily ns.  

65) PA(TConf)  
wsPA(TConf)  nsPA(TConf) 
P Scope P Scope 
P2: X <> C2  P2: X <> C2  
wsP1: X <> {C1, C2}.dom  nsP1: X <> C1 /P2.α 
P1|1C: C2 <> C1 /P2.α P1|1C: C2 <> C1 /P2.α 
Γ  P2 wsP1 P1|1C Γ P2 nsP1 P1|1C 
L1.1 α: WLe α: WLL α: eWL L1.1 α: WLe α: WeL α: eWL 
L1.2 α: WLe α: WLL β: eLW L1.2 α: WLe α: WeL β: eLW 
L2 α: WLe β: LWW β: eLW L2 α: WLe β: LeW β: eLW 
L3 β: LWe β: LWW  L3 β: LWe   
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The treeoid is a PA(T2Core) structure, refined by the addition of P1|1c: the same central 

ranking choices in T2Core are made in TConf, but there is an further choice in the latter. The 

structure is the same as that of the overlapping scales, T22Core (55)c, but the content of the 

Ps crucially differs. In PA(T22Core), each P1 antagonized X with a distinct C1; in PA(T-

Conf) the shared antagonist of P1 and P1|1c is not X but C1.   

66) PA(TConf) treeoid 

 
 

While there are four logical value combinations of P1 and P1|1C, given their scopes, one 

is inconsistent: C1 and C2 are transitively ranked in L2, entailing P1|1C.β. A P1|1C value 

is not necessary to generate L2. C2 and C1 only conflict as defined in (13)—having a 

BPP—in L1.1 and L1.2, the filtration product under X (the sole arrow reversal in the 

EPOs in (27)b).  

3.4.3 Derived stringency  

Derived partial stringency is the reverse of lost: a stringency relation for a C1 and C2 

emerges only under a filtration by a non-empty h, but not over unfiltered K. The 

characteristic MOAT and PA structures of stringency occur embedded within a larger 

structure. The EPOs for an AOT system modeling this, Tder
20, are shown in (27)a. The 

mUVT is below. Here, h = Y; filtration Y[K] = {L1, L2, L3} defines the scope of the C2 

                                                
20While not abstracted from a full COT system, Tder was constructed after a case given in Prince & Tesar 
2004:42-3. 

P2

α β

P1 P1|1c

α β α β
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and C1 stringency relation. Outside this scope, no such relation exists; C1 conflicts 

independently with {X, Y}.dom, while C2 does not.  

67) UVT: Tder 
 Y X C2 C1 
L1   2 1 
L2  1 2  
L3  2 1  
L4 2 1   
L5 1   1 

 

PA(Tdef) includes PA(TCore), scoped in the h–defining value P1|1Y.α (68). The opposite 

value, P1|1Y.β, is the scope under which C1 conflicts with {X, Y}.dom. The PA(T2Core) 

embedding is highlighted by the treeoid: PA(T2Core) = {P2, P1} (boxed) occurs under 

P1|1Y.α. While PA(TConf) embedded a P within PA(T2Core), PA(Tder) embeds PA(T2Core).  

68) PA(Tder)  
a. Properties 

Properties Scope α β  
P1|1Y: Y <> C2  WeLe LeWe 
P2: X <> C2 P1|1.α  eWLe eLWe 
P1: X <> C1 P2.α eWeL eLeW 
P1|2: {X, Y}.dom <> C1 P1|1.β WWeL LLeW 

 
b. Value table 

 P1|1Y P2 P1 P1|2 Ranking  
L1 α α α  Y > C2; X > C1, C1 
L2 α α β  Y > C2; C1 > X > C2  
L3 α β   Y > C2 > X (C1 unranked) 
L4 β   β C2 > Y; C1 > X & Y 
L5 β   α C2 > Y; X|Y > C1 

 
c. Treeoid  

 

P1.1Y

α β

P2 P1|2

α β α β

P1

α β
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Though a non-exhaustive survey of kinds of C relations combinations, these cases of 

partial stringency show how the core structure occurs within Ts and PA, coexistent with 

other relations and the Ps that generate them. Other combinations are possible, using the 

core stringency PA pieces in different ways. For example, where Cs are equivalent and 

stringent, scopal inversion can occur, where the wsP has a κ.dom of stringent + 

equivalent Cs, while that antagonizing a C2 is ns—and that with C1 even more ns.  

3.5 Stringency PAs and extensional classification  

The languages of stringency system typologies realize steps along a scale governing the 

distribution of a marked extensional trait in the languages' optima. They range from 

having the marked trait in all, none, or some (aspect of) optima. How this is realized 

depends on the scale. For example, with a positional scale, the marked trait may be 

limited to a subset of environments. For a multi-point sonority-syllable peak scale, .V. 

>m.N. >m.T., a language may allow some less sonorous (N) peaks, but not the least (T).  

These options correlate with P values: in a TnCore system, a Pn (X <> Cn) makes a 

categorical classification of none vs. some. Each Px, x<n, makes the same classification 

over a smaller subset of cases. Uniform-value Γs (all-α/β) represent the ends of the scale, 

none (least marked) and all (most marked); those defined by combinations of α's and β's 

are the mixed some cases. Whether none correlates with α or β depends on whether the 

trait defined as 'marked' violates or satisfies the Cs in the stringency set. 

In the next chapter, the extensional traits determined by a T3Core are examined in 

detail. Here, the more complex case of the Alber-based S-retraction system, TSR2 

(§3.3.2.2), shows how they play out with inter-connected scales. In this system, 

languages vary in the degree of SR (non-faithfulness) in their optima; lack of retraction, 
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sc (faithfulness), is the 'marked' trait. SR distribution is scaled both by position (f Cs, 

internal vs. initial) and sonority (m Cs), deriving two generalizations (Alber 2015): a 

language may have SR in initial positions only, but no language has it in internal only; 

and a language may have SR before obstruents, but not sonorants only. The nsPA value 

table is repeated below, along with the optima for US csets; retracted [s] ([ʃ]) is shaded 

teal; initial and internal contexts are notated by # and _, respectively.  

69) Stringency and extensional classification: TSR2 
 P values Inputs Classification: SR 
Γ  P2.2 P2.1 P1.2 P1.1 #sn #sk _sn _sk _k _n all 
L1 α  α   #sn #sk _sn _sk no no  None 
L2 α β  α #sn #ʃk _sn _sk initial no 

Some L3 α β  β #sn #ʃk _sn _ʃk all no 
L4 β  α α #ʃn #ʃk _sn _sk initial initial 
L5 β  α β #ʃn #ʃk _sn _ʃk all initial 
L6 β  β  #ʃn #ʃk _ʃn _ʃk all all All 
 

A P.β value correlates with SR; a P.α value with faithfulness (not all SR). The more αs, 

the more faithful (more 'marked' on the scale), more βs, the more SR (less 'marked'). 

70) PA(TSR2): extensional traits 
P SR before Degree of marked trait (faithful) 

α β  
P2.2 initial c some: [#sn] none: all [#ʃc] 
P2.1 initial obstruents all: [#sc] some: [#ʃk] 
P1.2 internal c some: [_sn] none: [_ʃc] 
P1.1 internal obstruents all: [_sk] none: [_ʃk] 

 

The all/some/none set of extensional choices is the same set postulated to organize all 

syntactic typologies under the Parameter Hierarchies theory of Rethinking Comparative 

Syntax (ReCoS) project (Roberts 2010, 2012). Their proposal of typological structure is 

compared to PT in next chapter in the context of the word orders typology from the Final-

over-Final-Condition (FOFC). 
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3.6 Stringency systems and Weak Order Typologies 

Global stringency systems are a class of OT Ts sharing an intensional structure; this 

section compares this class with another: the Weak Order Typologies (WOTs) analyzed 

by DelBusso & Prince (D&P, in prep.). WOTs are characterized by different C relations, 

lacking stringency and having both conflict and non-stringent non-conflict. In WOTs, all 

Γs have isomorphic ranking structures, all permutations of CON over a particular weak 

orderings structure. They are named for the number of Cs in each ranking level; a 2-level 

WOT (2WOT), T.n|m, has n Cs in the top tier and m in the bottom. WOT structure and 

PAs are the subject of D&P and D (in prep.), where they are analyzed using (multiple 

kinds of) two distinct structures: one ws, using more κ.ops, the other ns. 

While non-equivalent classes of T, parallels arise between T.n|ms and Tn×ms, 

especially in the scope structure of their (ns)PAs. These occur because of the non-

rankings that occur in both: in a Tn×m among stringency Cs and in T.n|m among members 

of the same ranking level.   

The 4C 2WOT T.1|3 and the core stringency T1×3 are used to exemplify the PA 

symmetries and Γ differences, which also hold when n>1. Note that because T1×3 = T3×1 

by reversing the order of P statements, T1×3 correlates equally with T.3|1, the inverse of 

T.1|3.21 T.1|3 Γs are shown in (71) (P values from PA below). All Γs have a single 

distinct C dominating the other 3 Cs (the tops in M&P's terminology). 

 

 

 

                                                
21PA(T.1|3) maps to PA(T.3|1) by swapping all 'dom's in PA(T.1|3) for 'sub's and α for β in value 
tables. This holds generally for any PA(T.n|m) and PA(T.m|n). 
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71) T.1|3 Γs 
x-top (ααα) y-top (ααβ) z-top (αβ-) w-top (β--) 

    
 

The Γs in a Tn×m have distinct ranking structures, with some Cs are not crucially ranked 

(72); P values from nsPA(T3Core). Only L1 is isomorphic to a ΓT.1|3. L2 is a 3-level WO 

1|1|2; L3 and L4 are not WOs. 

72) T1×3 Γs 
L1 (ααα) L2 (ααβ) L3 (αβ-) L4 (β--) 

 

  

 

 

Mapping the Γs of each T to the 4C permutohedron (73) further highlights the 

differences. T.1|3 Γ all have six λs, covering a hexagonal face of the truncated 

octahedron. T1×3 Γs differ in number of λs and cover different size/shape regions: L1 is a 

hexagonal face (6 λ); L2 an edge (2 λ); L3 three edges (4 λ); L4 half of the λs (12) of the 

permutohedron. 
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73) Permutohedra 
T13 T.1|3 
Constraints:            
x = C3 
y = C2 
z = C1 
w = X 

Γ: 
L1 = red 
L2 = purple 
L3 = green 
L4 = blue  

Γ: 
w-top = red 
y-top = purple 
z-top = green 
x-top = blue 

  
 

Despite the non-equivalence, symmetries between the systems occur. They have the same 

number of Γs: !!!
! =  !!!

! .22  When n or m = 1, the typohedra of are isomorphic. For 

the example systems, n = 1, the typohedra are tetrahedra (74).  

74) Typohedra 
T1×3 

 

T.1|3 

 
 
In both Ts, all Γs are adjacent, but for distinct reasons: in T.1|3, in each Γ the 3 

dominated (non-top) Cs are unordered, with all permutations instantiated in some λ(Γ). 

                                                
22 See D&P on WOTs. 
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There is a BPP for each pair of Γs, swapping the top two Cs in λ. For example, λx = xyzw 

and λy = yxzw are a BPP for x-top and y-top.  

Adjacency among T1×3 Γs arises because the locus of variation between these is 

ranking of the stringency Cs and X; in all but the two extremes. No two Γs differ in the 

ranking of more than one stringency-set C relative to X, because once a Cx > X, all Ci, 

i>x are unranked, allowing for any ordering of them in the λ. This non-ranking allows for 

total typohedral adjacency. 

The nsPA(Tnm) and D&P's MA.PA(T.n|m) have the same scopal structure, 

highlighted by their treeoids (75), though they necessarily differ in P content. 

75) MA.PA(T.1|3) & PA(T1×3) 
 MA.PA(T.1|3) (D&P) PA(T1×3) 
Properties P.1|3: P̂1|2.dom <> w 

P.1|2: P̂1|1.dom <> z  /P1|3α 
P.1|1: y <> x              /P1|2α 

P3: X <> C3 
P2: X <> C2    /P3α 
P1: X <> C1    /P2α 

Value 
tables 

Γ  P1|3 P1|2 P1|1 MIB Γ  P3 P2 P1 MIB 
x-top α α α WLLL L1 α α α WLLL 
y-top α α β LWLL L2 α α β LLLW, WLLe 
z-top α β  LLWL L3 α β  LLWe, WLee 
w-top β   LLLW L4 β   LWee 

Treeoids 

  
 
In both, for each Px in each PA, if Px.β ∈ Γ, then all dependent nsPs are moot in Γ: this 

value indicates that all crucial rankings are accounted for. In T.1|3, this results from the 

use of κ.dom, ranking a 'top' C relative to all others. For example, if z > xy.dom in Γ, then 

x and y are not crucially ranked in λs ∈ Γ. In T1×3, it results from the fact that in such 

P1|3

α β

P1|2

α β

P1|1

α β

P3

α β

P2

α β

P1

α β
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systems, when the more stringent C is dominant, all others in the set are not crucially 

ranked: if Cx > X ∈ Γ, then X and {Cx̅,…C1} are not ranked in λ(Γ).23  

3.7 Summary  

This chapter developed a definition of stringency based on filtration patterns, linking it to 

the formal structure of OT typologies and constraint relations. It showed how the relation 

is a kind of non-conflicting relation, situating it within the larger scope of kinds of C 

interactions. The definition and its MOAT properties also led to the identification of 

partial stringency, where the core interactions occur in limited domain.  

PAs bring out the common intensional structure of stringency systems, occurring in 

all systems realizing the relationship. These results both deepen understanding of PAs 

and the class of stringency systems, and also provide a tool of analysis: if a stringency 

relation is identified within a typology (from MOAT and/or UVT scrutiny) the core 

properties exist in the full PA. This can be used both to yield quick grasp of simple 

systems, as for LPA above, or to crack more complex cases, where such Ps comprise part 

of the full PA.  

PAs also shed further light on the extensional side of stringency. Their values 

precisely characterize the position on a linguistic scale, classifying the languages by the 

degree to which a phenomenon is manifested in it.   

A. Appendix: further aberrations of stringency 

Other variations on the common core occur when a C stands in a relation to a set of Cs. 

This is a common feature of Ts, and the reason for the use of κ.ops in properties: a C 

                                                
232WOTs have several nsPAs based on different κs. MA uses uniform branching κ trees (ch. 2). 
Other analyses lose the symmetries with stringency PA(Tnm)s. 
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may conflict not with each member of the class individually, but as a group. This 

appendix examines such cases involving a stringency relation. These are given in 

succinct form, with a basic description, EPOs, and PAs. 

A.1. Less stringent than a set of Cs 

Two cases are examined in which C1 is less stringent than the joint filtration of two other 

Cs, C2a, C2b: its filtration is either a) a superset of the intersection of the C2 filtrations: 

C1[K] ⊇ [C2a[K] ⋂	C2b[K]]24; or b) a superset of their union C1[K] ⊇ [C2.1[K] ⋃	

C2.2[K]]. The mUVTs, with filtrations for when h = ∅ in the final row, are below25. 	

76) Intersection & Union stringency mUVTs 
Int X C2a C2b C1 Un X C2a C2b C1 
L1  1 1 1 L1  1 1 1 
L2 1 1 1  L2 1 1 1  
L3 1 1  1 L3 2  1  
L4 2 1   L4 2 1   
L5 1  1 1 L5 3    
L6 2  1       
L7 3         
  {5,6,7} {3,4,7} {2,4,6,7}   {3,5} {4,5} {2,3,4,5} 
  ⋂	= {7}    ⋃ = {3,4,5}  

 

In the intersection case, C1 is only unranked in L7. Its ranking relative to X remains 

contingent on the C2s, but occur when X dominates either of these. In the PA, the scope 

of nsP1 is the disjunction of the P values under which this obtains: P2a.α∨P2b.α. In the 

union case, C1 and X are only ranked when X dominates both C2s. The PA similarly 

changes the scope of nsP1, in this case to the conjunction of the values, P2a.α∧P2b.α. 

                                                
24Or their sequential filtrations: h.C2b.C2a[K] or reverse.  
25In both cases shown here, C2a and C2b are non-conflicting. This is not a necessary feature of 
systems having the kind of stringency described here. 
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The difference in the treeoidal representations is captured by the different line types for 

scopes: dotted individual lines for disjunctive, solid lines joined together for conjunctive. 

77) Intersection & Union stringency PAs 
a. Properties (both) 

Property Value ERCs 
α β 

P2a X <> C2a WLee LWee 
P2b X <> C2b WeLe LeWe 
nsP1 X <> C1 WeeL LeeW 

 
b. PA(Tint) value table PA(Tun) value table 

 P2a P2b P1   P2a P2b P1 
L1 α α α  L1 α α α 
L2 α α β  L2 α α β 
L3 α β  α  L3 α β  
L4 α β β  L4 β α  
L5 β α α  L5 β β  
L6 β α β   
L7 β β   
 

c. PA(Tint) treeoid    PA(Tun) treeoid 

    
 

A.2.  Equal to a set, stringent for each  

This case holds when C2 is only more stringent than each of two C1s individually, but 

equal to their combination, arising when the less stringent Cs are defined on 

complementary subsets of C2. Prince's (2002) definition (fn 3 above) divides G's (=C2) 

violations between S (=C1) and D. If D is also realized as a separate C, then G's filtration 

is a subset of each individually, but is equal to the intersection of their filtrations. For 

PA(T_int)

P2a P2b

β α α β

P1

α β

PA(T_un)

P2a P2b

β α α β

P1

α β
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example, if CON includes f.V, and f.+V, and f.-V. TS+D (adopting Prince's notations of G 

= C2, S, D = C1's) is shown in UVT below.  

78) TS+D mUVT 
 X G S D 
L1  2 1 1 
L2 1 1 1  
L3 1 1  1 
L4 2    

 

As G is equivalent to S+D (literally, its violations sum of theirs), it cannot be antagonized 

with X in a wsP independently of S and D. In L4, either G or both S and D dominate X. 

G occurs in a κ.dom with each of S and D in a P, with free combination of their values 

generating TS+D (79).  

79) PA(TS+D) 
P1S: X <> {G, S}.dom 
P1D: X <> {G, D}.dom 
Γ  P1S P1D Ranking 
L1 α: WLLe α: WLeL X > G, S, D 
L2 α: WLLe β: LWeW D > X > G, S 
L3 β: LWWe α: WLeL S > X > G, D 
L4 β: LWWe β: LWeW G | S+D > X 
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4 The Final-Over-Final Condition and Typological Structure 

4.1 Introduction  

Linguistic theory must account for both the universals that hold of all languages and their 

variation within these limits. A theory generates a typology: the set of languages 

describable given the set of assumptions. It defines both the limits of the space of 

variation and the dimensions within that space on which languages can differ. Recent 

work under the theory of Parameter Hierarchies (Reconsidering Comparative Syntax 

project; ReCoS, Robert 2010, 2012, et seq.) and Property Theory (A&P, ADP) explicitly 

probes the internal structure of linguistic typologies, analyzing them as sets of choices 

with inter-dependencies limiting possible combinations. While sharing a common goal of 

explicating typological organization, these theories differ in significant ways.  

To compare the proposals, this chapter analyzes a significant cross-linguistic 

generalization on possible word orders: the Final-over-Final Condition (FOFC; 

Biberauer, Holmberg and Roberts (BHR) 2014, Sheehan et al. 2017 and references 

therein). The condition expresses a gap in the typology of orders and has been a topic of 

much follow-up work. The current chapter focuses on the original analysis in BHR 

(reviewed in §4.4)1. This typology is also central to the development of the Parameter 

Hierarchy theory. The FOFC hierarchy illustrates the core aspects of the proposal: 

distinct parameter settings determine head-directionality of syntactic phrases in 

languages. 

This chapter presents analyses within OT, deriving the central generalization as stated 

in BHR. The analysis defines a set of constraints in a stringency relationship over 

                                                
1BHR is not the only analysis of FOFC; they discuss some alternatives in §3 of their online supplement. 
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positions within an Extended Projection (EP; Grimshaw 2005). The internal structure of 

typology is analyzed in Property Theory, explicating how the pieces of the theory 

generate the empirical condition. The property analyses reveal a central organizing 

structure into a set of properties whose values generate the precise ranking conditions 

aligning with the extensional trait of degree of head-finality in phrases in the language's 

optima. A language's property values fully determine the shape of its syntactic phrases.  

FOFC follows as a consequence of the logic of OT stringency systems (chapter 3) in 

any system realizing the central set of stringency-related syntactic structural constraints 

defined over subsets of adjacent phrases within an Extended Projection. This chapter 

develops a set of analyses that realize this scale in distinct ways but produce intensionally 

equivalent systems (§4.3). OT systems with stringency constraints share a common 

intensional structure, regardless of the particular linguistic phenomena they explicate, as 

shown in chapter 3. While optima across such systems are extensionally distinct, the PAs 

and the logic of the explanation are the same. The property analyses further predict 

exactly the possible historical paths of word order change reported in BHR using Alber's 

(2015ab) Property Theory-based theory of diachronic variation (§4.6). 

The Parameter Hierarchy proposal and Property Theory both aim to explicate 

typological structure more generally and use conceptually similar tools: parameters and 

properties (§4.5). Both structure the FOFC typology into the same range of extensional 

choices with crucial independencies among them. However, they differ in the structure 

over the choices, reflecting a deeper division in its relation to the analysis of FOFC and 

the source of the hierarchies. Property Theory discerns an intrinsic but non-obvious 

structure that is entailed by the core logic of OT. Parameter hierarchies result from a 
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separate hypothesis, additional to and distinct from, the theoretical explanation of the 

analysis itself. 

4.2 FOFC and Extended Projections 

The Final-Over-Final-Condition2 (FOFC) is a cross-linguistic generalization discovered 

through BHR's detailed empirical investigation. Variation in word order in syntactic 

phrases is restricted as in (1); structures satisfying and violating it are schematized in (2) 

(BHR, p. 171, (1), (2)).  

1) FOFC: A head-final phrase βP cannot dominate a head-initial phrase αP, where α 

and β are heads in the same extended projection: *[βP [αP α γP] β].  

2) FOFC satisfying and violating word orders 
a. All head-initial 
     βP  ty 
β  αP         ty 
        α        γP 

b. All head-final 
            βP         ty       αP        β   ty 
γP  α 

c. Initial-over-final 
     βP  ty 
β αP               ty 
      γP        α 

d. *Final-over-initial 
           βP        ty 
     αP        β  ty 
α  γP 

 
BHR characterize uniformly headed orders (2)a-b) as harmonic and the non-uniform 

(2)c-d) as disharmonic; however, they show that only (d) is cross-linguistically banned, 

based on extensive cross-linguistic study. The FOFC generalization holds for any 

adjacent pair of heads within the same Extended Projection (EP), and thus transitively for 

all heads therein. It results in a implicational statement: if β is head-final in a language, 

then α is, but not vice versa.   

An Extended Projection (EP), the domain over which the condition holds, is a 

contiguous sequence of projections consisting of a lexical head at the base and the 

                                                
2The name abbreviates the implicational statement—final in higher only if final in lower. However, a final-
over-final structure is only one of the allowable structures; an alternative name is FOIC, the uniquely 
banned final-over-initial structure. 
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"functional shell" surrounding the lexical projection (Grimshaw 2005:2). The categorial 

feature, F, of the entire projection is inherited from the lexical category of the lexical 

head at the base of the EPF, such as [+V] for verbal, [-V]/[+N] for nominal, etc. 

Grimshaw (2005:4 (3)) defines head and projection as follows.  

3) X is a head of YP, YP is a projection of X iff: 

a. YP dominates X. 

b. The categorial features of YP and X are consistent. 

c. There is no inconsistency in the categorial features of all nodes intervening 

between X and YP (where a node N intervenes between X and YP if YP 

dominates X and N and N dominates X).  

Heads within an EP are ordered by their functional value, f-value fn, with the lexical head 

being f0, and heads above it having successively higher values. Heads are ordered in an 

EP such that either: a) the f-value of X is lower than the f-value of YP; or b) the f-value 

of X is not higher than the f-value of YP (Grimshaw 2005:4 (4)). 

BHR's definition of an EP departs from that of Grimshaw, allowing a matrix clause V 

and a subordinate CP complement to belong to the same EP, impossible by Grimshaw's 

(2005) definition (BHR pp. 198-9, 211; see Biberauer & Sheehan 2012 for an analysis 

following Grimshaw's definition). The present chapter does not analyze the cases for 

which BHR require this alternative, and follows Grimshaw.  

The possible orders for an EP with three heads of distinct f-value (a 3-head EP; the 

case examined in the analyses here) are given in (4)). The four FOFC-violating structures 

are marked '*' and annotated with the offending pair of heads, where >d indicates 

structural dominance.   
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4) 3-hd EP: FOFC satisfying and violating word orders 

sa
tis

fy
in

g 

   δP ty 
δ       βP     ty 
   β  αP 
         ty 
        α        γP  

   δP ty 
δ       βP     ty 
   β  αP 
         ty 
        γP       α 

    δP ty 
δ       βP          ty 
   αP        β ty 
γP      α 

            δP         ty 
        βP     δ     ty 
   αP       β ty 
γP      α 

vi
ol

at
in

g 

*final δ >d initial β  
            δP         ty 
        βP     δ     ty 
   β        αP          ty 
         α       γP 

*final δ >d initial β 
            δP         ty 
        βP     δ     ty 
   β  αP 
         ty 
        γP       α 

*final β >d initial α 
    δP ty 
δ       βP          ty 
   αP        β ty 
α       γP 

*final β >d initial α 
            δP         ty 
        βP     δ     ty 
   αP       β ty 
α       γP 

 
As the number of heads in the EP increases, the number of logically possible orders of 

heads and complements increases exponentially (2! for an EP with n f-value-distinct 

heads) but the number of FOFC-satisfying orders increases linearly (n + 1). It is this 

typology—the n + 1 FOFC word orders and none of the violating ones—that BHR and 

the present analyses aim to derive. 

BHR derive the FOFC typology by restricting the distribution of a movement-

triggering feature within an EP (§4.4). If this feature is present on a head, the complement 

moves to precede the head (head-finality); if not, the head precedes its complement 

(head-initial). BHR state "FOFC is then seen as an effect of "spreading" or inheritance of 

this feature from the lexical head up, from head to head within the extended projection, 

observing standard locality conditions on head-to-head relations" (p. 206).  

FOFC is stated as a universal absolute, but potential counter-examples have been 

found and discussed (BHR §3, Biberauer 2017, Erlewine 2017, and references therein). 

The responses to such cases general fall into three main categories (adapted from 

Erlewine (57)): a) reject FOFC as wrong; b) show that the exception is not a counter-

example, because it is not subject to the FOFC for some reason; or c) modify FOFC.  
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When FOFC is derived from the interaction of constraints in an OT system, 

exceptions receive a different explanation (see also Grimshaw 2013a on Minimalist and 

OT differences). In the analyses developed here using only core syntactic structure 

constraints, all non-FOFC candidates are harmonically bounded (HB), non-optimal under 

any ranking of the constraints in CON (Samek-Lodovici & Prince 2002). No exceptions 

are possible optima. However, harmonic bounding holds within a defined system, and 

can be lost when the system is modified. Non-FOFC candidates can become optimal if 

some other constraint(s) favoring them for a subset of cases are added, under rankings 

where the added constraints dominate those constraints whose satisfaction derives FOFC. 

Potential exception-generating constraints include: morpho-syntactic constraints that 

require some heads to surface as suffixes (Grimshaw, p.c.); and prosodic or discourse 

interface constraints that require 'light' or focused/topicalized elements to be edgemost. 

Exploration of this interface-exceptionality hypothesis is a topic of further research.  

4.3 Analyses: Deriving FOFC 

This section develops three OT systems analyzing the FOFC word order typology, called 

Sym(metric)L, Asym(metric)L, and Asym(metric)O, where the names abbreviate aspects 

of GEN and of CON on which they differ. All generate BHR's FOFC word-order typology 

by virtue of sharing the core component of a set of stringently-related constraints 

targeting syntactic head alignment in ordered positions within an EP. The FOFC typology 

follows from the logic of stringency systems. The stability of the result under these 

analyses underscores the crucial role of the stringency scale and also shows that it is 

realizable in typological equivalent systems using distinct syntactic representations and 

constraints. 
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The central component of all analyses is a set-inclusion stringency scale built on 

recognized structural constraints (Cs) from the literature (Grimshaw 2001 et seq.) and 

defined over ordered sequences of head in an EP. Cs on the scale assign violations to 

restricted subsets of heads or projections based on their functional values (fn value) in 

EP. The scale derives the result that the possible optimality of any candidate with head-

finality in any projection depends on the order in an immediately lower or higher 

projection in that candidate structure.  

The three variations defined below differ in which structural C the scale is built on: 

the alignment C Head-Left (HdL, in systems SymL, AsymL), or the obligatory-element 

C Obligatory-Specifier (ObSp, in system AsymO)3. They accordingly also differ in the 

antagonist to this set, a general structural C from the set {HdL, ObSp, CompL} 

(Grimshaw 2001).  

The three typologies are both surface-order extensionally equivalent and intensionally 

equivalent; a system that includes a set of structural Cs scaled to heads by EP level entails 

the FOFC typology. That there are various possible instantiations of the necessary 

components replicates Bennett & DelBusso's (to appear) finding that for an Agreement-

by-Correspondence (ABC) typology to produce languages with dissimilation, some 

correspondence C(s) in the system must have their evaluation domain restricted (by 

reference to features or other structures), but that restricting either type of correspondence 

C thusly produces the same result.  

                                                
3A third option builds the scale on CompL (using GenSymL); the resulting T is equivalent to TSymL, up to C 
relabeling.  
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4.3.1 The Systems: GENs and CONs 

This section defines the systems, summarized below by the three dimensions of variation: 

i) GEN: symmetric (no movement) or antisymmetric (with movement) syntax; ii) CON: 

the EP-scaled C: HdL or ObSp; iii) CON: the antagonist C: HdL, ObSp, or CompL. 

5) Three systems summary4 
System SymL AsymL AsymO 

GEN Symmetric Antisymmetric 
EP scaled C HdL ObSp 
Antagonist C CompL ObSp HdL 

 
The two GENs defined in this section differ in the base structures possible and in whether 

a projection in the input can appear in the different position in the output (movement). 

Both are simplified to generate a set of structures that vary in terms of surface order of 

heads and complements; other factors are held constant. The alternatives generate distinct 

structures for head-final orders. In GENSym, either order of head and complement is 

possible in a projection (symmetric syntax); in GENAsym, phrases a strictly right-

branching, with head-final order resulting from movement of the complement 

(antisymmetric syntax). 

The definitions use standard terminology of syntactic X-bar structure: a specifier 

(spec) of projection XP is a maximal projection, YP, sister to X'; a complement (comp) is 

a maximal projection, ZP, sister to head X (6).  

 

                                                
4The other 9 of 12 logically possible combinations on these criteria are eliminated as follows: 
• 4: same C type (HdL or ObSp) as both the scale and the antagonist (no conflict). 
• 3: GenSymL + ObSp (scale or antagonist): ObSp cannot be satisfied by movement of a complement; it is 

equally violated by all candidates (satisfaction requires insertion of some kind, not allowed by GenSym 
nor relevant to the word order variation under analysis). 

• 2: Asym + CompL antagonist: with GenAsym, CompL is filtrationally-equivalent to the most stringent 
HdL; it cannot be an antagonist to a HdL scale; antagonized to an ObSp scale, the T is equivalent to 
TAsymO.  
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6) X-bar structural categories 
              XP                    ty 
          YP          X'      

specifier   ty 
                X         ZP 
             complement 

 
 
Throughout, fx represents the head of projection fxP, where fx is a head in the EP with f-

value x. This generalizes across EPs with distinct lexical features. It is further assumed 

that the identity of heads are fixed; for example, in an EP+V, f0 is V, and other heads such 

as T have a fixed x value. ZP and YP are specifiers or complements with lowercase 

(xp/yp) indicating a structurally lower copy of a moved projection.  

 The GENs are defined in (7). Inputs for both consist of an EPF, a fixed set of ordered 

heads, (f0,…,fn) and a complement ZP in a distinct EPG, where n may vary by F. 

Whether all such heads have an overt lexical realization in a given language is not the 

subject of analysis here and would be controlled by a different constraint set. For both 

GENs, the complement, ZP, is treated as an unanalyzed unit, with no ZP-internal 

violations assessed. As the complement of a lexical head, f0, in a distinct EP, it does not 

incur violations of the EP-specific stringency Cs introduced below. GEN variations differ 

in the possible output structures, as defined below.  

7) GEN:  

Input: an EPF, a set of ordered heads, (f0,…,fn) & complement ZP ∈ EPG.  

Outputs: an binary syntactic structure containing all input elements where: 

a. GENSym: ∀fx ∈ EPF, ∃fxP ∈ out: fxP = [fxP fx YP] or [fxP YP fx], YP = 

ZP, 𝑥 = 0
f!!!P, 𝑥 > 0 . 
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• Prose: For each head, fx, in input EPF, there is a projection, fxP, in the output, 

where fxP dominates head fx and its complement, YP, in either order; heads 

are ordered in EPF by f-value.  

b. GENAsym: ∀fx ∈ EPF, ∃fxP ∈ out: fxP = [fxP  _ [fx' fx YP]] or [fxP  YP [fx' fx yp]], YP 

= ZP, 𝑥 = 0
f!!!P, 𝑥 > 0 . 

• Prose: For each head, fx, in input EPF, there is a projection, fxP, in the output, 

where fxP dominates fx' that dominates head fx and comp YP, in that order, 

with or without a copy of comp in spec fxP; heads are ordered in EPF by f-

value.  

Both GENs produce two distinct structures for any fxP, differing in the relative order of a 

head and complement. For GENSym, either base order is possible in a projection. All 

outputs lack specifiers, as variation on this dimension is not relevant to head-

initiality/finality in this system. A full candidate set (cset) for an EP with n distinct f-

value heads, an n-hd EP, includes an output realizing each combination of the two 

orderings for all projections in the EP; 2n candidates in each cset. For a 3-hd EP, the 

outputs are the eight structures in (4) above. 

 For GENAsym, all projections have right-branching [XP (spec) [X' X comp]] structures, 

where heads precede complements in a projection; head-final word order results from 

comp-to-spec movement, with a copy of a complement projection, fx-1P moving in the 

specifier of its sister head, Spec fxP. In this, GENAsym follows BHR's adoption of Kayne's 

(1994) antisymmetric syntax proposal of uniform underlying right-branching structure. 

The choice of presence or absence of movement for each fxP results again in 2n 

candidates in each cset. The eight possible output structures for a 3-hd EP are shown in 
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(8): lower copies of moved fxP's are in grey font; '_' indicates an unfilled specifier. 

Outputs (a)-(d) satisfy FOFC, (e)-(h) violate it. In (e), for example, the lowest head, f0P 

moves to spec f1P, but f0's complement, XP, does not move to spec f0P, resulting in the 

banned f1-final-over-f0-initial order. 

8) GENAsym 3-hd EP outputs 
a. No movement 

 

e. f0P → spec f1P 

 
b. XP → spec f0P 

 

f. f1P → spec f2P 

 
c. XP → spec f0P, f0P → spec f1P 

 

g. XP → spec f0P, f1P → spec f2P 
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d. XP → spec f0P, f0P → spec f1P, f1P → spec f2P 

 

h. f0P → spec f1P, f1P → spec f2P 

 
 
GENAsym adopts a copy theory of movement (Chomsky 1995); a lower copy of a moved 

projection remains in the original complement position. More movement thus results in 

more (copies of) projections, which has ramifications for C violation counts. This work 

follows Grimshaw (2001:23) in that "a moved XP and the trace of a moved XP are 

exactly the same, and exactly like other XPs with respect to the constraints."5 Structural 

constraints are insensitive to the (un)pronounced distinction: all copies incur the same 

projection-internal violations, satisfy obligatory element Cs, and count as interveners for 

alignment of other categories. As Grimshaw shows, "since any XP incurs violations of 

the set of alignment and obligatory element constraints, the more occurrences of a given 

XP there are in a structure, the more violations there will be" (ibid.).  

 GENAsym restricts movement to successive 'roll-up' movement (see i.e. Cinque 2005 

on kinds of movement): a complement moves to the specifier position of the same 

projection, not to that of any higher projection. Spec-to-spec movement, where the 

specifier of a complement moves alone to a higher spec position, is excluded. In this, 

GENAsym follows BHR, who define their movement-triggering feature as specifically 

                                                
5Grimshaw (2001) shows that this derives economy of structure and movement. 
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resulting in movement of the sister of a head (the complement) to its specifier, when 

associated with a categorial feature F (p. 210).6  

 CON includes three structural constraints from Grimshaw (2001): two projection-

internal left-alignment Cs (HdL, CompL) and one obligatory element C (ObSp)7. These 

are violated, respectively, by misalignment between the specific element with the left 

edge of its projection, and by the absence of a specifier within a projection. The general 

(non-scaled) versions are defined in (9), using the notation: f = head, ZP = comp of f; XP 

= any maximal projection (comp/spec). The alignment C definitions follow Hyde (2012).  

9) CON: General structural constraints  
C Definition Prose description: one violation for each: 
HdL *(XP, f) ∈ fP: [fP XP…f (XP, f) pair in fP, such that XP intervenes 

between f and the left edge of fP. 
CompL *(ZP, {f, XP}) ∈ fP:  

        [fP {f, XP}…ZP 
(ZP, f/XP) pair in fP, such that f/XP 
intervenes between ZP and the left edge of 
fP. 

ObSp *fP: ∄XP ∈ fP: [fP XP f'] fP such that there is no XP, a sister of f', in fP 
(i.e., fP lacks a spec). 

 
Stringency scales are defined over two of these structural constraints, HdL and ObSp. 

They are constructed using a subset-inclusion schema, where the set of structures to 

which a less stringent C assigns violations is a subset of those to which the more stringent 

assigns violations (Prince 2000, chapter 3 of this text). The scale references sets of heads 

(for HdL) or projections (for ObSp) in an EPF, by their f-values.  

                                                
6An alternative system, where GENAltAsym includes spec-to-spec movement candidates, produces an 
extensionally distinct typology: the FOFC-satisfying all-final candidate is harmonically bonded by one with 
successive spec-to-spec movement of the lowest f0P. In this candidate, [CP [AP X A x] C [BP [AP x a x] B [AP 
x a x]]], surface order XACB, no adjacent pair of heads violates FOFC, but it is not among the structures 
BHR discuss as satisfying FOFC. The order is only derivable by spec-to-spec movement. A brute-force 
way to generate the desired FOFC T with GenAltAsym uses ObSp Cs sensitive to what projection fills spec; 
specifically, satisfied only by an fx-1P (comp) in spec fxP (comp>spec).  
7Grimshaw (2001) defines two additional structural Cs: i) ObHd (incorporated into Gen in these analyses); 
ii) SpecL (satisfied in all candidates in both Gens, by lack of specifiers (SymL), or by fixed antisymmetric 
structure, where all specifiers are leftmost in their XP (AsymL/O)).  
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In the HdL scale, the set of heads picked out is a contiguous sequence in an EP that 

includes the highest head, fn, to the lower bound indicated in the name. The most 

stringent, HdL.Ff0, is violated by misalignment of any head in the EP, f0 to fn; the least 

stringent, HdL.Ffn, is violated only by the misalignment of the highest head in the EP 

The ObSp scale works in the opposite direction: all include the lowest head, f0, up to the 

higher bound indicate in the name. The least stringent, ObSp.Ff0 assigns a violation to a 

spec-less f0P only, the lowest in EPF, and the most stringent, ObSp.Ffn, to any such fxP.  

The scales thus progressively isolate either the lowest or highest head in an EP, both 

salient elements of syntactic phrases: the lowest head is generally lexical, contributing the 

categorial feature of the entire EP; the highest head defines the edge of the EP. The 

location-specific constraints of Grimshaw (2006) target this edge position in a CP. No 

mid-level head is uniquely picked out. Definitions of the C scales are given in (10); Cs 

names pick out both F and the fx that is the lower (HdL) or upper (ObSp) bound on the 

set of heads.  

10) CON: Stringency scales 
C Definition: Prose: one violation for each: 
HdL.Ffx ∀fi ∈ EPF: x ≤ i ≤ n,  

*(XP, fi) ∈ fiP: [fiP XP…fi 
head fi violating HdL such that fi's f-
value is greater than or equal to x.    

ObSp.Ffx ∀fi ∈ EPF: x ≥ i ≥ 0,  
*fiP: ∄XP ∈ fiP: [fiP XP fi'] 

projection fiP violating ObSp such that 
fi's f-value is less than or equal to x.   

 
The definitions generate sets of Cs, one for each head in an EPF. The set is bounded by 

the number of functional heads for a given F (not just those visible in a given language or 

input), here fixed in GEN. There are n violation-distinct Cs in the scale needed to 

determine optima in an n-hd EPF input. The systems shown here use a 3-hd input EPF, 

generating the 3C scale in (11). 
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11) 3C scales, n = 2 
Stringent HdL.Ffx: *[fxP XP…fx ObSp.Ffx: *fxP: ∄XP ∈ fxP: [fP {XP, fx}] 
most  
  ↓  
least 

HdL.Ff0: x = {0,1,2}  
HdL.Ff1: x = {1,2} 
HdL.Ff2: x = {2} 

ObSp.Ff2: x = {2,1,0} 
ObSp.Ff1: x = {1,0} 
ObSp.Ff0: x = {0} 

 
Keying the scales to the categorial feature F makes two predictions for the possible 

combinations of order structures within a language, aligning with the empirical 

generalizations BHR report.  

First, it is entailed that all EPs with the same F have the same word order in all 

optima of the language. For example, any two EP+Vs have the same order regardless of 

where they occur in the entire structure (matrix or subordinate clause). Cs assess all such 

EPs equally. 

Second, it is not entailed that any two EPs with distinct Fs have the same order in the 

language's optima. For example, order in an EP+V may differ from that in an EP-V, since 

each F-distinct EP is assessed by a distinct set of stringency Cs. These may be ranked 

relative to an antagonist independently of the ranking of any other set. The sets define 

subPAs (ch 3, also Bennett & DelBusso to appear) of the typology, and the full PA is the 

cross-product of the possible value combinations in each subsystem. Numerics: there are 

n + 1 possible optima/value combinations in a subPA with n-hd EPF input, CON = nC 

scale + antagonist; for two such subPAs, input n-hd EPF (nCs), m-hd EPG (mCs), Tn×m = 

(n + 1) × (m + 1).  
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4.3.2 Typologies and Property Analyses 

The typologies of the three systems are calculated using a 3-hd EPF, and the 

corresponding 3C stringency scale8. For concreteness, the input is represented as CP, 

with set of heads {V (f0), T (f1), C (f2)}, and complement ZP = O; the analysis extends 

to any 3-hd EP via relabeling. An n-hd input EP requires an nC scale; the resulting 

typology, TS, has n+1 grammars, the structure of which predictable based on the results 

in the previous chapter on stringency systems.  

4.3.2.1 SymL 

SymL is summarized in the table repeated from above. All word orders are base-

generated (no movement), with either order of head and complement possible. Head-

direction in optima is determined by conflicting HdL and CompL Cs, with the stringency 

scale defined over HdL.  

12) SymL 
System SymL AsymL AsymO 

GEN Sym Asym 
EP scaled C HdL ObSp 
Antagonist C CompL ObSp HdL 

 
The VT for SymL is shown in (13), with candidates represented linearly in bracket 

notation. Half satisfy FOFC; all that violate it are harmonically bounded, shaded in gray 

with the bounder(s) recorded in the final column. Any candidate with comp-head order in 

                                                
8A Universal Support (US; Alber, DelBusso & Prince 2016) for any EPF, n=2 input. A US for all possible 
phrases requires an input n-hd EPF for each possible F, n = the maximum f-value in EPF (requiring a theory 
of possible F's and f-values). The structure of the typology is predictable: for m = the number of distinct F's, 
nF = the number of functional levels in the EPF, T is the product of the m subsystems, where each has nF +1 
possible optima. 
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any projection incurs a HdL.Vf0 violation; only those with comp-head order in the 

highest projection, CP, incur a HdL.Vf2 violation.9 

13) SymL VT 
Input Output HdL.Vf0 HdL.Vf1 HdL.Vf2 CompL HB-er 
CP a. [C [T [V O]]]    3  
 b. [C [T [O V]]] 1   2  
 c. [C [[V O] T]] 1 1  2 b 
 d. [[T [V O]] C] 1 1 1 2 b (& c) 
 e. [C [[O V] T]] 2 1  1  
 f. [[T [O V]] C] 2 1 1 1 e 
 g. [[[V O] T] C] 2 2 1 1 e (& f) 
 h. [[[O V] T] C] 3 2 1   

 
The extensional languages differ in the number of head-final projections in their optima, 

ranging from all-initial (L1) to all-final (L4), with the two FOFC-permitted disharmonic 

orders realizing steps between these extremes (L2, L3). The extensional trait of head-

finality correlates with the intensional ranking of CompL dominating a subset of the HdL 

Cs. All languages and grammars (Γs), with their legs (λs) counts are shown in (14).10 

Constraint order in ERCs follows that in the VT. The example languages are taken from 

Biberauer & Roberts (2013:33).  

14) Languages and Grammars of TSymL 
 Languages: optima Example language Grammar (MIB) # λ  
L1 Hd-initial: [C [T [V O]]] English WeeL 12 
L2 V-final: [C [T [O V]]] Mande (some) LWeL, LeeW 4 
L3 V-/T-final: [C [[O V] T]] German LLWL, LLeW 2 
L4 Hd-final: [[[O V] T] C] Japanese LLLW 6 

 
The system entails the FOFC. While head-finality can occur in any number of 

projections, 0 to 3, it cannot do so freely: if only one projection in optima features such 

an order, then it must be the lowest; if two, then the two lowest, etc. The following 

                                                
9Following from chapter 3, this is identifiable as a T3Core. 
10See Appendix A.3 for typohedron, permutohedron, and further details of Γs. 
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section develops the PAs showing how the interactions of Cs ∈ CON derive the FOFC 

result.  

4.3.2.1.1 Property Analyses 

TSymL has the characteristic structure of stringency systems: each C in the set of 

stringency scale Cs is crucially ranked relative to antagonist CompL only if the 

immediately more stringent C is dominated. As chapter 3 shows, there are alternative 

PAs, differing in whether all Ps are wide-scope (wsPA), using C-classes, or whether 

some are narrow-scope (nsPA), moot in some Γs.  

The wide-scope (ws) PA properties (Ps) are stated in (15), named for the f-value of 

the least stringent HdL.Vfx in its antagonist set. In each, CompL is antagonized with a 

class, κ, of HdL Cs, with the operator dom that picks out the dominant member of the set 

in a linear order (A&P; current chapter 2). Only the most stringent, HdL.Vf0, is 

individually antagonized with CompL. Each less stringent C is in a κ.dom with all more 

stringent.  

15) wsPA(TSymL): Properties 
Property α  β  
P0 CompL<>HdL.Vf0 LeeW WeeL 
P1 CompL<>{HdL.Vf0, HdL.Vf1}.dom LLeW WWeL 
P2 CompL<>{HdL.Vf0, HdL.Vf1, HdL.Vf2}.dom LLLW WWWL 

 
P value ERCs are cross-entailing. Any ERC for a P value with a dominant κn.dom (Pnβ) 

entails P(n+1)β, where κn ⊂ κn+1: P0β → P1β → P2β (by W-extension; Prince 2002). 

Entailment goes in the opposite direction for the reverse values (α), where κn.dom is 

subordinated, resulting in L's for each C ∈ κ: P2α → P1α → P0α (by L-retraction). As a 

consequence of the entailments, free combination of wsP values does not result in Γs for 

all 8 logical combinations (3 Ps, 2 values = 23); only 4 define Γs, shown in the value table 
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(16), with the treeoid. The value ERC sets of all others are inconsistent, a subset fusing to 

L+ (Brasoveanu & Prince 2011).  

16) wsPA(TSymL) value table & treeoid 
a. Value table b. Treeoid 
 P0 P1 P2 

 

L1 β β β 
L2 α β β 
L3 α α β 
L4 α α α 

 
To show how values derive Γs, the value ERCs and resulting MIB for L3 are shown in 

(17). The optima in this language realize the phrasal orders found in German.   

17) L3 in wsPA(TSymL) 
 value ERC Ranking Trait 
P0α LeeW CompL > HdL.Ff0 hd-final VP 
P1α LLeW CompL > HdL.Ff0 & HdL.Ff1 hd-final TP 
P2β  WWWL HdL.Ff0 | HdL.Ff1 | HdL.Ff2 > CompL hd-initial CP 
MIB LLWL 

LLeW 
HdL.Ff2 > CompL > HdL.Ff0 & HdL.Ff1 [C [[O V] T]] 

 
The narrow-scope (ns) PA differs from its ws counterpart in that each C in the stringency 

set is individually antagonized with CompL in a P. Since only the most stringent C is 

crucially ranked relative to CompL in all Γs, Ps with less stringent C antagonists are ns. 

Their scope is defined by the P value in which the next more stringent C is dominated: 

Σ(Px) = P(x-1)α. Ps, value table, and treeoid showing scope structure are shown in (18).  

18) nsPA(TSymL) 
a. Properties 
Property Scope α  β  
P0 CompL<>HdL.Vf0  LeeW WeeL 
P1 CompL<>HdL.Vf1 /P0α eLeW eWeL 
P2 CompL<>HdL.Vf2 /P1α eeLW eeWL 

 
 
 
 
 

wsPA(T_SymL)

P0 P1 P2

α β α β α β
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b. Value table 
 P0 P1 P2 
L1 β   
L2 α β  
L3 α α β 
L4 α α α 

 
c. Treeoid: nsPA(TSymL) 

          
 
The nsPA results in the same number of Γs (the viable value combinations) by mootness 

rather than contradiction as in wsPA: there are only four possible combinations given 

scopes, and all produce consistent ERC sets.   

4.3.2.1.2 Deriving FOFC 

FOFC is entailed in SymL: optima have head-final order in a given projection only if it 

occurs in all lower projections, following from the EP-based scaled HdL Cs. Head-

finality is driven by satisfaction of CompL; head-initiality by satisfaction of the HdL Cs. 

Which of the HdLs are violated depends on which projections in a candidate have head-

final order.  

Degree of head-finality in the entire EPF correlates the with P values. Head-finality 

occurs in a continuous sequence of the lowest x projections when the Γ has x P.α values, 

under which x HdL Cs are dominated. The table below gives the extensional traits that 

correlate with the P values of PA(TSymL). If head-finality is, as BHR suggest, the 'marked' 

option, then the greater the number of α values defining a Γ, the more marked the optima 

PA(T_SymL)
P0

α β

P1

α β

P2

α β
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in the language—more final heads. Trait and value alignment is shown in value tables of 

both PAs in (20), repeated from above.  

19) P values and extensional traits 
Property Extensional trait 

α: head-final in: β: head-initial in: 
P0:  f0P: …OV f0P (f1P, f2P): CTVO 
P1 (f0P) f1P: …OVT f1P (f2P): CT[VP] 
P2 (f0P, f1P) f2P: OVTC f2P: C[TP] 

 
20) SymL value table and extensional traits 

a. wsPA 
 P0 P1 P2 V (f0) T (f1) C (f2) 
L1 β β β initial initial initial 
L2 α β β final initial initial 
L3 α α β final final  initial 
L4 α α α final final final  

 
b. nsPA 
 P0 P1 P2 V (f0) T (f1) C (f2) 
L1 β   initial (all)   
L2 α β  final initial  
L3 α α β final final  initial 
L4 α α α final final final (all) 

 
Two implicational generalizations hold:  

1) if head fx is final all lower heads are final;  

2) if fx is initial than all higher heads are initial.  

These follow from the logic of stringency systems (Prince 2000, ch 3). For the wsPA, a 

Pn.α (head-final) entails Pi.α for all Pi, i < n, so that if head fn is final, all lower heads are 

too. For the nsPA, the implications follow from the scope of the Ps, establishing a 

contingent relationship between them. A Γ only has a P(n+1) value if it has Pn.α. Under 

Pn.β, HdL.Ffn dominates CompL, and its satisfaction entails satisfaction of all HdL.Ffx, 

x>n, that pick out subsets of the heads picked out by HdL.Ffn. In wsPA, implications 
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follow from ERC logic; in nsPA, from both scope and the filtration subset relationship of 

stringency Cs (chapter 3).  

21) FOFC derivation  

Rankings for finality: 

• Head fx is initial in optima in Γ if ∀λ(Γ), HdL.Ffx ≫	CompL. 

o ∀q∈K, if fx or any fi, i<x, is final in q, then q ∉ HdL.Ffx[K]. 

HdL.Ffx filters out all candidates in which fx or any lower head is final. 

• Head fx is final in optima in Γ if ∀λ(Γ), CompL ≫	HdL.Ffx. 

o ∀q∈K, if any f is initial in q, then q ∉ CompL[K]. 

CompL filters out all candidates in which any head is initial 

a. Implication 1: If head fx is final then all lower heads are final. 

• wsPA: fx is final in Γ if Px.α (= CompL ≫	HdL.Ffx) ∈ Γ. ∀i<x, Px.α => Pi.α 

by L-retraction: since Pi κα.dom ⊂ Px κα.dom, L(Pi.α) ⊂	L(Px.α) and W(Pi.α) 

=	W(Px.α). Therefore, if Px.α is satisfied in Γ, then so is Pi.α, and fi is final in 

optima.  

• nsPA: fx is final in Γ if Px.α (= CompL ≫	HdL.Ffx) ∈ Γ. If Px.α ∈ Γ, then by 

scope, ∀Pi, i<x, Pi.α (= CompL ≫	HdL.Ffi) ∈ Γ. If Pi.α ∈ Γ then fi is final in 

all optima. 

b. Implication 2: If head fx is initial then all higher heads are initial.  

• wsPA: fx is initial in Γ if Px.β (= HdL.Ff0 | …| HdL.Ffx ≫	CompL) ∈ Γ. ∀i>x, 

Px.β => Pi.β by W-extension: since Px κα.dom ⊂ Pi κα.dom, W(Px.α) ⊂	

W(Pi.α) and L(Pi.α) =	L(Px.α). Therefore, if Px.β is satisfied in Γ, then so is 

Pi.β, and fi is initial in optima.  
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• nsPA: fx is initial in Γ if Px.β (= HdL.Ffx ≫	CompL) ∈ Γ or if Γ ∉ Σ(Px). If Γ 

∉ Σ(Px), then P(x-1).β (=HdL.Ff(x-1) ≫	CompL) ∈ Γ, so f(x-1) is initial. By 

stringency, HdL.Ff(x-1)[K] ⊆ HdL.Ffx[K]. Thus if HdL.Ff(x-1) is satisfied, so 

is HdL.Ffx, and fx is initial. Similarly, if Px.β ∈ Γ, ∀HdL.Ffi, i>x, HdL.Ffx[K] 

⊆ HdL.Ffi[K], so if HdL.Ffx is satisfied, then so is HdL.Ffi and all fi are 

initial in optima. 

The logical derivation of the FOFC carries over to the following variations, which are 

intensional equivalents. While GEN and CON differ, the relationships between C filtration 

patterns are equivalent, and the resulting typologies the same.  

4.3.2.2 AsymL 

AsymL differs from SymL in both GEN and CON, but the logic of the argument and the 

intensional structure of the typology are equivalent. The system is summarized in the 

table below. In GENAsym candidates all projection have the structure [XP (spec) [X' X 

comp]] where the head precedes the comp ('antisymmetric' syntax); head-final surface 

order results from comp-to-spec movement, as discussed above. The stringency scale is 

defined over the HdL Cs, but in this system, the antagonist is ObSp, which is satisfied 

when comp-to-spec movement fills a specifier.  

22) AsymL 
System  SymL AsymL AsymO 

GEN Sym Asym 
EP scaled C HdL ObSp 
Antagonist C CompL ObSp HdL 

 
AsymL is conceptually similar to BHR's analysis in adopts their anti-symmetric syntax 

analysis, with head-finality resulting from comp-to-spec movement. Their account drives 
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movement with a feature, '^', similar to an EPP feature. In the present analysis, movement 

is driven by satisfaction of ObSp, which Grimshaw (2001:3-4) proposed to explain EPP. 

In the VT in (23), lowercase grayed letters indicate lower (unpronounced) copies. As 

in SymL, all FOFC-violating candidates are HB (grayed, with bounders in the final 

column). Note that the HdL Cs assign more violations to some candidates here then to 

their surface-order equivalents in SymL, because of the additional structure of the copies; 

however, their filtration patterns remain the same, and the MOATs are isomorphic. 

23) AsymL VT 
Input Output HdL.

Vf0 
HdL.
Vf1 

HdL.
Vf2 

ObSp HB-er 

CP a. [C [T [V O]]]    3  
 b. [C [T [O V o]]] 1   2  
 c. [C [[V O] T [v o]]] 1 1  3 b 
 d. [[T [V O]] C [t [v o]]] 1 1 1 4 b (c) 
 e. [C [[O V o] T [o v o]] 3 1  1  
 f. [[T [O V o]] C [t [o v o]]] 3 1 1 2 e 
 g. [[[V O] T [v o]] C [[v o] t [v o]]] 3 3 1 4 e (f) 
 h. [[[O V o] T [o v o]] C [[o v o] t [o v o]]] 7 3 1   
 
TAsymL is extensionally surface-order equivalent to TSymL (assuming lower copies are 

not surface-apparent/pronounced): all and only the FOFC-satisfying candidates are 

possible optima in some language, as shown in the languages in (24). The Ts are 

intensionally equivalent up to C relabeling (bijection between CONs). The isomorphic Γs 

map to the same languages.  

24) Languages and Grammars of TAsymL 
 Languages: optima Grammar (MIB) # λ 
L1 Hd-initial: [C [T [V O]]] WeeL 12 
L2 V-final: [C [T [O V o]]] LWeL, LeeW 4 
L3 V- & T-final: [C [[O V o] T [o v o]] LLWL, LLeW 2 
L4 Hd-final: [[[O V o] T [o v o]] C [[o v o] t [o v o]]] LLLW 6 
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Similarly, the PA is parallel, changing only the antagonist from CompL to ObSp. Both 

wsPA and nsPA are given in (25) and (26), respectively, with Ps named as above. 

25) wsPA(TAsymL)  
a. Properties 
Property α  β  
P0 ObSp<>HdL.Vf0 LeeW WeeL 
P1 ObSp<>{HdL.Vf0, HdL.Vf1}.dom LLeW WWeL 
P2 ObSp<>{HdL.Vf0, HdL.Vf1, 

HdL.Vf2.dom 
LLLW WWWL 

 

b. Value table 
 P0 P1 P2 
L1 β β β 
L2 α β β 
L3 α α β 
L4 α α α 

 

 
26) nsPA(TAsymL)  

a. Properties 
Property Scope α  β  
P0 ObSp<>HdL.Vf0  LeeW WeeL 
P1 ObSp<>HdL.Vf1 /P0α  eLeW eWeL 
P2 ObSp<>HdL.Vf2 /P1α eeLW eeWL 

 

b. Value table 
 P0 P1 P2 
L1 β   
L2 α β  
L3 α α β 
L4 α α α 

 

 
FOFC is derived under this analysis as in SymL, but differing in the antagonist driving 

head-finality. In AsymL, it is ObSp, satisfied by candidates where complements move to 

specifier positions in the projections, resulting in comp-head surface order. (As noted in 

fn4, CompL is not a possible antagonist in this system; Grimshaw 2001:24 (36) 

perspicuously shows that comp-to-spec movement increases violations of CompL, both 

doubling comp-internal violations and adding an intervening projection (in spec) for 

calculation of alignment violations.)  

4.3.2.3 AsymO 

AsymO is an inversion of AsymL: the two share GENAsym and the two types of structural 

Cs in CON, but swaps their roles in the analysis. In AsymL, the stringency scale is defined 

over a set of HdL Cs with a single ObSp is the antagonist; in AsymO, a single HdL is 
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antagonized with a set of stringently related ObSp Cs. The scale is built in the reverse 

order, with the least stringent isolating the lowest (lexical) head in an EP.  

27) AsymO 
System SymL AsymL AsymO 

GEN Sym Asym 
EP scaled C HdL ObSp 
Antagonist C CompL ObSp HdL 

 
The VT is shown below, using the same notations as above.  
 

28) AsymO VT 
Input Output HdL ObSp. 

Vf0 
ObSp. 
Vf1 

ObSp. 
Vf2 

HB-er 

CP a. [C [T [V O]]]  1 2 3  
 b. [C [T [O V o]]] 1  1 2  
 c. [C [[V O] T [v o]]] 1 2 2 3 a, b 
 d. [[T [V O]] C [t [v o]]] 1 2 4 4 a,b,(c) 
 e. [C [[O V o] T [o v o]] 3   1  
 f. [[T [O V o]] C [t [o v o]]] 3  2 2 b,e 
 g. [[[V O] T [v o]] C [[v o] t [v o]]] 3 4 4 4 b,e,(f) 
 h. [[[O V o] T [o v o]] C [[o v o] t [o v o]]] 7     
 
TAsymO is extensionally and intensionally equivalent to TAsymL (with a bijection between 

the CONs), but with the inverse mapping between extensional languages and intensional 

Γs. In AsymL, L1 = {WeeL} (most stringent dominates antagonist: HdL.Vf0 ≫	ObSp) 

correlates with total head-initiality in optima. In AsymO, the extensional correlate is L1 = 

{WLLL} (antagonist dominates all: HdL≫ OS.Vf0, OS.Vf1, OS.Vf2) but the intensional 

correlate is L4 = {LeeW} (most stringent dominates antagonist: ObSp.Vf2 ≫	HdL) with 

head-final order in all projections in optima. AsymO languages and Γs are shown in (29).  

29) Languages and Grammars of TAsymO  
 Languages: optima Grammar (MIB) # λ 
L1 Hd-initial: [C [T [V O]]] WLLL 6 
L2 V-final: [C [T [O V o]]] LWee, WeLL 2 
L3 V- & T-final: [C [[O V o] T [o v o]] LeWe, WeeL 4 
L4 Hd-final: [[[O V o] T [o v o]] C [[o v o] t [o v o]]] LeeW 12 
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PA(TAsymO) is likewise an inversion of PA(TAsymL): each Px.α correlates with head-

initiality rather than finality in fx and all higher projections in optima. Both 

wsPA(TAsymO) and nsPA(TAsymO) are shown in (30); the nsPA(TAsymL) value table is 

repeated for comparison.  

30) PA(TAsymO) 
a. wsPA(TAsymO)  

Properties 
Property α  β  
P2 HdL<>ObSp.Vf2 WeeL LeeW 
P1 HdL<>{ObSp.Vf2, ObSp.Vf1}.dom WeLL LeWW 
P0 HdL<>{ObSp.Vf2, ObSp.Vf1, ObSp.Vf0}.dom WLLL LWWW 

 
Value table 
 P2 P1 P0 
L1 α α α 
L2 α α β 
L3 α β β 
L4 β β β 

 
b. nsPA(TAsymO)  

Properties 
Property Scope α  β  
P2 HdL<>ObSp.Vf2  WeeL LeeW 
P1 HdL<>ObSp.Vf1 /P2α WeLe LeWe 
P0 HdL<>ObSp.Vf0 /P1α WLee LWee 
 
Value tables 
AsymO P2 P1 P0  AsymL P0 P1 P2 
L1 α α α  L1 β   
L2 α α β  L2 α β  
L3 α β   L3 α α β 
L4 β    L4 α α α 

 
The reason for head-finality in AsymO again rests on ObSp. Head-initiality is driven by 

satisfaction of the general HdL. The switch of the scale from one constraint type to 

another changes the subsets of heads in an EP referred to: for the HdL scale, sets are built 

top-down: a head fx is only included in a Cx if all heads with higher f-values are. In the 
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ObSp scale, sets are built bottom-up: fx is only included in a Cx if all heads with lower f-

values are.  

4.3.3 Typological equivalence and structural sensitivity to EP 

The stability of the FOFC result under the variations above delineates the central 

components necessary for a theory of Con to entail the generalization. The core piece is a 

set of stringently-related structural Cs indexed to head positions along an EP. Within 

these parameters variation is possible, such as whether the stringency scale is defined on 

alignment (HdL) or obligatory element (ObSp) Cs. In all analyses, the general logic of 

stringency systems entails the FOFC results using recognized tools in OT analysis rather 

than stipulating a *FOFC constraint.11 Additionally, more nuanced variations that still 

lack the stringency relation fail to derive the typology (see Appendix, §A.1, for 

alternatives).  

The three systems instantiate variations of intensional and extensional typological 

equivalence. All have isomorphic MOATs and produce the same surface extensional 

languages. However, SymL differs from both Asyms in that the structures lacks copies. 

SymL and AsymL map the same Γ to the same (surface) language, swapping CompL and 

ObSp. AysmL and AsymO have exactly equivalent languages and Γs, but inverse 

mappings between these.  

Grimshaw (2001 et seq.) has shown that the interactions of the structural Cs derive 

word order typologies, as well as economy of structure and movement effects. These 

                                                
11Deriving FOFC with such a C is not straightforward. For a system with Con = {*FOFC, HdL, CompL} 
where *FOFC: *(x, y): [[x zp] y], *FOFC is satisfied by all candidates with FOFC-compliant orders; HdL 
and CompL are only satisfied by uniform orders—all initial or all final. All others candidates are HB, and T 
is defined by HdL <> CompL. *FOFC is not crucially ranked, unviolated in both Γs. This holds if *FOFC 
is violated by any pair of offending heads in the EP, not just successive pairs, since non-uniform orders are 
HB with CompL and HdL alone. 
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general Cs assess configurations in any projection, regardless of the head identity. These 

alone cannot generate FOFC because only candidates with uniform orders, either all 

head-initial or -final, satisfy them. Generating distinct orderings in distinct projections—

such as the FOFC-satisfying non-uniform orders—requires targeted versions. Previous 

work proposing sets of targeted structural constraints includes Grimshaw's (2006) 

location-specific Cs picking out projections at the edges of matrix and subordinate 

clauses, and Steddy & Samek-Lodovic's (2009) projection-specific alignment Cs deriving 

Cinque's (2005) typology of DP-internal orders. Defining a subset scale over a sequence 

of heads as done here entails that while orders may differ in distinct projections, variation 

is contingent on the order realized by an immediately adjacent projection.  

4.4 BHR's analysis of FOFC 

BHR develop an analysis of the FOFC in the Minimalist Program (Chomsky 1995), and 

the typology was later developed in the Parameter Hierarchy theory (Biberauer et al. 

2014, Biberauer & Roberts 2013, 2015, Biberauer & Sheehan 2012). The core component 

is a movement-triggering feature that results in head-final structures. Languages differ in 

whether this feature is present on a lexical head at the base of an EP and the degree to 

which it is inherited upwards by higher heads in the EP. As presented in the paper (p. 215 

(77)), the analysis has four central components: 

1) An antisymmetric analysis of word-final orders (Kayne 1994): all projections are 

underlying right-branching, [XP (spec) [X' X comp]], and head-finality results from comp-

to-spec movement, assumptions followed here in GENAsym.12  

                                                
12Antisymmetry is a crucial component of their analysis; the existence of SymL shows it is not critical to 
deriving FOFC in an OT system. 
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2) A strong locality condition on selection (Relativized Minimality, Rizzi 2001): 

feature inheritance is limited to the immediately-selected head. The movement feature 

can only be inherited by successive spans of heads in an EP and cannot skip any. (In the 

present analyses, non-skipping follows directly as a consequence of stringency systems. 

Candidates with a final-initial-final order sequence are not possible optima as a result of 

C interaction.) 

3) The theory of Extended Projection (Grimshaw 2005): an EP defines the domain of 

the generalization. Selection depends on order in the EP.   

4) A general movement-triggering feature, represented by the diacritic ^: ^ triggers 

distinct types of movement when it occurs in combination with different sets of other 

features (p. 210). With an EP categorial feature F on the lexical head at the EP base, 

notated [F^], ^ triggers movement of the complement of that head to its specifier, 

resulting in head-final order. 

The ^ feature can be inherited upwards, by each ‘selecting’ head. But as it can only be 

inherited with [F], its spread limited to spans of heads within the same EP. If the selecting 

head belongs to a distinct EP, it does not inherit [F] and consequently cannot inherit ^. 

However, [F] can be inherited independently of ^, so that a selecting head within the 

same EP may lack ^, while the selected head has it (deriving initial-over-final order). In 

this way, ^ can spread progressively upwards from the EP base, but once halted—not 

inherited—no higher head can inherit it. Head-finality occurs in the continuous span of 

projections whose heads have [F^].  

This analysis defines in two dimensions of variation: a) the presence or absence of ^ 

on a lexical head L at the EPF base, [F^] or [F]; and b) the extent to which ^ spreads up 
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the EP if L has [F^] (the identity of the highest head inheriting ^) (p. 211). The first is a 

'macroparameter' in that is has categorical effects in a language: absence of ^ entails total 

head-initial order in the language. The second corresponds to a set of parameters 

governing ^-inheritance for increasingly smaller subsets of heads in EP. These 

parameters are dependent on a [^F] setting of the first macroparameter; ^ can only spread 

in an EP if it is present on the base.  

The Parameter Hierarchy structure of the FOFC typology (Biberauer et al. 2014, 

Biberauer & Roberts 2013, 2015), is organized it into a set of parameters governing the 

degree of head-finality in a language. Biberauer & Sheehan (2012:215) give a 

representation closely tied to the analysis by defining a set of parameters governing the 

presence or absence of ^ on heads in an EP, ordered from the lowest up. Their hierarchy 

is reproduced below, slightly modified by expanding the node they collapse with a 

recursive arrow and minor relabeling to facilitate comparison with the analyses here. P1 

is a macroparameter that determines presence (yes) or absence (no) of ^ on lexical head 

L. Each subsequent Px determines whether the next higher selecting head Hx-1 has ^. 

Choice on Px is dependent on choice at P(x-1), because Hx-1 can only inherit ^ from Hx-2 

if Hx-2 has it, corresponding to a ‘yes’ setting for P(x-1). Choice of a 'no' setting at any 

level stops inheritance of ^, and all lower parameters are 'moot'. 
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31) FOFC word-order Parameter hierarchy (adapted from Biberauer & Sheehan 
2012) 

 

Parameter 1 (P1): ^ is present on L  
                    (L = lexical head at EP base) 
 
Parameter 2 (P2): ^ is present on H1   
                    (H1 selects L^) 
 
Parameter 3 (P3): ^ is present on H2   
                   (H2 selects H1^) 
… 

 
This structure closely parallels that of the nsPAs treeoids, but departs from the 

generalized PH structure posited by ReCoS and shown in other publications (i.e., 

Biberauer et al. 2014:11), which use different parameters and ordering. The following 

section discusses this general structure and compares PH and PT.  

4.5 Property Theory and Parameter Hierarchies 

The analyses of FOFC in BHR and this chapter are both embedded in theories of the 

structure of linguistic typologies. Parameter Hierarchies and Property Theory have the 

shared goal of explicating the shape of the space of linguistic variation and propose the 

central organizing factor to be a set of formal binary choices, correlating with extensional 

traits. Order and dependencies between choices further structures the space, restricting 

possible combinations.  

In terms of the FOFC analyses, both the Parameter Hierarchies analysis of BHR and 

the present proposal use a stringency-like element to derive the sensitivity of possible 

word orders to EP position. The OT analysis uses a set of stringency constraints. While 

stringency is not explicitly referenced in Parameter Hierarchies work, it is an inherent 

feature of the hierarchies, following from the way in which parameters determine the 

presence/absence of a feature over increasingly smaller subsets of heads.  

P1

No-stop Yes

P2

No-stop Yes

P3

No-stop Yes
			:
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Despite commonalities, the two theories come apart in significant ways. Under PH, 

there is a set parameter form and ordering in the hierarchy. The theory is separate from 

the details of a particular analysis, such as FOFC. In contrast, in PT, properties and their 

interdependencies result from the core pieces of the OT analysis: the constraints and their 

interactions. The theory brings out a structure that is emergent in all OT typologies, 

revealing their formal similarities and differences. 

4.5.1 Parameter hierarchies 

The theory of Parameter Hierarchies proposes a common syntactic typological 

structure13, supporting it with analyses of a set of five cross-linguistic generalizations, 

among which FOFC figures prominently (Roberts 2010, 2012, Biberauer & Roberts 

2015, a.o.). The empirical and theoretical work of ReCoS is a major contribution to 

typological study. The the project aims to "organise the parameters of Universal 

Grammar (UG) into hierarchies, which define the ways in which properties of 

individually variant categories may act in concert; this creates macroparametric effects 

from the combined action of many microparameters. The highest position in a hierarchy 

defines a macroparameter, a major typological property, lower positions define 

successively more local properties" (Roberts 2010:1). Typological properties arise from 

the combinations of the parameters, restricted by hierarchical ordering to rule out 

                                                
13 Roberts (2010:4) suggests that this structure is specific to syntactic typologies and that PF parameters 
concerning phonology and morphology are ‘symmetrical’, allowing for full logical combination of their 
settings. In contrast, PT finds core similarities between systems of diverse phenomena—such as phonology 
and syntax—but also differences between the structures of distinct syntactic systems, for example. This 
follows from the fact that PT does not specify a predefined structure, but explicates the structure within a 
typology. 
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unattested parametric options, gaps, that would be predicted from free cross-combination 

(Roberts 2015).14  

Parameters have a common form: they govern the presence or absence of a feature F 

on some set of heads in the language. Parameter types differ in the particular set of heads 

assessed: a macro-parameter refers to all heads, microparameters to a natural-class 

defined subset, and meso- and nano-parameters to yet smaller subsets (Biberauer et al. 

2014 (9)). Typological variation is defined in terms of which sets of features occur on 

which sets of heads.  

Ordering between parameters follows a generalized uniform-branching binary tree 

structure. The nodes are labeled for the parameters, branching into yes/no choices of the 

setting ((32), Biberauer & Roberts 2013:22). One choice is decisive, the other leads to 

choice on a lower parameter. 

32) Generalized Parameter Hierarchy structure 
           F present?           ty 
          No       Yes: present on all heads?     
     (none)       ty 
         Yes      No: which subset of heads   
         (all)       …(some) 
 
Higher nodes define the macroparametric options that have categorical effects on 

structures in a language. A language realizing one of the choices in the first two tree 

leaves has feature F on no or all heads. Choice on lower nodes depends on that at higher 

nodes; these are successively smaller parameter types determining F presence over 

increasingly smaller subsets of heads (Biberauer et al. 2014:11-12). Languages with 

settings of these have the particular trait in some set of structures. The hierarchy 

                                                
14Baker's (2001) parameter hierarchies share some ideas with ReCoS. Baker analyzes a set of (morpho-
)syntactic linguistic properties into a hierarchy and discusses parameter ordering in the context of learning. 



  161 
   

 

partitions the typology by the degree of the trait correlated with F presence—as does a 

stringency system PA. 

Under this theory, the FOFC analysis hierarchy is rendered as in (33) (Biberauer et al. 

2014:11). In this representation, the parameter nodes are labeled for the extensional 

choices resulting from the parameter settings rather than the settings themselves, 

obscuring the details of the analysis; it is more explicitly brought out by replacing 'head-

final' with feature ^. Parameters govern the presence of ^ on: all heads (No/Yes), then a 

subset, beginning with the lexical-feature-defined set of [+V] heads (all those in an 

EP[+V]), and continuing to smaller subsets.    

33) FOFC word order hierarchy 

 
 
This structure produces a none-all-some sequence of options. A no setting on the highest 

parameter results in none of the trait occurring in the language; the relevant F is entirely 

absent in the language (i.e., no head-finality in (33)). A yes on the first two parameters 

generates a language with the trait in all relevant structures; the feature is on all heads. A 

yes on the first parameter and no on the second produces languages with the trait in some 

structures, necessitating choices on lower parameters to determine the particular set of 

heads with F.  
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While the five hierarchies analyzed differ in particular parameters, they are argued to 

adhere to the same core structure. However, as Biberauer et al. (2014:27) note, some of 

them depart from the generalized form, particularly among lower nodes, and strict 

adherence to the none-all-some initial sequence requires a 'no-choice' (monovalent) 

parameter in one, where one setting is cross-linguistically unattested (allegedly for 

'functional' reasons, p. 29). Moreover, Biberauer & Sheehan's representation of the FOFC 

analysis (31) uses distinct parameters and ordering, for a none-some-all sequence. While 

no on P1 still correlates with no head-finality, all head-finality occurs in languages with 

yes settings for all parameters, not just for P2. This order closely matches the PA treeoid, 

but departs from the hypothesized none-all-some sequence, a discrepancy unaddressed in 

the cited works. This underscores the fact that the parameter hierarchy structure is not 

entailed by the pieces of the analysis itself, but from a separate theory. 

The parameter form and ordering is proposed to arise from the interaction of three 

factors: UG, Primary Linguistic Data (PLD), and third-factor "domain-general acquisition 

strategies", specifically Feature Economy (FE) and Input Generalization (IG) (Biberauer 

& Roberts 2016:143). By FE, any feature that is not "unambiguously expressed by the 

PLD" will not be postulated (p. 145). In learning the FOFC word orders, the learner first 

hypothesizes that ^ does not exist in their grammar (minimizing the number of features), 

aligning with the first leaf on the parameter hierarchy tree, none. By IG, when 

unambiguous evidence exists, the learner maximizes use of the feature by postulating its 

presence on all heads. If head-finality occurs in the PLD, the learner swings to the 

assumption that all heads have ^, the second leaf of the tree. If further PLD shows some 
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head-initial structures, the learner arrives at the some choice on the hierarchy, restricts the 

subset of heads considered, and repeats the steps (p. 148).  

4.5.2 Property Theory 

In PT, typological structure is decomposed into a set of properties whose values 

determine the intensional rankings in the Γs. The properties relate in system-specific 

ways, and are not guaranteed to conform to a specific structure. However, systems 

featuring stringently-related constraints share a common structure (ch 3), which classifies 

the typology into the same none/all/some sets of extensional choices as the Parameter 

Hierarchy structure. They are thus a basis for comparison, identifying theoretical parallels 

and differences.  

Properties involving the most stringent constraint, Cn (wsPs) correlate with 

macroparameters at the top of a hierarchy, whose settings/values have categorical effects 

across all relevant structures in the language. Properties involving less stringent Cs match 

lower parameter types; their values determine traits across smaller subsets of structures. 

In nsPAs, these Ps are hierarchically ordered, such that the (non)mootness of a nsP in a Γ 

depends on the value of a dominating P. The treeoid of nsPA(T(A)symL)15 is repeated in 

(34), annotated for the correlated extensional choice following PH: each node queries 

head-finality of fx in fxP, from x = 0 to n (here, n = 2). 

 

 

                                                
15PA(TSymL) and PA(TAsymL) treeoids are isomorphic. The treeoid in (34) differs from (18)c by listing the 
values in reverse lexicographic order. The parameter hierarchies could similarly be relabeled to use left-
branching. While wsPAs define the same set of choices, they lack hierarchical organization; value 
combinations are limited by contradiction. Whether this alternative exists for Parameter hierarchies 
depends on defining parameter-setting contradiction. A flat structure also does not correlate with the 
desired hypothesized learning pathway. 
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34) Treeoid nsPA(T(A)SymL), extensionally annotated 

      
 
A central difference between this representation and that of Parameter Hierarchy is the 

ordering of the properties/parameters. Following BHR (p. 172) in taking head-finality to 

be the 'marked' choice, parameter hierarchies (33) alternate between languages realizing 

extremes of a markedness scale: no head-final, then all, then some, repeating recursively 

in the some-set for subsets of heads. The parametric organization swings from least to 

most marked. This is based on a different markedness scale, where uniform order—all 

initial or final—is less marked than non-uniform, because it sets a macro- rather than 

micro-parameter (Biberauer et al. 2014:17). However, BHR's analysis defines presence of 

^ as the marked case; thus the more heads bear ^, the more marked the language is 

predicted to be. 

In contrast, in the PA structure, the languages are ordered from the least marked 

(none of the marked trait) to most (all of the marked trait), moving down. This structure 

is entailed by the stringency definitions of the constraints. The Ps cannot be reordered 

without other changes to the analysis itself; the order follows from the logical structure. 

In contrast, other orderings, including that of the PAs, are possible for the parameter 

PA(T_(A)SymL)
P0

Any	hd-final	(f0	final)?

β α
N	(none) Y	(some)

P1
hd-final	f1?

β α
N Y

P2
hd-final	f2	(any	hd-initial)?

β α
N Y	(all)
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hierarchy, as Biberauer & Sheehan's (2012) representation of the ^-based analysis (31) 

attests. The structure in (33) is not entailed by the analysis but by the general Parameter 

Hierarchy hypothesis, proposed to emerge from the interaction of UG, PLD, and general 

acquisition strategies. While the link between learning and typology is an important 

research area16, this shows that hierarchies are imposed on a set of parameters, rather than 

arising from them. 

In Property Theory, the structure emerges directly from the objects of OT itself: the 

interactions of CON over the space defined by GEN. The crucial constraint conflicts that 

define the grammars are properties, and their relations—the scopes—yield the 

hierarchical form. Rather than adhering to a predefined structure, the hierarchical 

relations represented in the treeoid are entailed by the typology and properties 

themselves, without appeal to outside learning factors other additional mechanisms.  

4.6 Predicting paths of diachronic change 

BHR show that FOFC constrains directionality of word order changes to certain 

pathways. No change can result in an FOFC-violating order. Thus "change from head-

final to head-initial order in the clause must go 'top- down,' in that CP must be affected 

first, followed by TP, followed by VP [(35)a)]. Conversely, head-initial to head-final 

change must go 'bottom-up,' starting at VP before affecting TP, and then affecting TP 

before affecting CP [(35)b)]" (p. 192).   

 

 

                                                
16Comparison of learning in the two theories is a topic of future work, using the learners of Tesar (2004, 
2014) to learn the OT systems. 
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35) Direction of diachronic change 

a. Head-final → head-initial 

[[[OV] T] C] → [C [[O V] T]] → [C [T [O V]]] → [C [T [V O]]]  

b. Head-initial → head-final 

[C [T [V O]]] → [C [T [O V]]] → [C [[O V] T]] → [[[O V] T] C] 

The directed step-wise change is exactly that predicted by the wsPAs by Alber's (2015ab) 

theory of diachronic variation as minimal property values change. Alber (2015a) 

develops the theory in an analysis of a stringency system sharing the structure of the 

systems developed here, so her analysis applies with little alteration. Two Γs are property 

adjacent (P-adjacent) if their descriptions in the PA differ in a single P value. Under the 

minimal change theory, change from one Γ directly to another is possible only if they are 

P-adjacent. When they are non-adjacent, differing in multiple values, change precedes 

stepwise via a path through other Γs, where each pair differs minimally. In this way, each 

step in the change path is a Γ, defined by a set of P values.    

The present analysis predicts that only the pathways of change schematized in (35) 

are possible, as shown below using wsPA(T(A)symL) (36). In the sequences of value 

changes, a change from L1 to L2 (P0 value change) switches the ranking of CompL and 

the most stringent HdL.Ff0, resulting in head-finality in only the lowest projection, VP. 

Change from L1 to L4 must proceed through both L2 and L3, changing all P values one 

by one.   
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36) Diachronic change as minimal P value change 
a. (A)symL value table 
Γ: surface order P0 P1 P2 
L1: [C [T [V O]]] β β β 
L2: [C [T [O V]] α β β 
L3: [C [[O V] T]] α α β 
L4: [[[O V] T] C] α α α 

 
b. Sequences 

Head-initial → head-final 

L1 (βββ) → L2 (αββ) → L3 (ααβ) → L4 (ααα) 

Change:  P0    P1  P2 

Head-final → head-initial 

L4 (ααα) → L3 (ααβ) → L2 (αββ) → L1 (βββ) 

Change:  P2     P1            P0 

The PA is crucial to predicting the change paths because it is this level of typological 

organization over which P-adjacency is defined. The result is not obtainable using 

typohedral (T) adjacency to condition minimal change, as all Γs are adjacent in this 

structure (see the typohedron in Appendix A.3 (41)). Using T-adjacency, change from 

any Γ to any other is predicted to be equally possible.  

Defining P-adjacency and minimal change in the context of mootness (nsPAs) is 

more complex, as Alber (2015a,b) illustrates. Changing from a non-moot value to moot 

loses a P value; if retained, the Γ resulting from the change would be a refinement of the 

target Γ to which it was changing, with the additional value contributing an additional 

ranking. In the other direction, changing to a value requiring choice on a nsP results in 

adding a value; if the nsP value is not added, the resulting Γ is either a coarsening of the 
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target Γ or not a Γ17. There is also the question of value choice: if either is possible, then 

a Γ with a great deal of mootness could change into several other Γs; in the nsPAs here, 

L1 could then change to any of L2, L3 or L4, failing to predict the paths BHR describe. 

See Alber (2015a,b) for further insight on mootness in this theory of variation. 

4.7 Summary 

The research program of the ReCoS project is a major step forward in typological 

analysis. The FOFC is significant both as an empirical discovery of possible cross-

linguistically word orders, and as a target of theoretical explanation of linguistic 

typologies. This chapter proposed an analysis using a set of structural constraints defined 

in a stringency scale over an Extended Projection. FOFC follows from the logic of the 

systems realizing this scale. The typological structure emerges from property analysis. 

Predicted languages are defined extensionally by the degree of head-initiality/finality in 

syntactic phrases, aligning with intensional rankings characterized by the property values.  

The analysis shares a central aim with that of BHR and the theory of Parameter 

Hierarchies. While employing different sets of tools and assumptions, both have a central 

stringency-esque core, where head-directionality in a given phrase is contingent on that 

of a higher or lower phrase. This is achieved in the present systems through the 

stringency scale, and in BHR's analysis through locality conditions on feature inheritance.  

Both theories articulate the structure of the FOFC typology as a set of interdependent 

choices, parameters or properties, within broader theories of typological structure, 

Property Theory and Parameter hierarchies. Roberts (2013) argued that such parameter 

                                                
17If, for example, the change resulted in a P value with a subordinated κ.sub; see ch 2. 
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hierarchies parallel OT typologies in limiting the space of variation.18 However, the PH 

structure arises from a theory independent of, and additional to, the specific pieces of the 

analysis, appealing to external factors rather than being entailed by the parameters 

themselves. Property Theory explains the non-obvious but inherent typological structure 

of OT systems that emerges directly from the analysis.  

A. Appendices 

A.1.  Alternatives 

This appendix considers some alternative C sets that cannot produce the FOFC typology 

when used with the same the GEN. It does not constitute a categorical denial of the 

existence of alternative systems that depart more significantly from the assumptions here. 

A.1.1. Non-stringent head-specific Cs 

The first alternative defines HdL or ObSp Cs for each head in the EP individually, rather 

than using inclusion subsets. In the PAs, the general antagonist interacts with each 

specific C individually in a wsP (i.e., the PA structure resulting from making all Ps in 

nsPAs into wsPs). In AltSymL and AltAsymO, each of the eight candidates is possibly 

optimal (none HB) failing to derive the FOFC typology. The outlier is AltAsymL, which 

does generate the typology and thus would seem to refute the claim of the need for a 

stringency scale. However, because of roll-up movement and the fact that violations are 

assessed for all copies of a projection, a stringency relationship between the Cs is derived 

over the set of possible optima. The VT for AltAsymL is shown in (37).  

 

                                                
18See Grimshaw's insightful response (2013b) to Roberts, esp. p. 577-8; this chapter follows the spirit of 
her critique, with reference to PT. See Grimshaw (2013a) for the analysis Roberts (2013) comments on. 
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37) AltAsymL VT 
Input Output HdL.V HdL.T HdL.C ObSp HB-er 
CP a. [C [T [V O]]]    3  
 b. [C [T [O V o]]] 1   2  
 c. [C [[V O] T [v o]]]  1  3 a 
 d. [[T [V O]] C [t [v o]]]   1 4 a 
 e. [C [[O V o] T [o v o]] 2 1  1  
 f. [[T [O V o]] C [t [o v o]]] 2  1 2 b 
 g. [[[V O] T [v o]] C [[v o] t [v o]]]  2 1 4 a,c,d 
 h. [[[O V o] T [o v o]] C [[o v o] t [o v o]]] 4 2 1   
 
All candidates moving an fxP to spec f(x+1)P but not moving complement within the fxP 

(c, d, f, g) incur a violation of ObSp for each copy and a violation of the HdL C for the 

relevant head, fx. Possible optima are those where all moved complements have internal 

movement. This satisfies ObSp for fx and all lower projections, while deriving a 

stringency relationship between the HdL Cs: since neither fx nor any lower head is left-

aligned, each HdL for a lower head is violated at least as much as the HdL for a higher 

head. Consequently, TAltAsymL = TAsymL.19  

A.1.2. HdL.EP 

Another alternative, from a suggestion from Grimshaw (p.c.), replaces the scale HdL Cs 

with a single C aligning all heads in an EP with the left edge of the entire EP (38). 

CONHL.EP includes a general HdL C, aligning each head in its own projection (this C is not 

crucial, as it and HdL.EP have the same filtrations). The higher the head in the EP, the 

more violations of HdL.EP incurred when that head is final. However, the system cannot 

generate the FOFC typology: only the two fully harmonic word order candidates, (a) and 

(h), are possible optima; no disharmonic orders are possible, FOFC-satisfying or not. The 

VT is shown in (39); all gray-shaded candidates are complexly HB by (a) and (h).  

                                                
19This is not the case with AltAsymO: while movement doubles complement-internal violations, it satisfies 
the ObSp C specific to the projection to which it moved. 
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38) HdL.EP: *(X, fx): [fnP (…) X (…) fx where X = {fi, YP} (any head or projection) 

Prose: for each pair (X, fx), where X is a maximal projection or another head, 

assign one violation if X intervenes between fx and the left edge of the EP, [fnP.  

39) HdL.EP VT 
Input Output HdL HdL.EP CompL HB-ers 
CP a. [C [T [V O]]]  3 3  
 b. [C [T [O V]]] 1 4 2 a&h 
 c. [C [[V O] T]] 1 4 2 a&h 
 d. [[T [V O]] C] 1 4 2 a&h 
 e. [C [[O V] T]] 2 5 1 a&h 
 f. [[T [O V]] C] 2 5 1 a&h 
 g. [[[V O] T] C] 2 5 1 a&h 
 h. [[[O V] T] C] 3 6   

 
While more nuanced than *FOFC, HdL.EP is similar in that it attempts to derive the 

condition through a single C rather than from the interaction of a set of Cs that together 

determine the order relations within an EP. 

A.2. Kiparsky 2015 

Kiparsky (2015)20 develops an alternative OT analysis of FOFC word orders, in the 

context of a theory of syntactic change. His analysis uses a different set of Cs to derive 

the typology for a 3-hd EP, but similarities between the accounts further underscore the 

essential elements argued for here (see §4.3.3 above). Kiparsky's Cs are also in a 

stringency relationship; though there is no explicit reference to EP functional levels, the 

Cs derive a scale over three categories sequentially ordered in an EP: lexical head, 

intermediate functional heads, and the highest functional head (the complementizer). 

However, the equivalence between the analyses predictions come apart when the EP has 

more than 3 heads. Kiparsky's CONK is below, as he states it. 

                                                
20Thanks to Birgit Alber for reminding me of Kiparsky's analysis.  
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40) CONK 

Head-finality: heads follow their complements. 

F≺XP: Functional heads precede their complements. 

C≺XP: Complementizers precede their complements. 

Harmony: If A is the complement of B, A and B have the same headedness. 

Head-finality plays the same role that CompL does in SymL, satisfied by head-final 

projections. The two Cs F≺XP and C≺XP are correlates of HdL variants. The first refers 

to any functional head, thus including all EP heads except the lowest, lexical head. The 

second is specific to complementizers, (generally) the highest functional head. The Cs 

create a scale distinguishing three sections of the EP. This is a coarser scale than the f-

value-based one used here. Because all non-complementizer functional heads are 

assessed equally, they must all be in the same order with respect to their complements in 

possible optima. The typology generates 4 Γs regardless of the number of heads in the EP 

input; when more than 3, the analysis cannot derive structures in which two such 

functional heads are in different orders (i.e., a T precedes its complement vP, but a v 

follows VP, [T[[VP]v]]). Kiparsky does not examine such structures.  

The final C, Harmony, is violated by non-uniformity of head direction in the 

projection. It is crucial for the optimality of the all-initial candidate: since no C enforces 

hd-initial order of the lexical head, this structure is optimal only to satisfy the uniformity 

requirement when functional projections are hd-initial (satisfying the functional-specific 

Cs). No such C is needed in the present analyses, as the most stringent HdL C is violated 

by lexical head finality. Kiparsky's analysis, intended to explain historical change, 

motivates the lack of a similar C with the claim that "all languages are derived from a 
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common OV proto-language" (2015:21). In a PA of Kiparsky's system, the property 

ranking Harmony and Head-finality is ns, with only Γs in which one of F≺XP or C≺XP 

dominates Head-finality (some hd-initial) having a value.  

 Kiparsky uses his analysis to explain diachronic word order changes using R-volume 

(Riggle 2010), a measure of Γ size as the number of λ(Γ)/CON!. In his theory, the most 

probable language is the one with the greatest R-volume; a learner is biased towards 

selecting the grammar consistent with previous evidence that has the highest R-volume. 

Full comparison between Kiparsky's and Alber's theories is beyond the scope of the 

present chapter.  

A.3. SymL: hedra and Γs 

The typology of SymL, TSymL, is show on the 4C permutohedron in (41)a), mapping the 

constraints to {X, Y, Z, W}, and the Γs to the colors as indicated. The typohedron 

(flattened in (41)b) collapses all nodes (λs) within the same Γ to a single node (Merchant 

& Prince 2016). It is a tetrahedron, isomorphic to the typohedron of the 4C tops/bots (or 

T.1|m/T.n|1 in the terminology of DelBusso & Prince in prep.), though the systems are 

non-equivalent21. 

 

 

 

 

 

                                                
21See ch 3 on the typohedral isomorphism and permutohedral non-isomorphism of stringency Ts with nC 
scales and T.n|1/T.1|m.  
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41) Hedra 
a. Permutohedron 

Constraints: 
X = HdL.Vf0 
Y = HdL.Vf1 
Z = HdL.Vf2 
W = CompL 
 
Grammars: 
L1 = Blue  
L2 = Green 
L3 = Purple 
L4 = Red 

 
 

b. Typohedron (flattened, 2D) 

 
 
Further details of the TSymL Γs are given below; they differ in how many HdL scale Cs 

are dominated by CompL, corresponding to degree of head-finality in optima. 

42) TSym Γ 
L (# λ) Hasse of ranking  Notes Extensional 
L1 
(12)  

 

HdL.Vf0 satisfaction (most 
stringent) => satisfaction of all 
less stringent HdL Cs (not 
crucially ranked) 

No head-final 
projections (all 
initial). 

L2 (4) 

 

HdL.fV0 not satisfied;  
HdL.Vf1 dominates CompL; 
HdL.Vf2 is not crucially 
ranked. 

Head-final in 
f0P (lexical 
base); all other 
initial. 

WXZY	

WXYZ	

XWZY	

XWYZ	

XZWY	

WYZX	

YWXZ	

WYXZ	YWZX	

ZXWY	

ZXYW	

ZYXW	

ZYWX	

YZXW	

YXZW	

YXWZ	

XYZW	

XYWZ	

WZYX	

YZWX	

WZXY	

ZWXY	

ZWYX	

XZYW	

L3 L4

L2 L1
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L3 (2) 

 

All HdL Cs are ordered relative 
to CompL; only the least 
stringent HdL.Vf2 dominates it. 

Head-final in 
lower 2 
projections 
(f0P, f1P). 

L4 (6) 

 

All HdL Cs dominated, 
unordered among each other; 
none satisfied in optima. 

All head-final. 
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5 Conclusion 

Formal typological analysis provides an otherwise unobtainable level of insight into both 

the theory and the linguistic data it seeks to explain. Well-defined generative linguistic 

theories predict typologies that seek to derive the extent and limitations on cross-

linguistic variation in principled ways. The structure of the typologies shows how the 

theory explains the data.  

This dissertation advanced the development of Property Theory (Alber & Prince 

2016a, in prep.) and used it to understand core aspects of OT typologies. A factorial 

typology, often the final step in an analysis, is simply a list of languages, combinations of 

optima. Rather than an end, it is the starting point of analysis. In OT, such an unorganized 

list belies the fact that the typological space is highly structured, classifying sets of 

languages together and recognizing categories among them in systematic ways. 

The formal results of the dissertation provide analytical tools that extend the reach 

and usability of property analysis. Addressing the question of the conditions under which 

a set of Ps yields a typology provides a way of assessing potential success of a given 

analysis, as well as diagnoses for failure (chapter 2). Examining the structure of a class of 

typologies sharing a common intensional structure rather than extensional topic shows 

that a broad range of systems explain diverse data in similar ways (chapter 3). This kind 

of analysis probes the formal objects of OT, specifically the MOAT, to identify key 

constraint relations that structure a typology. Chapter 3 proposed that these relations have 

both MOAT and property correlates. This opens the way for further developments to 

build a PA directly from a MOAT. 
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Property analysis further unifies traditionally separate subfields under a common 

theory of grammar: there is nothing inherently different about syntax and phonology in 

terms of this structure. The Final-Over-Final Condition (chapter 4) typology is explained 

by exactly the kind of stringency system studied in chapter 3. Its organization follows 

from the core constraint interactions, not from another hypothesized general form, as 

suggested by the theory of Parameter Hierarchies, though the theories recognize similar 

categories. Property Theory explains the emergent but non-obvious structure of OT 

typologies. 
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