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Learners must simultaneously learn a grammar and a lexicon from observed
forms, yet some structures that the grammar and lexicon reference are unobservable in
the acoustic signal. Moreover, these “hidden” structures interact: the grammar maps an
underlying form to a particular interpretation. Learning one structure depends on learning
the structures it interacts with, but if the learner commits to one structure, its interactions
can be exploited to learn others. The Commitment-Based Learner (CBL) employs this
strategy using error-driven learning (Gold 1967, Wexler and Culicover 1980) and
inconsistency detection (Tesar 1997) to determine when to make commitments and what

kinds of commitments to make.

The CBL overcomes structural ambiguity by extending branches from a
hypothesis and committing to a separate structural interpretation in each branch, as in the
Inconsistency Detection Learner (Tesar 2004). It resolves lexical ambiguity by making
piecewise commitments to feature values, following the Output-Driven Learner (Tesar, to
appear). Each branch has its own lexicon whose values reflect the interactions of

underlying forms with the branch’s structural commitments.
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In computer simulations, the CBL learns all 97 languages in a constructed
typology whose linguistic system includes 370 million grammar and lexicon
combinations. For each language learned, the CBL takes far fewer steps than needed to
exhaustively search for a consistent and restrictive combination. Employing
inconsistency detection with Multi-Recursive Constraint Demotion (Tesar 1997) makes
the CBL highly efficient, and it compares favorably in success and efficiency to its major

stochastic competitors (Apoussidou 2007, Jarosz 2006, to appear).

The dissertation also introduces a previously unrecognized global lexical
ambiguity defined by paradigmatic equality. Paradigmatic equals (PEs) have different
grammars, but because their morpheme behaviors are identical, their learning data are
equivalent and foil learning by inconsistency detection. To distinguish PEs, the CBL
finds consistent mappings derived from words with unset features set to mismatch their
surface values. A mapping with an error by the current ranking contributes new ranking
information, allowing the learner to derive the hypothesis consistent with the PE that
includes the mapping. In the system investigated, there are always two such mappings,

each corresponding to a different PE.
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1 ISSUESIN LEARNING HIDDEN STRUCTURE

Linguistic theories posit a variety of structures taken to be part of the adult speaker's
knowledge of the language. Some of these structures are revealed in the physical
linguistic signal itself, while others must be inferred from the speaker’s knowledge of the
grammar. For the language learner, unobservable structure poses a significant challenge
because of its relationship to the grammar. Knowing the grammar would help the learner
identify this “hidden” structure, but the learner does not yet know the grammar. In turn,
knowing the hidden structure would help the learner infer the grammar, but of course the
learner cannot yet identify the correct structure. This dissertation presents the
Commitment-Based Learner (CBL) for overcoming these challenges to learn a grammar
and two kinds of hidden structure simultaneously. Learning simulations of the CBL
demonstrate that this learner can successfully and efficiently learn a language, including

its grammar and lexicon, from its overt forms.

While what counts as hidden or unobservable structure is itself a topic for
investigation, the intent of the concept can be illustrated by a sentence such as “The dogs
want to fetch sticks.” Each word has a morphological composition that cannot be
determined simply by its sound. For example, both dogs and sticks contain the plural
morpheme, but its pronunciation varies depending on its context: [z] in dogs and [s] in
sticks, relatedly, each morpheme has an associated wunderlying phonological
representation that may differ from what the learner actually hears. Syntactic structure is
also hidden in this sentence: the dogs is the subject of the verb want, and it is also the

implicit subject of the verb fetch.



In fact, hidden structure is quite common, occurring across linguistic components and
at both the input and output levels of representation. Within semantics and syntax,
quantifier raising, wh-movement, raising, control, and anaphoric binding are all types of
hidden structure. These examples show that the general problem of learning hidden
structures and the grammar at once is not limited to any one aspect of the language, and

therefore must be central to any theory of language learning.

This dissertation focuses on learning two kinds of hidden phonological structure: foot
structure and underlying forms. While the learner may discern stress by attention to its
phonetic correlates, like loudness or vowel duration, laboratory experiments suggest that
similar phonetic correlates for a foot boundary may not be available to the learner. For
example, in a production experiment, Ota, Ladd and Tsuchiya (2003) find that foot-final
moras in Japanese are no longer than other moras in the same foot. On the perception
side, tendencies to group tones as trochees based on intensity contrasts and iambs on
durational contrasts, as formulated in the lambic/Trochaic Law (Hayes 1995), turn out to
depend on the listener’s native language. In particular, Kusumoto and Moreton (1997)
find that while both English and Japanese speakers parse non-speech sounds differing in
intensity as trochees, Japanese speakers also have a tendency to parse durational contrasts
as trochees. Iversen, Patel, and Ohgushi (2008) replicate the study with a larger sample of
native Japanese speakers in Japan with similar results: almost half grouped durational
contrasts into long-short sequences. These results suggest that language learners do not

have an acoustic reference for foot boundaries and must learn the structure instead.



Based on physical observation alone, then, a three-syllable word with primary stress
(Y) between two unstressed syllables (s) is ambiguous between the interpretations
[(sY)s], [s(Ys)], and [s(Y)s]. Determining the correct interpretation matters for the learner
because different interpretations correspond to different languages. Yet, simply
identifying the correct interpretation will not suffice to determine the language, because

different constraint rankings can yield the same interpretation.

Determining underlying forms poses a similar challenge for the learner. Each
observed form is the output of some input to the grammar, but the input itself cannot be
directly observed. When the learner hears sYs, nothing about this form alone tells the
learner the underlying stress feature value of any syllable. Again, learning the grammar
goes hand-in-hand with identifying this hidden structure: the grammar contains
constraints on input-output correspondence that must be ranked, but the learner must

somehow do so knowing neither the input nor the actual structure of the output.

As the preceding paragraphs have hinted, the problem of inferring grammar is
intertwined with the problem of discerning hidden structure. The grammar itself is not
observable except by its effects as represented in the observed forms. The overarching
problem therefore involves the interrelatedness of hidden structure and the grammar: the
learner cannot fully know any one aspect of the language without knowing something

about at least one of the others.

Further complicating the issue of learning hidden structure and the grammar together
is the requirement that the learning method be computationally tractable. Executing an

exhaustive search over the full range of possibilities is impossible, and the search space



remains enormous even when limits are imposed such as disallowing unbounded
insertion and deletion. For example, an exhaustive search over a set of 20 constraints will
include 2.4 x 10'® total rankings. Though an exhaustive search of this space might
appear manageable, the set of constraints needed to account for the full range of human
language phenomena must be far greater than twenty. Now consider an exhaustive search
over all possible underlying forms. Suppose all segments have five binary features. If
inputs and outputs can differ only by the settings of features on corresponding segments
in the same order, then a ten-segment monomorphemic output like [CV.CV.CV.CV.CV]
would have (2°)'°, or over 10", possible underlying forms. To look at the problem
another way, suppose that a language has ten morphemes, each of which contains three
segments with five binary features. In total, there are (2°), or 32768, different ways to set
the feature values of each morpheme, and (2°)" or 10* different possible lexica. These
numbers, already quite large, do not take into account numerous other ways that inputs

and outputs can vary, such as by having different numbers or orders of segments.

Finally, the learner also has to determine the correct structure of the outputs. For an
Optimality-theoretic grammar, the number of possible structural descriptions for an input
depends on the assumptions about the candidate generator GEN (Prince and Smolensky
1993); for the assumptions given in section 2.3.1, a five-syllable input will have 300
candidate structural descriptions, each one way of parsing the five syllables. After the
preceding numbers, this seems trivial, but learning the language means determining, for
each observed form, the correct underlying form, the correct structural interpretation, and

the constraint ranking that will map the underlying form to the structural interpretation.



For more complex systems, exhaustively searching the range of possibilities for each

kind of hidden structure and the grammar is simply not feasible.

Significant progress has already been made toward learning hidden structure and
grammar together, including by using error-driven learning (Gold 1967, Wexler and
Culicover 1908) and inconsistency detection (Tesar 2000), which tests if combinations of
hypothetical structures are consistent with each other and whatever the learner knows
about the grammar. Inconsistency detection has proven to be an efficient means of
successfully learning a grammar and one kind of hidden structure at a time, whether

structural interpretations (Tesar 2000) or underlying forms (Tesar 2009).

The natural development from these preceding learning algorithms is to apply them to
the problem of how to simultaneously learn the hidden structures of both inputs and
outputs with the grammar. The Commitment-Based Learner banks on the power of error-
driven learning and inconsistency detection to learn successfully and efficiently. The key
feature of this learner is its use of committed information, which enables the learner to
interleave inconsistency detection across both types of hidden structure. The learner
maintains multiple language hypotheses, each containing commitments to different
lexical information and structural representations and to ranking conditions consistent
with those commitments. The interdependence of hidden structures and the ranking
becomes an asset with this approach, enabling the learner to narrow the space of the
grammar hypotheses until one or more is found that is consistent with everything the

learner observes in the data.



For example, each commitment to a structural interpretation has implications for the
ranking through the conditions required to make the hypothesized interpretation optimal.
Inconsistency detection allows the learner to determine which combinations of
interpretations cannot be correct for the language, excluding hypotheses whose
interpretations require contradictory ranking conditions. In turn, each combination of
consistent structural interpretations provides the learner with a ranking and a set of output

forms that can be used to make commitments about underlying forms.

This chapter reviews prior work done on the topic of learning hidden structures and
grammar, focusing on the learners that inform the CBL and some of their key stochastic
competitors, including those based on the Gradual Learning Algorithm (GLA) (Boersma
1997) and Maximum Likelihood Learning of Lexicons and Grammars (MLG) (Jarosz
2006). The use of error-driven learning (section 1.1.1) will be a common thread among
some works, while the potential for and use of inconsistency detection (1.1.2) will
emerge as a key difference between learning approaches, arising from different
assumptions about what kind of information the learner can retain. The role of these
concepts in learning algorithms will be emphasized in the sections on deriving rankings

(1.2.), managing structural ambiguity (1.3) and learning the lexicon (1.4).

Chapter 2 introduces the Commitment-Based Learner with a discussion of the
informative potential of mutual dependency among structures, followed by illustrations
of the CBL’s component procedures at critical learning points. Chapter 3 expands the
view of the CBL to cover a complete simulation, following along as the learner

successfully processes a data set from start to finish. Chapter 4 presents some of the



relationships found between languages in the typology used to test the CBL and discusses
the implications of those relationships for learning. Finally, chapter 5 concludes the

dissertation.

1.1 ERRORS AND INCONSISTENCIES

This section provides a review of error- and inconsistency detection, along with some
examples of how both can be useful for learning. More specific examples will occur in
the remainder of this chapter and indeed, throughout the dissertation, as the CBL is an

error-driven learner that also relies on inconsistency detection.

1.1.1 ERRORS

In error-driven learning (Gold 1967, Wexler and Culicover 1980), an “error” refers
to the mismatch that occurs when the learner’s grammar parses an input to an output
different from the observed form produced by adult speakers. Errors detected by the
learner motivate changes to the learner’s current grammar hypothesis, but whether the
learner detects the error depends on the hypothesis used in the parsing attempt, including
any knowledge the learner has about inputs, outputs, and rules for mapping inputs to
outputs. Detecting an error alerts the learner that some aspect of the hypothesis must
change, something new must be learned. Ideally, the learner should have a mechanism for
using a detected error to identify the particular aspect of the grammar that should change

and to change it in a way that prevents the error.

Tesar and Smolensky (1994, 2000) capture the information relayed by detected errors
in the form of mark-data, or winner-loser (W-L) pairs, which record the violation profiles

of the desired winner — W, the observed form — and a loser — L, any other candidate. The



W-L pair can be written in the form of a comparative tableau (Prince 2000) as in (1),
where the winner is the trochaic candidate /ss/[(Ys)], and the loser is /ss/[(sY)]." An “L”
indicates that a constraint prefers the loser by assessing fewer violations for the loser than
for the winner; similarly, a “W” indicates that the winner is preferred. The cells
associated with constraints which do not prefer either candidate are blank here, although
the standard notation of the comparative tableau would assign each of these cells an “e, ”

indicating that the constraint in question assigns equal violations to the desired winner

and the desired loser.

(1) A winner-loser pair®

/ss/ PARSE-o FT-BIN IAMB FNF
[(Y$)] ~ [(sY)] | L W

Tesar (1998a) puts W-L pairs to use in error-driven learning, recognizing that the
pairs can provide the learner with critical information about how the ranking must change
in order to render the desired winner optimal in comparison to the loser. Specifically, at
least one winner-preferring constraint must dominate every loser-preferring constraint.
Based on (1), PARSE-c and FT-BIN do not prefer either candidate and can be ranked
anywhere, but FNF must dominate IAMB. This ranking restriction is the Elementary
Ranking Condition, or ERC, associated with the W-L pair (Prince 2000, 2002a,
Brasoveanu and Prince 2011); an ERC is conveyed by the “W” and “L” notations in a

comparative tableau row.

! Input-output mappings included within the text of this dissertation are written in the shorthand form
/input/[output], without an arrow between the two, following Tesar (to appear). Mappings included in
examples may have the traditional form /input/ = [output].

? The constraints used in this tableau are defined as follows. PARSE-c: syllables must be parsed into feet.
FT-BIN: feet must be disyllabic. IAMB: feet must be right-headed. FOOT-NONFINALITY (FNF): a foot
must not be right-headed. Definitions and references for all constraints can be found in section 2.3.1.



While not every combination of desired winner and losing candidate will reveal new
ranking information, error-driven learning can allow the learner to focus just on
informative W-L pairs. If the learner’s current ranking hypothesis generates an optimum
different from the observed form or desired winner, then this competitor must be beaten
by the desired winner — it is an informative loser (Tesar 1998a). The ERC for the W-L
pair that includes this candidate as loser allows the learner to alter the ranking so that the
desired winner is optimal. The W-L pair thus not only identifies what must change, it

identifies what the change must be.

1.1.1.1 Error detection for stratified hierarchies

Grammars in Optimality Theory require that constraints be organized into a strict
dominance hierarchy (Prince and Smolensky 1993), or total ranking. However, the
methods to presented in section 1.2.1 for interpreting a list of W-L pairs can produce
hierarchies that are not total rankings, but instead allow for one or more constraints to
occupy the same stratum; these are stratified hierarchies (Tesar and Smolensky 1998,
2000). This section explains how stratified hierarchies can be used for error-driven
learning. Unless otherwise specified, in the remainder of this dissertation the terms

“hierarchy” and “stratified hierarchy” will refer to a hierarchy that is not a total ranking.

Continuing the example from above, a stratified hierarchy can be generated from the
ranking restriction conveyed by the W-L pair in (1) — that PARSE-6 and FT-BIN can be
ranked anywhere, but FNF must dominate IAMB. This restriction is satisfied by the

hierarchy in (2).

(2) {PARSE-c, FT-BIN, FNF} >>AMB
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According to this hierarchy, PARSE-c, FT-BIN and FNF each dominate IAMB, but
otherwise have no specified order with respect to each other as they all occupy the first
stratum. Total rankings, or refinements (Tesar and Smolensky 2000), of a stratified
hierarchy can be derived by freely re-ordering constraints within the same stratum while
respecting the overall ordering of the original strata. The stratified hierarchy in (2)
produces the six refinements in (3) below. The ordering of PARSE-o, FT-BIN and FNF
varies across these refinements, yet in each refinement all three constraints dominate

IAMB, just as they do in (2).

(3) Refinements of stratified hierarchy {PARSE-c, FT-BIN, FNF} >>[AMB

PARSE-6 >> FT-BIN >> FNF >>]AMB
PARSE-c >> FNF >> FT-BIN >>]AMB
FT-BIN >> PARSE-c >> FNF >>AMB
FT-BIN >> FNF >> PARSE-c >> [AMB
FNF >> PARSE-c >> FT-BIN >> [AMB
FNF >> FT-BIN >> PARSE-c >> [AMB

Mmoo o

The ranking commitments of stratified hierarchies and of their refinements differ in
several important ways from the ranking commitments of the W-L pairs from which they
derive. For one, these hierarchies can suffer a loss of ranking information from the W-L
pairs that generate them (Tesar 1997, Brasoveanu and Prince 2011). For example, while
(2) is sufficient to express the ranking restriction of the W-L pair in (1), the necessary
restriction that FNF dominate IAMB is obscured because this same stratified hierarchy can
satisfy other ranking restrictions derived from different data. One of the many alternative
sources for this hierarchy could be a W-L pair that requires PARSE-c to dominate IAMB
but allows FNF and FT-BIN to be ranked anywhere. Loss of information is a motivation

for storing a list of the W-L pairs created during learning and allowing their ranking
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commitments to be continually reflected in revised stratified hierarchies, as will be

described in section 1.2.1.2.

Stratified hierarchies also impose ranking commitments beyond those entailed by the
original W-L pairs, with the consequence that it is generally not possible to express the
total rankings of a set of W-L pairs as all and only the refinements of a single stratified
hierarchy. For example, W-L pair (1) only requires that FNF dominate IAMB, and
therefore it is consistent with rankings in which IAMB dominates both PARSE-c and FT-
BIN, such as FNF >> [AMB >> PARSE-6 >> FT-BIN. The stratified hierarchy in (2) does
not allow such a ranking because it requires both PARSE-c and FT-BIN to dominate IAMB.
As total rankings, the refinements of (2) each impose ranking relations in addition to
those of the stratified hierarchy. Thus, refinement (3)a further requires that PARSE-c

dominate both FT-BIN and FNF and that FT-BIN also dominate FNF.

Although a stratified hierarchy typically cannot duplicate the exact ranking
information of the set of W-L pairs, it sufficiently represents that information while
imposing fewer additional ranking relations than any one of the total rankings consistent
with the W-L pairs. Using a stratified hierarchy for error-driven learning offers a
compromise that is more computationally tractable than evaluating all total rankings
consistent with the set of W-L pairs without arbitrarily selecting any one total ranking
and committing to the particular relations of that ranking. However, error detection

requires some special considerations for stratified hierarchies.

For a total ranking of constraints, identifying errors and informative losers is a

straightforward process: an error is detected if the ranking selects an optimum other than
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the desired winner, and the informative loser is that optimum. In Optimality Theory, the
optimum for a total ranking is that candidate which, in pairwise competitions with each
of the other candidates, receives fewer violations of the highest-ranked constraint that
distinguishes the pair; the optimum is the most harmonic candidate (Prince and
Smolensky 1993) with respect to the ranking. Determining the optimum for a total
ranking therefore amounts to filtering out less harmonic candidates — that is, all those
which do not tie for fewest violations of the sole constraint in the stratum — beginning
with the highest-ranked constraint and working downward until only one candidate
remains or until all remaining candidates receive the same number of violations for each

constraint, producing a tie.

Because a stratified hierarchy represents a range of possible total orderings of
constraints, what counts as an error in a stratified hierarchy can depend on how the
learner interprets violations within a stratum. For example, the tableau in (4) includes
violation profiles for two candidates for the input /sYs/. The candidates tie for the first
three strata, but receive nearly complementary violations for constraints in the lowest
stratum. If (4)a is the desired winner, does the learner detect an error given the stratified

hierarchy in (5)?
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(4) Violation profiles of two competitors for /sYs/’

sy | E|E[Z]|3 2 2 E 28
a. [(sY)ys]fof1]0}fO:1:0:1:0:0
b. s(Ys))| 0 [1]o[1:i0:1 :0:1:0

(5) FT-BIN >> PARSE-0 >> MAXSTRESS >> {LMOST, RMOST, AFL, FNF, IAMB,
*LAPSE}

The answer to this question depends on how the learner interprets the information of
the violations in the lowest stratum. One option is to detect errors based on total quantity
of violations within a stratum, in a technique called “mark pooling” (Tesar 1995). By the
mark pooling technique, there is no error if candidate (4)a is the desired winner. That
candidate receives only two violations of constraints in that stratum, whereas its

competitor receives three.

However, pooling the violation marks obscures an unresolved conflict between
constraints in the bottom stratum. While candidate (4)a receives fewer violations than
(4)b, not all constraints prefer (4)a. Under some total rankings consistent with the
stratified hierarchy, (4)b would be optimal. In particular, RMOST and FNF prefer (4)b to
(4)a, and if either of these constraints dominates each of the constraints that prefers (4)a,
then (4)b will win the competition. Selecting (4)b as a loser would provide the ranking

information to resolve this conflict.

3 MAXSTRESS: for each stressed syllable in the input, assign a violation if the corresponding output syllable
does not bear primary stress. LEFTMOST/RIGHTMOST: ALIGN (PRWD, L/R, HEAD-FT, L/R). ALL FEET
LEFT (AFL):V foot 3 prosodic word such that the left edge of the prosodic word and the left edge of the
foot coincide. *LAPSE: thythm is alternating; no two adjacent unstressed syllables. See section 2.3.1 for
all definitions and references.



14

The resulting W-L pair is shown (6). In (7) is given a total ranking of the constraints
that meets the conditions imposed by this W-L pair by subordinating the two loser-
preferring constraints to all other constraints; section 1.2 will discuss specific strategies

for deriving rankings from ERCs.

(6) W-L pair /sYs/[(sY)s] ~ [s(Ys)]

i 8Bt

Rz 3. €8 pie 2%

sy |E £ 332 % & 2§
[(Y)sl~[s(Ys)]| & ¢ {WIiLIWIL:{W;

(7) FT-BIN >> PARSE-0 >> MAXSTRESS >> LMOST >> AFL >>[AMB >> *LAPSE >>
RMOST >> FNF

The Conflicts Tie (CTie) technique identifies informative losers like (4)b which can
reveal ranking information about unresolved conflicts (Tesar 2000). CTie judges the
competition in (4) as a tie. Two candidates tie by the CTie criterion if, in the highest
stratum in which they do not have identical violations, neither candidate harmonically
bounds the other; that is, one candidate does not receive fewer violations than the other
for all constraints on which they accrue different numbers of violations (Prince &

Smolensky 1993, Samek-Lodovici & Prince 1999, 2005).*

For (4), the candidates receive the same violations through the first three strata, but in
the bottom stratum, they receive different violations and, crucially, the winner (4)a does

not harmonically bound (4)b. Because CTie judges that (4)a is not the sole optimum, the

* Harmonic bounding is easily identified in a comparative tableau. If one row includes only “W” and “¢”
notations, the desired winner in that row’s W-L pair harmonically bounds the loser; if the row includes
only “L” and “e” notations, the loser of the W-L pair harmonically bounds the desired winner.
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learner can construct the W-L pair with (4)b and produce a new ranking, such as (7).
Note that this conflict does not get resolved from this competition if the learner uses the
mark pooling technique instead. Identifying and resolving the conflict at this point
enables the learner to use the ranking information for subsequent learning, and for this

reason the CBL will use the CTie technique to identify informative losers.

1.1.2 INCONSISTENCIES

Detecting an error enables the learner to rule out a single incorrect grammar and, by
using the information provided by the W-L pairs, to pick a new one instead. However, if
the learner retains a list of all W-L pairs generated in the course of learning, as proposed
by Tesar (1997), then it becomes possible for the learner to rule out a space of grammars
through inconsistency detection (Tesar 2000, 2004a). Whereas an error identifies a
mismatch between the winning output of a hypothesis and the observed form of adult
production, inconsistency detection identifies conflict between hypothesized structures.
Two structures are inconsistent with each other if no grammar can include both. Within
OT, a structure is inconsistent with a grammar hypothesis if there is no way to honor the
ranking commitments imposed by the W-L pairs of that hypothesis while including the

structure.

Error and inconsistency detection differ in their consequences. An error arises
because a single desired winner cannot win under a specific ranking, but it might still win
under another. The learner who detects an error may be able to construct a new ranking
using the information the error provides from the resulting W-L pair. An inconsistency

arises because a set of desired winners cannot simultaneously win under any ranking. The
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learner who detects an inconsistency cannot productively construct a new ranking,

because no ranking can honor the conditions imposed by each separate winner.

For example, the comparative tableau in (8) includes the W-L pair from (6) and a new
pair whose winner is /ssY/[(Xs)(Y)], with an initial secondary stress (X). The ranking
conditions of these pairs are inconsistent: each constraint that prefers the winner for one
of the W-L pairs prefers the loser in the other pair, so that no constraint prefers only

winners. Therefore, no language can include both /sYs/[(sY)s] and /ssY/[(Xs)(Y)].

(8) /sYs/[(sY)s] and /ssY/[(Xs)(Y)] are inconsistent

ziSiEi i 1 w
22z 88 2 2%
Input WAL £ &3 3232 & 25
a. /sYs/ | [(sY)s] ~[s(Ys)] W L W L W
b. /ssY/ | [(Xs)(Y)] ~ [(X)(sY)] L LIW:IL:

Inconsistencies provide the learner with valuable information about the set of
structures in the current language hypothesis. If the learner has observed the overt forms
sYs and XsY, the inconsistency in (8) reveals that either one or both of the hypothesized
structural interpretations is incorrect. A language hypothesis that includes /sYs/[(sY)s]
and /ssY/[(Xs)(Y)] can therefore be rejected on the basis of this inconsistency. The
Inconsistency Detection Learner (IDL) is an algorithm for learning the correct
interpretations of structurally ambiguous overt forms, using inconsistency detection to
rule out incorrect combinations of structures (Tesar 2004a). The IDL, which is employed

by the CBL for phonotactic learning, is discussed further in 1.3.4. In addition to
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eliminating some combinations of structural interpretations, inconsistency detection can
also be used to learn underlying forms, as section 1.4.1 describes.

In sum, error and inconsistency detection are distinguished by the type of problem
the learner detects and by the hypothetical component causing the problem. An incorrect
ranking hypothesis causes the traditional error of error-driven learning: a mismatch
between a calculated optimum and an observed form. Incorrect structural hypotheses
trigger inconsistency: a conflict between a set of desired winners and the ranking

conditions separately imposed by each winner.

1.2 LEARNING RANKINGS FROM ERRORS

This section reviews two major alternatives for using errors to learn a constraint
ranking. Section 1.2.1 covers Recursive Constraint Demotion (Tesar and Smolensky
1994, 2000) and several of its variants. Section 1.2.2 reviews the stochastic Gradual
Learning Algorithm (Boersma 1997). Two non-error-driven approaches to learning a
grammar are covered in later sections, which discuss learning the ranking as part of the
broader goals of managing structurally ambiguous data (1.3.3) and learning the lexicon

(1.4.3).

1.2.1 RECURSIVE CONSTRAINT DEMOTION AND VARIANTS

1.2.1.1 Recursive Constraint Demotion (RCD)

Recursive Constraint Demotion (RCD) is an algorithm for converting the ranking
information from W-L pairs to a stratified constraint hierarchy (Tesar and Smolensky

1994, 2000). As explained in section 1.1.1, a ranking that selects the desired winner as
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optimal will have all L-preferring constraints dominated by at least one W-preferring
constraint. RCD applies this reasoning to construct a ranking from a list of W-L pairs.
Beginning with the highest stratum, RCD makes passes through the W-L pair list, in each
pass demoting any L-preferring constraints to the next lowest stratum and repeating until

all constraints have been ranked, if possible.

Two key properties of RCD make it very effective for successfully deriving a
constraint ranking. First, if there exists a ranking that will make the desired winners
optimal, RCD will find one such ranking. Second, if there is no ranking that will make
the desired winners optimal, RCD terminates. Application of RCD to the W-L pair list in

(9) will illustrate the first property.

(9) Consistent W-L pair list — before the first pass

/ss/ PARSE-c | FT-BIN | IAMB | FNF : AFL | *LAPSE
a. [s(Y)]~[(Ys)] L L w L L
b. [s(V)] ~[X)(Y)] L ¢ W L W

The constraints PARSE-c, FT-BIN, FNF, and AFL all prefer a losing candidate at least
once and therefore must be demoted below the stratum containing [AMB, which only
prefers a winner. Although *LAPSE does not prefer a winner, it does not prefer any losers
either, and it can be ranked in the first stratum as well. The tableau in (10) shows the

results of RCD’s first pass through the W-L pair list.

(10) Consistent W-L pair list — after one pass
/ss/ *LAPSE | IAMB | PARSE-G | FT-BIN | FNF | AFL
©a_[s0D] ~ [(Ys)] W[ LT T
Db [s(Y)] ~ [X)(Y)] E L : W ' W
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After this pass, W-L pair (9)a is ignored because demoting all the L-preferring
constraints below IAMB is enough to make its desired winner optimal. However, the
ranking restriction of W-L pair (9)b, below the bolded line, remains to be satisfied after
the first pass through the list, as the optimality of this pair’s winner is not yet ensured by
the current ranking. In order for (9)b to be optimal, PARSE-c, the sole L-preferring
constraint in the row, must be demoted to the stratum below FT-BIN and FNF, the W-
preferring constraints. The ordering of constraints in the tableau in (11) reflects the new

stratified hierarchy, (12).

(11) Consistent W-L pair list — after two passes
/ss/ *LAPSE | IAMB | FT-BIN | FNF | AFL | PARSE-o
Da  [s()] ~[(Ys)] . W L (L L L
Qb [s(N)]~[X)I)] i W W L
(12) {*LAPSE, IAMB} >> {FT-BIN, FNF, AFL} >> PARSE-c

1.2.1.2 Multi-Recursive Constraint Demotion (MRCD)

Applying RCD to a list of W-L pairs can result in information loss. The problem, as
described in section 1.1.1.1, is that stratified hierarchies obscure the necessary ranking
restrictions, or ERCs, entailed by a set of W-L pairs. This problem is solved by a later
development of RCD, Multi-Recursive Constraint Demotion (MRCD) (Tesar 1997),
which preserves each W-L pair in a permanent list called the support (Tesar & Prince
2003). Whenever error-driven learning generates a new W-L pair, the pair is added to the

permanent list, and then RCD applies to the whole list to construct a new ranking.
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Importantly, retaining the W-L pairs and their ERCs allows the learner to detect when

desired winners are inconsistent with each other.

The following example shows how MRCD uses the second property of RCD — its
ability to terminate when necessary — to reveal that a set of desired winners cannot all be
optimal. Consider the support below. For the two-syllable input, the desired winner is an
iambic foot, but for the three-syllable input the desired winner is the right-aligned

trochaic foot.

(13) Inconsistent support — before the first pass

Input W~L PARSE-G | FT-BIN | *LAPSE | AFL | IAMB | FNF
a. /ss/ [(sY)]~ [(Ys)] i i : ‘W L
b. /sss/ [s(Ys)]~ [s(sY)] L L W
c. /sss/ [s(Ys)]~ [(Ys)s] ! W L !

Demoting the L-prefering constraints AFL, IAMB and FNF to the stratum below
PARSE-c, FT-BIN and *LAPSE takes care of W-L pair (13)c, shown above the bolded line
in tableau (14) below. Here RCD terminates, detecting a problem: in the second stratum,
every constraint is L-preferring. No ranking can make the two desired winners of these

remaining pairs optimal.

(14) Inconsistent support - after the first pass
Input W~L PARSE-6 | FT-BIN | *LAPSE | AFL | IaMB | ENF
(13)c /sss/ | [s(Ys)]~[(Ys)s] LW L
(13)a/ss/ | [SY)]~[(Ys)] i i WL
(13)b /sss/ | [s(Ys)]~ [s(sY)] L L W

As (14) demonstrates, maintaining a support that stores W-L pairs makes

inconsistency detection possible. A learner that maintains a support is able to determine
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what kinds of structures can coexist in the language hypothesis and can use this
information both to resolve structurally ambiguous data (1.3.4) and to learn the lexicon

(1.4.1).

1.2.1.3 Biased Constraint Demotion (BCD)

As explained above, one of the essential properties of RCD is that if there is at least
one ranking that will satisfy all of the given W-L pairs, RCD will find one such ranking.
In particular, RCD finds the stratified hierarchy in which each constraint is ranked as
high as possible. Two later modifications to RCD, Biased Constraint Demotion (BCD)
(Prince and Tesar 2004) and Low-Faithfulness Constraint Demotion (LFCD) (Hayes
2004), bias the learner toward the construction of more restrictive grammars and are
intended to address the “subset problem” (Angluin 1980 and Baker 1979). The subset
problem refers to the situation of a learner who wrongly adopts a grammar that allows
more structures than the language actually permits. Because the correct grammar is a
subset of this grammar, the learner will never encounter the evidence needed to reject the
wrong assumption: the only evidence is positive evidence, and everything permitted by

the correct grammar is also permitted by the incorrect, superset grammar.

Within Optimality Theory, relative rankings of markedness and faithfulness
constraints determine the range of linguistic structures permitted by a language. A
grammar that permits the broadest range of structures will rank all faithfulness constraints
above all markedness constraints, allowing any structure that appears in inputs to appear
in outputs, within the bounds permitted by GEN. At the other extreme, the grammar with

the narrowest range of structures will have all markedness constraints dominating the
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faithfulness constraints. Thus, the basic insight of Biased Constraint Demotion: the
learner who waits for positive evidence of a marked structure to rank a faithfulness
constraint above the pertinent markedness constraints will derive the more restrictive
grammar, admitting the observed marked structures that motivate the ranking and as few

others as possible.

Prince and Tesar illustrate the use of BCD for learning phonotactic ranking
information from the distributional data of observed forms. Any observed form has been
selected as optimal by the adult grammar, and therefore the learner knows that any
structures present in that form are perfectly permissible in the language.” Consequently, if
the observed form is used as an input, the optimal output should be the observed form
itself. This mapping from observed form as input to observed form as output is the
identity map (Prince and Tesar 2004). Because the identity map of an observed form will
best satisfy all faithfulness constraints, it can fail to be optimal only due to its satisfaction
of markedness constraints. Error-driven learning in this case will produce a W-L pair in
which W is the identity map and L includes a less marked output than the identity map.
As a result, the W-L pair reveals conflicts between markedness constraints alone or

between both markedness and faithfulness constraints.

The learner derives a new ranking by applying BCD to the support generated by
error-driven learning — that is, new rankings are derived by MRCD, using BCD in place
of RCD. At the outset of learning, there will be no W-L pairs in the support; applying

BCD to this empty list derives the learner's initial constraint ranking in which all

5 Error-driven learning treats all observed data as evidence of grammatical forms. Thus, speech errors are
also processed as though they are grammatical.
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markedness constraints dominate all faithfulness constraints: {M} >> {F}. Deriving each
new ranking through the application of BCD to the support ensures that the ranking bias

toward markedness constraints persists throughout the learning process.

The constraint set in the example below includes all nine constraints used in the
simulations of the CBL, including the faithfulness constraint MAXSTRESS, which assigns
a violation if an underlyingly +stress syllable does not correspond to an output syllable
bearing primary stress. The initial ranking after applying BCD to the empty support
appears in (15). Suppose the learner has constructed the support in (16) for the winners

/sYs/[(sY)s] and /Yss/[(Ys)(X)].

(15) Initial ranking by BCD

{PARSE-c, FT-BIN, IAMB, FNF, AFL, *LAPSE, LMOST, RMOST} >> MAXSTRESS

(16) Support for /Yss/[(sY)s] and /Yss/[(Ys)(X)]
28 2o o %8 8%
Input we = & 2 & 27 323
a. /sYs/ | [(sY)s] ~ [s(Ys)] . W:!L:W: W:L:
b. /sYs/ | [SY)S]~[(N(EX] | L - W W W : W W
c. /sYs/|[(sY)s]~[(Ys)X)]| L : W:@W: - W : - W
d. /Yss/ | [(Ys)X)]~[(sY)s]|] W: L | L : DL L W

*LAPSE, LMOST, and MAXSTRESS do not prefer losers in any of the W-L pairs. RCD
would rank all of these in the first stratum, but BCD ranks only the markedness
constraints and waits for at least another pass through the support to rank MAXSTRESS.

The updated support appears in (17), followed by the ranking after this first pass.
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Ranking *LAPSE and LMOST in the first stratum satisfies W-L pair (16)a, shown above

the bolded line.
(17) Support after first pass of BCD
1. e
2 e h o & : : S
2812 & 2w 0 8 %
Ji 3l S g 2E %2 2 S
Input W~L *oooA A B S R < A
(16)a /sYs/ | [(sY)s] ~[s(Ys)] W W L W L :
(16)b /sYs/ | [(sY)s] ~ [(Y)(sX)] : L. W WIW W
(16)c /sYs/ | [(sY)s] ~ [(Ys)(X)] LW :W. P W P W
(16)d /Yss/ | [(Ys)(X)] ~ [(sY)s] WL L DL LW
(18) {*LAPSE, LMOST} >> {PARSE-c, FT-BIN, IAMB, FNF, AFL, RMOST,

MAXSTRESS}

Of the remaining unranked constraints, FNF, RMOST and MAXSTRESS prefer only
winners in the rows below the bolded line. BCD again ranks just the markedness

constraints, producing the ranking for the updated tableau in (19). This ranking, in (20),

now satisfies (16)b also.

(19) Support after second pass of BCD
; | o
= - Tz : DB
L w Cw B m A
<igleig|l2: R 5 2 %
Input WL Al 2|l £ 22 S
(16)a /sYs/ | [(sY)s] ~ [s(Ys)] Wl L L W W
(16)b /sYs/ | [(sY)s] ~ [(Y)(sX)] ’ w w|lL wi ‘wiw
(16)c /sYs/ | [(sY)s] ~ [(Ys)(X)] ’ LW WIW W
(16)d /Yss/ | [(Ys)(X)] ~[(sY)s] W:L:L:L W
(20) {*LAPSE, LMOST} >> {FNF, RMOST} >> {PARSE-c, FT-BIN, IAMB, AFL,

MAXSTRESS}
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Five unranked constraints remain. Because the markedness constraints are all L-
preferring, now the W-preferring MAXSTRESS must finally be ranked. The updated
support appears in (21). All of the W-L pairs are satisfied by the resulting ranking, (22).
By comparison, applying MRCD to the support in (16) would yield the ranking in (23).
This ranking has just two strata because all the W-L pairs are satisfied if *LAPSE, LMOST,

and MAXSTRESS are ranked highest.

(21) Support after third pass of BCD

2l o

a0 A B~ R4 :

SRR e | 2 g M
<ol iglZEl=2 RS2
Input W~L *AE EEE&E =2
(16)a /sYs/ | [(sY)s] ~ [s(Ys)] W[ L L ! LW W
(16)b /sYs/ | [(Y)s] ~ [N | . |W WIW[L W, | w
(16)c /sYs/ | [(sY)s] ~ [(Ys)(X)] : W|L W:W:W
(16)d /Yss/ | [(Y$)(X)] ~ [(sY)s] wWlw L L L

(22) Final ranking by BCD
{*LAPSE, LMOST} >> {FNF, RMOST} >> MAXSTRESS >> {PARSE-G, FT-BIN,IAMB,
AFL}

(23) Final ranking by MRCD

{*LAPSE, LMOST, MAXSTRESS } >> {PARSE-c, FT-BIN, IAMB, FNF, AFL, RMOST}

The more restrictive ranking in (22) is consistent with language L14 in the typology
of the Stress system, the system used to illustrate the CBL (see section 2.3.1). In this
language, all inputs map to either [(sY)s] or [(Ys)(X)]. L14 contains a subset of the forms

of language L15, which includes a third form, [(X)(sY)]. L15 is consistent with the less

restrictive ranking in (23).
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BCD includes other criteria for ranking faithfulness constraints when the constraint
set includes more than one, such as by ranking a set of faithfulness constraints (an F-
Gang) that enables a markedness constraint to be ranked next. Because the Stress system
used to illustrate the CBL includes just one faithfulness constraint, this example provides

a sufficient look at how BCD will operate in the discussions to follow.

1.2.2 THE GRADUAL LEARNING ALGORITHM

The Gradual Learning Algorithm, or GLA, (Boersma 1997) is a primary alternative
to the RCD-inspired learning algorithms described in 1.2.1. Designed to handle
optionality in a language, the GLA presupposes a variant of Optimality Theory called
stochastic OT (Boersma 1997, Boersma and Hayes 2001). Whereas constraints are
strictly ranked in classic OT, in stochastic OT constraints are ranked along a continuous

number line. For example, while constraints A and C both dominate B below, C is much

closer to B.
(24) GLA number line
< | ] >
101 &2 80
A C B

The numbers marked on the line represent the means of normal (Gaussian)
distributions of values for the constraints listed and are called ranking values (Boersma
and Hayes 2001). When a candidate set is evaluated, each constraint’s ranking value is
temporarily perturbed by a small random noise value that shifts the value of the constraint
slightly higher or lower to derive the selection point (Boersma and Hayes 2001) for that

constraint, which is the value used for the evaluation; this is stochastic evaluation
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(Boersma 1997). Because stochastic evaluation randomly selects values from the normal
distributions of individual constraints, it amounts to the selection of a complete ranking

from a probability distribution over the possible rankings.

Optionality derives from the overlap between the normal distributions of ranking
values. The closer the ranking values of two constraints, the greater the overlap, and the
greater the likelihood that stochastic evaluation will use a ranking different from that of
the ranking values. For example, in one evaluation C’s ranking could decrease to 80.7
while B’s increases to 81, resulting in B dominating C for that evaluation. The greater
distance between A and C makes it far less likely — although not impossible — that C will

dominate A in an evaluation.

Similar to classic OT, different grammars in stochastic OT correspond to different
ranking values of constraints; the GLA is the stochastic counterpart of RCD, providing an
algorithm for setting these ranking values. Like MRCD, the GLA employs error-driven
learning, but instead of constructing a new ranking for each error detected, the GLA
simply modifies the existing ranking by nudging all W-preferring constraints slightly
higher and all L-preferring constraints slightly lower. The size of the nudge is defined by
a plasticity value that grows smaller as learning advances (Boersma 1997). The small
shifts in ranking values regulated by the plasticity make errors less likely over time,

whereas RCD immediately corrects the ranking to eliminate the error.

The GLA does not maintain a support of W-L pairs. Once ranking values are shifted
by the plasticity, the GLA has no more use for the W-L pair derived from error-detection.

Both because W-L pairs are discarded after each ranking modification and because
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modifications involve such small movements, the GLA is forgiving of noisy data such as
speech errors and re-rankings based on such data do not severely interfere with learning.
For a learner that uses MRCD to learn the ranking, adding to the support an ERC that
results from observing a speech error has a permanent effect on the ranking and may lead
to inconsistency. On the other hand, the GLA lacks MRCD’s ability to perform

inconsistency detection because it does not store W-L pairs from prior errors.

1.3 MANAGING STRUCTURAL AMBIGUITY

A structure is ambiguous if it has more than one interpretation. For the stress data
under discussion here, a structural interpretation consists of any parsing matching the
observed form in its pattern of stressed and unstressed syllables. A two syllable word
with initial stress, Ys, has the possible interpretations [(Y)s] and [(Y's)], but not [s(Y)] or
[(sY)]; the latter two parsings are simply candidate structural descriptions for a two

syllable input.

Different interpretations of an overt form will correspond to different languages, and
how the learner interprets one overt form can have consequences for what the learner
infers about the grammar and the interpretations of other overt forms. This section
reviews two basic responses to the problem of structural ambiguity.® In the first, the
learner takes a flexible approach to interpretations: either the interpretations can vary
over the course of learning (sections 1.3.1 and 1.3.2) or the interpretations are simply
ignored (section 1.3.3). The second response is more rigid: an overt form receives a

permanent interpretation once it becomes clear that its interpretation cannot be ignored

® See also section 1.4.2 and 1.4.3 for two learners that manage structurally ambiguous data while learning a
lexicon.
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(section 1.3.4). Both kinds of responses can be error-driven, but only the second kind can

exploit inconsistency detection for learning.

1.3.1 ROBUST INTERPRETIVE PARSING/ CONSTRAINT DEMOTION

The Robust Interpretative Parsing/ Constraint Demotion (RIP/CD) algorithm is an
early, error-driven approach to resolving the problem of structural ambiguity (Tesar
1998b, Tesar and Smolensky 2000). Robust interpretative parsing takes an observed form
as input and assigns it the most harmonic structural interpretation, regardless of whether
the ranking selects that interpretation as optimal. The learner then checks whether the
underlying form of the observed form maps to the same interpretation. If it does, the
learner makes no changes to the ranking, but if it does not, the learner performs error-
driven learning. The ranking is altered using online constraint demotion, or “online CD”
(Tesar and Smolensky 1998). For online CD, the W-L pair supplied by error detection is
immediately used to update the ranking and is then discarded, with the next round of
error-driven learning applying to the revised ranking. This process repeats until the

assigned structural representation is the optimal output for the underlying form.

Because the RIP/CD algorithm chooses the most harmonic structural interpretation as
judged by the learner’s current ranking hypothesis, it has the potential to choose the
wrong interpretation, and consequently to learn the wrong grammar. The algorithm can
sometimes right itself, but there are several cases in which the algorithm fails because of
its rigid selection of the most harmonic interpretation at the time (Tesar and Smolensky
2000); however, when RIP/CD succeeds, it is quite efficient. In simulations of RIP/CD

performed over 124 languages generated from a set of 12 constraints, Tesar and
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Smolensky find that the algorithm typically succeeds in fewer than 10 learning steps,

each an application of constraint demotion.

1.3.2 ROBUST INTERPRETIVE PARSING/ GRADUAL LEARNING ALGORITHM

Apoussidou and Boersma (2003) implement robust interpretative parsing with the
GLA to learn foot structure in Latin. The differences between RIP/GLA and RIP/CD are
minimal. As with RIP/CD, the learner uses an observed form as input, determines which
of the possible interpretations of the observed form is most harmonic, and assigns this
interpretation to the observed form. Because the GLA assumes stochastic OT, the ranking
used to select the most harmonic interpretation of the observed form is in effect randomly
chosen from the probability distribution over all possible rankings, given the current
ranking values. The learner then uses this same ranking to check whether the underlying
form of the observed form maps to the same interpretation; if not, then error-driven

learning occurs, with ranking values changed as described in section 1.2.2.

Importantly, because RIP/GLA shares with RIP/CD the selection of the most
harmonic interpretation at the time of observation, it also shares the possibility of getting
stuck by selecting the wrong interpretation. In comparison to RIP/CD, which requires
very few learning steps when it is successful, RIP/GLA generally processes thousands of
data before succeeding. GLA simulations are typically evaluated by assessing the ranking
values after the learner has processed a round of data. In simulations where the learners
process overt forms, as in the RIP/CD simulations, Apoussidou and Boersma report that

the learners succeed after processing 3 to 35 rounds of 1000 data.
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1.3.3 THE NAIVE PAIRWISE RANKING LEARNER AND RANDOM SEARCH

Like the preceding learners, the Naive Pairwise Ranking Learner, or NPRL, (Jarosz
to appear) takes an online approach, but it is not error-driven. Moreover, NPRL ignores
structural interpretations altogether and avoids the problem of structural ambiguity by
comparing overt forms only. Simulations of the NPRL show that it is successful and
efficient, at least as compared to exhaustive search and RIP/GLA, but its performance
mirrors qualities of random search. Random search is just as successful and requires even

fewer learning steps than NPRL.

Based on Naive Parameter Learning (Yang 2002), NPRL derives a total ranking from
pairwise relative rankings of constraints. Thus, the ranking CON1 >> CON2 >> CON3 is
derived from three pairwise rankings: CON1 >> CON2, CON1 >> CON3, CON2 >> CON3.
Each relative ranking of a pair of constraints has a probability specified by the grammar.
The total ranking is created by a repeating process in which two unranked constraints are
ranked relatively given the probability assigned by the grammar, along with whatever
other pairwise rankings follow from their ranking, until all constraints have been ranked
with respect to each other. As in the GLA, the total ranking represents a selection from

the probability distribution over all possible rankings.

NPRL learns by comparing the overt form of the current ranking’s optimum against
the observed form. If these overt forms match, then all pairwise rankings are rewarded
using a learning rate that increases the probability associated with the ranking: the higher
the learning rate, the greater the increase in probability. Similarly, if the overt forms do

not match, the probabilities associated with each ranking are penalized. NPRL is not



32

error-driven because it updates the ranking in some way with each observed form and it
is “naive” because it updates every pairwise ranking rather than finding a way to reward

just those that favor the desired outcome.

In simulations of the NPRL applied to the metrical stress system used by Tesar and
Smolensky (2000), Jarosz finds that given a high learning rate, the NPRL is efficient at
learning a language as compared to exhaustive search and RIP/GLA, but not RIP/CD.
The NPRL is also completely successful, where success means converging on a ranking
that generates all the overt forms of the language. With twelve constraints used in the
simulations, there are nearly five-hundred million different total rankings, but the NPRL
requires on average 16004 iterations (each the processing of a single observed form) to
successfully learn the 124 languages in the system. However, the learning rate is a key
factor in both success and efficiency. At low rates, NPRL is unsuccessful after one
million iterations, and at high rates, success is achieved essentially through random
search, as updating after the mismatch between predicted and observed forms produces a

far different ranking for the next evaluation.

Jarosz also evaluates a random search learner which eliminates both the reward and
penalty schemes of the NPRL. The learner simply picks a new ranking at random, checks
whether the ranking can generate each observed overt form, and if not, selects a new
ranking. This learner is error-driven, as a new ranking is selected only if the current
ranking cannot generate a given overt form. The learner is successful if a ranking is

chosen that generates all of observed forms. In simulations, random search proves
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successful in all trials and more efficient than NPRL, requiring 10,025 iterations on

average to learn a language.

Compared to RIP/CD and RIP/GLA, random search appears to be a surprising
winner: it requires fewer learning steps than RIP/GLA, and though nowhere near as few
as RIP/CD can require, it succeeds where that algorithm fails. However, there are two
key areas where random search is unsatisfying. First, the simulations evaluating random
search do not take into account restrictiveness. The simulation is deemed successful if its
ranking can generate all of the overt forms in a language and unsuccessful if it does not.
Restrictiveness is irrelevant to these simulations because no neutralizations occur in the
target languages, but if they did, on this criterion for success a “successful” ranking could
overgenerate. The random search learner, while error-driven, cannot respond to errors in
a way that will prevent their future occurrence, much less drive the learner toward a
ranking more restrictive than the last. In contrast, an error-driven learner that builds from
its accumulated store of knowledge from errors can incorporate a ranking bias to derive
more restrictive rankings. Section 1.3.4 describes such a learner, which incorporates BCD

and MRCD to efficiently derive restrictive rankings

Second, random search is unlikely to be a computationally plausible strategy for
learning both a lexicon and a ranking to generate the observed forms. The linguistic
system presented in section 2.3.1 and used to evaluate the Commitment-Based Learner
produces a typology of 97 languages but includes over 370 million grammar and lexicon
combinations. It is true that all of these languages can be generated by multiple total

rankings and even true that, as described in chapter 4, multiple lexicon and grammar
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combinations can generate the observed forms of a language. Therefore, it might be
reasonable to expect that it would take about the same number of iterations (roughly
10,000) to find a lexicon and ranking to fit the data as it took to find a ranking fitting the
data for a language in the Tesar and Smolensky typology, with its 500 million possible
total rankings. However, this system is remarkably modest, having nine constraints, six
morphemes, and only trisyllabic words. As the space of grammar and lexicon
combinations grows for more complex systems, the number of iterations required to find
a combination that generates the data is certain to explode — and the inability to address

restrictiveness will remain.

1.3.4 THE INCONSISTENCY DETECTION LEARNER

The Inconsistency Detection Learner, or IDL (Tesar 2004), is an error-driven learner
that avoids the tendencies of RIP/CD and RIP/GLA to get stuck on the wrong
interpretations by creating separate hypotheses containing different interpretations. A
support in each hypothesis enables the learner to reap the benefits of MRCD, including
identifying and rejecting inconsistent hypotheses. In comparison to random search, the
most successful of the preceding learners reviewed, IDL both successfully and efficiently

learns restrictive rankings to generate the observed data.

While the IDL can assign stable interpretations to overt forms, it begins first by
determining whether the current ranking hypothesis can map an input to some structural
interpretation of the observed form, employing error-driven learning as described in
section 1.1.1. If the ranking maps the input to one interpretation of the observed form, the

learner makes no changes to the hypothesis and learns nothing new. If an error is detected
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— if the input does not map to a structural interpretation or if it maps to more than one
interpretation in a tie — then the learner follows the familiar pattern of error-driven
learning for constraint demotion, constructing a W-L pair in which the loser is the

candidate description selected as optimal by the current ranking.

The IDL differs substantially from RIP/CD in allowing each interpretation to be the
winner of its own W-L pair instead of selecting the most harmonic interpretation of the
current ranking to be the winner. If an observed form has five structural interpretations,
an error on this form will cause the learner to generate five separate W-L pairs that have
the same loser, L, since the error has shown that each interpretation has separately lost to
this candidate. Each of these W-L pairs is stored in the support of its own branch
hypothesis which inherits the support of the original hypothesis. A branch’s support
therefore includes everything that was in the parent’s list plus the W-L pair from the error
that caused the branch. The learner derives a new ranking for each branch hypothesis by

applying RCD to the branch’s support.’

Storing a W-L pair in the support entails a commitment to its winner every time
MRCD applies. If MRCD finds no constraint ranking that will allow all desired winners
in a W-L pair list to win, then the structural interpretations of the winners are inconsistent
with each other, and the learner rejects the hypothesis containing this list. Otherwise, the

hypothesis remains active and under consideration. The learner will test the next

’ Because Tesar’s focus is on illustrating the use of the IDL in learning structurally ambiguous
representations, all inputs match the observed forms completely, no Faithfulness constraints are
included, and there is no benefit to applying BCD to the W-L pair list. BCD becomes useful again when
Faithfulness violations are included.
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observed form in each hypothesis that remains and will perform error-driven learning

described above when errors are detected.

The example from (8) in section 1.1.2 offers a partial example of the IDL at work. In
that example, the learner has observed sYs and XsY and interpreted these forms as [(sY)s]
and [(Xs)(Y)], respectively. As shown in tableau (8) and repeated below in (25), the
identity mappings for these forms — /sYs/[(sY)s] and /ssY/[(Xs)(Y)] — are inconsistent

with each other.?

(25) /sYs/[(sY)s] and /ssY/[(Xs)(Y)] are inconsistent
.
Z g & Bl o H
22 % ¢ ¢ s 2k
Input WAL £ &3 3232 & 25
a. /sYs/ | [(sY)s] ~ [s(Ys)] W L W L W
b. /ssY/ | [(Xs)(Y)] ~ [(X)(sY)] L G LIWiIL:

The support in (25) represents one branch from a prior hypothesis which found that
[(sY)s] is a possible — that is, consistent — interpretation of the first observed form, s¥s.
The original support for that hypothesis can be found in (6). The inconsistency here
proves that [(sY)s] and [(Xs)(Y)] cannot both be correct interpretations of the observed
forms, and any hypothesis that includes both of these interpretations can be rejected.
However, this combination of interpretations is only one of those checked by the IDL. An
alternative interpretation of XsY parses the head-foot as an iamb at the right edge:
[(X)(sY)]. As shown in (26), this alternative interpretation is consistent with the

candidate /sYs/[(sY)s] for the first form. The comparative tableau below represents the

8 As described in 2.3, for the examples and simulations described in this dissertation, secondary stress is a
parameter on -stress output syllables. Therefore, in the identity mapping for XsY, the input
correspondent of the secondary stressed syllable is unstressed:/ssY/[(Xs)(Y)].
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support for these candidates and includes all of the W-L pairs created by error-driven

learning. The stratified hierarchy in (27) is derived by BCD from this support.

(26) /sYs/[(sY)s] and /ssY/[(X)(sY)] are consistent
P b
- zlelz z L & |2
S < | < : : e &
Input W~L Efzié%;%é
a. /sYs/ | [(sY)s] ~[s(Ys)] W | WL W,; L L
b. /sYs/ | [(sY)s] ~ [(Y)(sX)] : W Wi W W W|L
c. /ssY/ | [(Xs)(Y)] ~[(sY)s] W|L:W:L!L!L|W
d. /sYs/ | [(sY)s] ~ [(X)(sY)] WIW: L : W W:W|L
e. /sYs/ | [(sY)s]~[(sY)X)] L IWIWIW]L
(27) {IAMB, *LAPSE} >> MAXSTRESS >> {LMOST, RMOST, AFL, FT-BIN, FNF,

PARSE-c}

The support in (26) represents a second branch from the hypothesis that assigns s¥s
the interpretation [(sY)s]. There is also a third branch, which is inconsistent because the
identity mapping for this interpretation, /sYs/[s(Y)s], is harmonically bounded by the
iambic candidate /sYs/[(sY)s]. In all, the IDL extends three branches from the initial
hypothesis in which sYs is interpreted as [s(Ys)]. If the learner is committed to the
interpretation [(X)(sY)] for overt form XsY, then only the branch hypothesis whose
support is in (26) is consistent, and any new forms the learner observes must be evaluated

against that support only, with the same branching procedure repeating as necessary.

In simulations involving the same kind of metrical stress data’ used to evaluate the

NPRL and the random search learners in section 1.3.4, the IDL proves successful and

? The system used by Tesar (2004) omits the Word-Foot-Left/Right constraints used by Tesar and
Smolensky (2000), whose system is used in the NPRL and random search learner simulations.
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highly efficient (Tesar 2004). An IDL simulation successfully learns a language if it
learns a ranking that generates the overt forms of the language. The constraints and
candidate sets used in the simulations define a typology of 1527 languages.'® The IDL
learns each language and, on average, succeeds in just 62 applications of RCD (one
application for each ERC stored). This average includes all applications of RCD in all
hypothesis branches created in the course of learning; for most languages, the learner

maintains at most two consistent hypotheses simultaneously.

Retaining a support for active hypotheses has a severe effect on the number of
hypotheses the learner must retain. As a hypothesis increases in the number of
interpretations and concomitant ranking restrictions that it is committed to, it also
increases the potential that a candidate for a newly-observed form will be inconsistent
with those ranking restrictions. Inconsistency here leads to hypothesis rejection.
Consequently, while the maximum number of active hypotheses the learner would have
to maintain at once would be equal to the product of the number of structural
interpretations for all the observed forms in the language, restrictions placed by the ERCs
of the W-L pairs mean that many combinations of interpretations will be inconsistent, and

hypotheses containing these combinations are rejected.

The IDL fares very well in comparison with the learners discussed in the preceding
sections. It matches the total success rate of random search, but where random search

fails to derive restrictive rankings, the IDL can easily incorporate a ranking bias such as

10 Tesar notes that there are in fact 2140 distinct languages, if full structural descriptions are included, but
many have identical sets of overt forms. Languages with identical sets of overt forms are represented by
only a single data set, leaving 1527 distinct sets of overt forms. These languages are globally surface-
ambiguous, as defined in section 4.1.
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BCD to do so. The efficiency claims of each learner are harder to compare, as they use
different metrics and involve different-sized constraint sets, but the IDL appears
favorable nonetheless. The random search learner averages around 10,000 iterations,
where an iteration is the observation of an overt form and the subsequent ranking update
that occurs. Each IDL simulation includes 62 words, and on average the learner requires
62 applications of RCD — counting those in all hypotheses created — to successfully learn
the language. To observe 10,000 overt forms during the course of learning, the IDL
would have to see each word 161 times before learning the language. Even if the learner
had to observe the entire list of 62 words before detecting an error and applying RCD,

making 62 updates would require observing only 3844 (=62*62) overt forms.

The IDL owes much to the supports of its hypotheses. Maintaining multiple
hypotheses, each with its own support, adds complexity and more machinery to this
learner but guarantees success: somewhere, one of the hypotheses has the correct
interpretations for the observed forms. Moreover, the number of hypotheses maintained
at any given time is far fewer than the product of the interpretations of each overt form
because having a support enables the learner to detect and reject inconsistent hypotheses.
Finally, unlike the random search learner, the IDL displays gradual learning due to its use
of supports: storing the W-L pair created after detecting an error ensures that this
particular error will not happen again. Each error therefore brings the learner closer and

closer to either learning the target grammar or detecting an inconsistency.

All learners have disadvantages. As a learner that relies on a support, the major

disadvantage of the IDL is its difficulty in handling noisy data such as speech errors and
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free variation. In attempting to learn from these potentially contradictory data, the learner
may find that every hypothesis is inconsistent and ultimately fail to learn the language.
Random search experiences a similar failing: the learner cannot converge on a ranking if
free variation creates a unending cycle of match and mismatch. By contrast, GLA-based

learners tolerate noisy data well, but RIP/GLA is not guaranteed success.

1.4 LEARNING THE LEXICON

The preceding section presented learners using a variety of strategies for learning a
grammar from structurally ambiguous data. These learners vary by whether or not they
are error-driven and whether or not they maintain a support to enable inconsistency
detection. Those divides continue in this section, which presents several different
approaches to learning a lexicon and ranking. Two of these are error-driven and follow
the pattern seen in the last section: the RCD-based approach utilizes inconsistency
detection (1.4.1) while the GLA-based approach does not (1.4.2). The third approach,
Maximal Likelihood Learning of Lexicons and Grammars (Jarosz 2006, section 1.4.3),
also uses a stochastic, online learning algorithm but is not error-driven. The latter two
learners also can handle structurally ambiguous data, but they are discussed in this

section because of their ability to learn the lexicon as well.

1.4.1 INCONSISTENCY DETECTION AND THE OUTPUT-DRIVEN LEARNER
Learning about underlying forms requires that the learner know the morphological
composition of words in the language. Once the learner has this knowledge, paradigmatic

information — the surface realizations of morphemic contrasts and alternations (Alderete
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et al. 2005 and Tesar 2004) — makes it possible to learn underlying forms through

inconsistency detection.

A morphemic contrast consists of a pair of surface-distinct words differing by only a
single morpheme in the same morphological environment. An example from Modern
Hebrew is the pair gamadim ‘dwarf” (pl.) and tirasim ‘corn’ (pl). In these words the
plural suffix /-im/ provides the morphological environment for the contrast morphemes,
the roots /gamad/ and /tiras/. Since the context is the same for the contrasting morphemes
in a contrast pair, the different surface realizations of the pair must be due to the

underlying forms of the contrast morphemes.

Tesar (2006) describes how the learner can infer individual features of the underlying
forms by applying inconsistency detection to lexical hypotheses, or pairs of possible
underlying forms for the contrast pair. Each lexical hypothesis includes a different
combination of feature values for the as-yet unset features. If there are n binary features
whose underlying values are unknown, the learner must construct 2" local lexical
hypotheses (Merchant and Tesar 2008). In the contrast pair gamadim and tirasim each
syllable has a single feature with two possible settings: +stress or —stress. The contrast
pair therefore has five feature values that the learner must set, one for each syllable of the
disyllabic contrast morphemes, the roots, and one for the monosyllabic environment
morpheme, the shared suffix. In total, there are 32 (=2°) lexical hypotheses, whose

underlying stress values are summarized by the chart in (28).
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(28) Lexical hypotheses for the contrast pair gamadim and tirasim

gamad | tiras | -im | gamad | tiras | -im | gamad | tiras | -im | gamad | tiras | -im
/~-/ RN N e AN RN A N AN AN Wy N AN
/~-/ AR VA VA IS R Ry WA BVAS A A WS B s A A AV
S A A A A A A A A
AN Vard Wil W Vavd BN WAVl Wanry i WA Wari
AN AN e AN e AN N AN AN Wy Wy A W4
N A Ve Bl Wy A Ve BN Ny AVl Wyl Wesr B Wavi
AR AN e AR Ve AN N AR e AN WA Vs A a4
AR Ve A Ward W e Vel Ward B aa vl Wany A Ward Wanyal Wanya Wari

In the method described by Tesar (2006) and Merchant and Tesar (2008), the learner
tests each local lexical hypothesis for inconsistency, then examines the consistent
hypotheses for common feature settings. Since the correct underlying forms must be in
one of the consistent lexical hypotheses, any feature value that appears in all of the
consistent hypotheses necessarily appears in the correct one. The common feature values
of consistent lexical hypothesis provide the learner with information about underlying

forms.

Tesar (2008, 2009, to appear) improves the computational efficiency of testing lexical

hypotheses significantly with the concept of output-driven maps, defined as below.

(29) “A map is output-driven if, for every grammatical candidate A—X of the
map, if candidate B—X has greater similarity than A—X, then B—X is also
grammatical (it is part of the map).” (Tesar 2009)

The map for a language consists of the set of grammatical candidates, with each

candidate being a mapping from an input to an output. Similarity is judged according to
disparities (Tesar 2008, 2009, to appear). Each disparity is one difference, such as in

feature value, between corresponding segments of the input and output. For example, the
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input /pa/ and the output [pa:] have two disparities: the length and stress of the second
segment, the vowel. This mapping and an alternative mapping containing the output [pa:]

are given with their disparities in (30) below.

(30) Mappings and their disparities
a. /pa/ 2> [pa:] Disparities:  segment 2 stress; segment 2 length
b. /pa/ = [pa:] segment 2 length

The mappings above contain the same output and can be compared with reference to
their disparities. To begin, the mapping in (30)b contains a subset of the disparities in
mapping (30)a, making its input /pa/ more similar to the output than the unstressed input
/pa/ of (30)a is. Therefore, if (30)a, the mapping /pa/ > [pa:], is grammatical in a
language where the grammatical candidates form an output-driven map, then the mapping
in (30)b must also be grammatical. This example serves to illustrate the property of
output-driven maps described in (29). Now consider the contrapositive of this property: if
the mapping in (30)b is not grammatical in the language, and the language has an output-
driven map, then the mapping in (30)a also cannot be grammatical because it contains a
superset of the disparities in (30)b. The Output-Driven Learner, or ODL, (Tesar 2008,

2009, to appear) exploits this property.

The ODL uses the structure of output-driven maps to apply inconsistency detection to
just the lexical hypotheses that could provide information about the underlying form
instead of to all local lexical hypotheses. In particular, the ODL tests only the hypotheses
that include one disparity. If a lexical hypothesis with a single disparity is inconsistent,

the learner knows that the feature tested by the disparity must be set as in the output.
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The space of lexical hypotheses for the observed form [pa:] is illustrated in (31) by a
relative similarity lattice, with each node representing an input for the observed output
(Tesar to appear). The input /pa:/ in the topmost node is identical to the observed form; in
an output-driven map, this input must map to [pa:]. In the second row, the inputs /pa/ and
/pa:/ each contain one disparity. The most dissimilar input is in the bottommost node; /pa/

has two disparities from the observed form.

(31) Relative similarity lattice for [pa:]

To learn the underlying stress and length values of [pa:], just the candidates with the
single-disparity inputs need be evaluated for consistency with the current support. If the
single-disparity candidate /pa/ —> [pa:] is inconsistent with the current ranking
information, the learner knows that it must be because the input /pa/ is too dissimilar to
the output, specifically because the candidate has a length disparity on the second
segment. Therefore, determining that the candidate /pa/ = [pa:] is inconsistent means
learning that the underlying form includes the setting [+length] on the second segment.
The candidate /pa/=> [pa:] never has to be evaluated, because if either of the single-
disparity candidates are inconsistent, it will be also. Similarly, it will be consistent if both

of the single-disparity candidates are consistent.
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For a slightly more complicated example, consider the relative similarity lattice for
tirasim in (32). This word contains three syllables with one binary stress feature in each,
producing eight local lexical hypotheses for the underlying form, and the lattice includes
nodes for inputs with zero, one, two, and three disparities from the observed form. Again,
the pertinent inputs for setting features, the single-disparity inputs, appear in the second
row from the top. For any of the candidates including these inputs, determining that the
candidate is inconsistent will enable the ODL to set a stress feature. The candidates with
the more dissimilar inputs from the third and fourth rows of the lattice do not have to be

evaluated.

(32) Relative similarity lattice for [(tira)sim]
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The computational savings afforded by exploiting the structure of output-driven maps
can be considerable. In the above example, only three of the eight local lexical
hypotheses for this single form need be tested to determine if any of its features can be
set. For contrast pairs, the efficiency gains are even greater. While the learner must still

test 2% lexical hypotheses for x unset features that alternate in the surface forms of a
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contrast pair, only y hypotheses need be tested for y non-alternating unset features. In
general, for binary feature values, if there are y non-alternating unset features and x
alternating unset features, the learner must test 2° *(x+y) pairs for inconsistency. For the
contrast pair gamadim and tirasim, there are four non-alternating unset features and one
alternating unset feature (the stress feature of the suffix /-im/), yielding 10 lexical
hypotheses (2'*(4+1)) out of the 32 total hypotheses. The unshaded cells of the chart in

(33) represent all the single disparity lexical hypotheses for this contrast pair."’

(33) Single disparity lexical hypotheses for contrast pair gamadim and tirasim

gamad | tiras | -im | gamad | tiras | -im | gamad | tiras | -im | gamad | tiras | -im
/--/ [~ | - -l | - S - L A - |
/--/ [=] | A S = | | - | - |
[/ | A A A A A A A A A
[ | A A A A A A A A | |
[ | A A LA A A
/--/
/--/
/--/

[~ | [+ | - [~ |+ A A A |
[+ | /- [+l | | /- [~ | A A | |
JAH | A A S A A A | A

Detecting an inconsistency depends on having access to necessary ranking conditions.
Consequently, the ranking and the lexicon have a symbiotic relationship. As the learner
determines more about the ranking, typically more features can be set by inconsistency
detection.'? In turn, setting features can produce more ranking information. Morphemic
alternations, in which the same morpheme has different surface realizations in different

environments, indicate that at least one of the surface realizations must be unfaithful. A

' A joint relative similarity order can be constructed for contrast pairs (Tesar to appear). If the
environment morpheme alternates, as —im does in this example, the joint relative similarity order is
constituted of two separate suborders, one for each value of the alternating feature. Each suborder is a
lattice.

12 There are some cases, however, where inconsistency detection fails to set features even if the learner has
full knowledge of the target grammar; see section 4.2.



47

set feature that surfaces unfaithfully suggests that a markedness constraint must dominate
some faithfulness constraint'’; therefore, this unfaithful mapping may yield non-
phonotactic ranking information if, having set the feature, an error is detected on the

resulting mapping (Tesar 2006, to appear).

Section 1.3.4 has shown that inconsistency detection can allow for extremely
efficient, successful learning from data with ambiguous structural interpretations. This
section has now shown that inconsistency detection can be used to learn a lexicon as well,
by efficiently evaluating the space of local lexical hypotheses. Judging by the number of
lexical hypotheses that must be evaluated to set a feature (if one can be set), it is clear
that the Output-Driven Learner (ODL) is highly efficient: for single forms, the number of
lexical hypotheses to evaluate only increases linearly with the number of features in the
form. Contrast pairs require more evaluations, but far fewer than otherwise if the

structure of output-driven maps is exploited.

However, while the ODL can identify where to focus learning efforts, there is no
guarantee on any evaluation that a feature will get set or that the feature can ever be set,
even if it is contrastive in the target language. The grammar itself is one factor: a certain
body of knowledge is required to set features by inconsistency detection. The same
lexical hypotheses may be evaluated repeatedly until the support contains just the right
ERC:s to produce an informative inconsistency. The map of the target language is another
factor. As chapter 4 explains, the paradigmatic properties of the map may prohibit

successful applications of inconsistency detection, even if the map is output-driven.

" An unfaithful mapping does not always result from an M >>F violation; there may also be restrictions on
GEN that force unfaithful mappings, as in the Stress system described in 2.3.1; however, even these
unfaithful mappings can reveal new ranking information, as described in section 2.4.4.2.
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Setting features for these languages can require appealing to special strategies for
deriving additional ranking information (see section 4.1.2). Finally, if the map is not
output-driven, the ODL will not succeed. However, Tesar (to appear) suggests some
directions towards modifications for achieving benefits of the ODL with non-output-

driven maps.

1.4.2 LEXICAL CONSTRAINTS AND THE GLA

In the RCD-based inconsistency detection learners described in 1.3.4 and 1.4.1, the
support is the added structure to a hypothesis that makes inconsistency detection possible
and ensures that errors do not recur; its presence is a major distinguishing characteristic
for these learners. In contrast, while the GLA is also error-driven, it makes no use of a
support. Apoussidou (2007) proposes a learner in the GLA-framework that also eschews
the added structure of a separate lexicon and instead learns underlying forms via the

ranking of lexical constraints.

For this learner, each candidate for evaluation consists of an underlying form, surface
representation, and meaning. Lexical constraints assign violations for pairing particular
underlying forms and meanings in the same candidates (following Boersma 2001). For
example, (34) below shows some of the lexical constraints for the root /tiras/ ‘corn’ in

Modern Hebrew following Apoussidou’s model.

(34) Lexical constraints on the root tiras

a) */tiras/ ‘corn’
b) */tiras/ ‘corn’
c) */tiras/ ‘corn’
d) */tiras/ ‘corn’
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Informally, the meaning of each constraint is that the underlying form and meaning
should not be associated. If these constraints were ranked according to their order in (34),
the most harmonic candidates with respect to this constraint would associate /tiras/ and
‘corn,” and would vary only by surface representation. Deciding between these

candidates would then fall to the markedness and faithfulness constraints.

The constraints listed in (34) include just the lexical constraints whose underlying
form component includes possible settings of the stress features in the root. Since there
are two binary stress features that must be set, there are only four (=2°) hypotheses for the
settings; however, the complete list of lexical constraints that matter for learning the
underlying form of /tiras/ is far larger. In fact, there must be a lexical constraint against
each pairing of a hypothetical underlying form and a meaning — and even pairings that
include the meanings of other morphemes (Apoussidou 2007, p. 176). For just /tiras/ and
the root /gamad/ ‘dwarf’ from Modern Hebrew, the constraint set must include all of the

following lexical constraints.

(35) Lexical constraints on the root tiras and gamad

*/tiras/ ‘corn’
*/tiras/ ‘dwarf’
*/gamad/ ‘corn’
*/gdmad/ ‘dwarf’

*/tiras/ ‘corn’ b. */tirds/ ‘corn’ c. *ftiras/ ‘corn’
*/tiras/ ‘dwarf’ f.  */tiras/ ‘dwarf g. */tiras/ ‘dwarf’
*/gamad/ ‘corn’  j. */gamad/ ‘corn’ k. */gamad/ ‘corn’

. */gamad/ ‘dwarf> n. */gamad/ ‘dwarf® o. */gamad/ ‘dwarf’

5o
v e

In one of Apoussidou’s simulations, the learner tackles the problem of learning
structural interpretations as well as underlying forms. The learning data, from Modern
Greek, include six words, comprising three different roots and three monosyllabic

suffixes. The constraint set contains four faithfulness constraints (MAX and DEP for root
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and affix stress), six markedness constraints to account for structural interpretations, and
two lexical constraints for each morpheme.'* The learner randomly observes each form
repeatedly (in descriptions of the other simulations involving learning underlying forms
only, the learner observes 1,000,000 forms in each simulation). The ranking is updated by

error-driven learning according to the GLA strategy explained in 1.2.2.

Results of ten simulations indicate that the overt forms generated by the final ranking
always match the observed forms, but underlying forms and surface interpretations can
vary across simulations.”> Additionally, within a simulation the underlying form of the
same morpheme can also vary due to the interaction of faithfulness and lexical

constraints.

The crucial example in the simulation involves the faithfulness constraint
MAX(AFFIX), the lexical constraint */-on/ ‘Gen. P1.” and the suffix /-6n/ ‘Gen. PI.,” which
is analyzed as underlyingly +stress. In the desired analysis, this suffix surfaces faithfully
if the root is underlyingly unstressed, as in falason ‘sea-Gen.PI’, but unfaithfully if the
root is stressed underlyingly, as in yondolon ‘gondola-Gen.Pl.’. Thus, the desired analysis

of the underlying forms is /Balas+o6n/ and /y6ndol+6n/, respectively.

For Oalason, either ranking of MAX(AFFIX) and */-on/ ‘Gen. P1.” achieves the desired

analysis because the candidate with the underlying +stress suffix harmonically bounds

' The constraint sets in all simulations do not contain the full set of possible lexical constraints as
represented by the example in (35). Apoussidou explains that because the learning data include
meanings (e.g. “tiras ‘corn’”), lexical constraints like */tiras/ ‘dwarf” will be ranked very highly, with
the implication that those constraints are not pertinent for learning underlying forms.

' Such variance in outcomes is not necessarily a problem because languages can be globally ambiguous
with respect to their surface forms and lexica, as explained in chapter 4. In these cases, it is possible for
different constraint rankings and lexica to generate the same forms and morpheme behaviors.
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the —stress candidate, as shown in (36). In all simulations falason ‘sea-Gen.P1’ therefore

has the underlying form /Balas+o6n/.

(36) MAX(AFFIX) and */-on/ ‘Gen. P1.” do not conflict for falason ‘sea-
Gen.PL’
. ‘sea-Gen.P1” MAX(AFFIX) | */-on/ ‘Gen. P1.’
Meaning UF Surface Rep.
a. ‘sea-Gen.Pl.’ | /Balas +6n/ falason 0 0
b. ‘sea-Gen.Pl.’ | /Balas +on/ Balason 0 1

But if the learner derives a ranking in which MAX(AFFIX) dominates */-on/ ‘Gen. PI.’,
then the underlying form of this suffix could vary with its environment. The tableau in
(37) shows that MAX(AFFIX) and */-on/ ‘Gen. Pl.” conflict if the suffix surfaces as
unstressed: satisfying one entails a violation of the other. Under the ranking MAX(AFFIX)

>> */-on/ ‘Gen. Pl.”, the genitive plural suffix is underlyingly unstressed in the word

yondolon.
(37) MAX(AFFIX) and */-on/ ‘Gen. P1.” conflict for yondolon ‘gondola-Gen.P1.’
, gondola-Gen.P1. MAX(AFFIX) | */-on/ ‘Gen. P1.’
Meaning UF Surface Rep.
a. ‘gondola-Gen.Pl.’ | /yéndol+6n/ | ydéndolon 1 0
b. ‘gondola-Gen.Pl.” | /yéndol+on/ | ydndolon 0 1

Allowing for different underlying forms for the same morpheme is not necessarily a
problem. If suffix stress were neutralized, then regardless of underlying form the
grammar would ensure the correct surface form. But suffix stress in these data is
contrastive. In the nominative singular forms, the first syllable bears the main stress:

Oalasa ‘sea-Nom.Sg.” and yondola ‘gondola-Nom.Sg.’. It must be the underlying stress
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value of the suffix that causes main stress to alternate between first and final syllables of
surface forms of the root /falas-/, and therefore the underlying form of the genitive plural

suffix should have a stable stress value.

To review, while this learner has eliminated the added structure of the support and
lexicon, it remains quite complex. The explosion of lexical constraints, and the increased
effort that results from evaluating these constraints, comes as the cost of learning about
underlying forms through the ranking. Within this model the right ranking values,
determined using error-driven learning, reveal both underlying forms and surface
representations; the learner has no record of nor commitment to any structure outside of
the ranking. Additionally, the interactions between faithfulness and lexical constraints
lead to unusual conclusions, such as the same morpheme having a different underlying
form according to its environment — and this result occurs even without the additional
lexical constraints that have been ignored for this simulation. How different does the
underlying form in the lexical constraint have to be from the observed form to ensure that

the constraint does not have a crucial effect on a competition?

As for the relative efficiency of this learner, it is not clear just how many forms must
be processed before converging on a ranking that will generate the observed forms. It is
clear, however, that as the number of lexical constraints increases, the amount of
computation will increase as well. In fact, Apoussidou explicitly notes that not including
all the possible lexical constraints in the simulations reduces computation time (2007, p.

176). It is reasonable to expect that these constraints would affect not only the time
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needed to compute violation profiles, but also how many forms must be processed before

converging on a ranking.

1.4.3 MAXIMUM LIKELIHOOD LEARNING OF LEXICONS AND GRAMMARS

Maximum Likelihood Learning of Lexicons and Grammars, or MLG (Jarosz 2000), is
a stochastic but not error-driven model for learning a grammar and lexicon. As with the
GLA learners, an MLG grammar is a probability distribution over constraint rankings,
but additionally, each underlying form is a probability distribution over possible
underlying forms. For each observed form, the learner updates the grammar and lexicon
by rewarding the ranking and underlying form combinations that maximize the likelihood

of the observed form.

The MLG represents a particular kind of approach to learning, with no particular set
algorithmic implementation. For one implementation, Jarosz (2006, 2007) uses the
Expectation-Maximization (EM) algorithm (Dempster et al. 1977) to illustrate MLG’s
ability to derive restrictive grammars and simulate the effects of ranking biases. In the
simulations performed by this implementation, the grammar is a probability distribution
of all total constraint rankings, and the lexicon a probability distribution over all possible
underlying forms. During phonotactic learning, probabilities in the lexicon remain fixed
with a uniform value, while the probabilities associated with different total rankings
change according to the data. The more frequently an overt form is observed, the more

rankings that maximize the likelihood of that form are rewarded.

For an extreme example of restrictiveness, one target language in the simulation has

one overt form for all words (Jarosz 2007). As this form is observed repeatedly, the
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probabilities associated with the rankings change: those associated with rankings that
cannot generate this form at all shrink, while the others grow. Over time, as only this one
form is observed, probabilities for rankings that generate other forms besides this one
shrink as well, because the form is most likely to be generated by rankings that can only
generate it and no other forms — that is, the most restrictive rankings. Having learned
these rankings (or stratified hierarchy), the probabilities associated with different
underlying forms can remain uniform: each is equally likely to be the underlying form
that maps to the observed output, because the right ranking ensures that mapping. In
simulations without such extensive neutralization, the lexicon is learned by a similar
process, rewarding grammar and lexicon combinations that make the observed forms

most likely.

This simulation of MLG reveals very appealing qualities about its approach. Its
ability to derive restrictive rankings is elegant, it models gradual learning and because it
is sensitive to the frequency of observed forms, it shares the GLA learners’ robustness
with noisy data. However, the simulation is tractable only because the constraint set and
rich base are small. Rankings are not rewarded on the basis of a particular input mapping
to the observed overt form (the identity map has no role in this approach), but rather on
the likelihood of generating the overt form given the rich base. This approach does not

scale well as constraint sets and underlying forms increase.

To improve the efficiency of MLG learners, Jarosz (to appear) proposes several
sampling variants using the EM algorithm. The specific implementations of these variants

differ, but the general idea is the same. The learner maintains a single, stochastic
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grammar hypothesis and for each observed form, samples a ranking compatible with the
grammar. Again, if the ranking generates the observed form, it is rewarded; however, in
these variants the grammar is a stochastic partial order updated according to the
probabilities of pairwise rankings. Similarly, the lexicon is represented with probabilistic

binary features, and feature values that generate the observed form are rewarded.

In simulations of three sampling variants with the same data used to evaluate the
Naive Pairwise Ranking Learner in 1.3.3, none of the variants successfully learned all
124 of the languages, although the worst performing variant only failed to learn seven
languages. In another set of simulations, the variants successfully learned a grammar and
lexicon to generate the forms of the “paka” language (Tesar 2006). While MLG is a
promising approach to learning a grammar and lexicon, it is clear that more work is

needed to develop implementations that efficiently achieve complete success.

1.5 CONCLUSION

The challenge of learning hidden structure and the grammar simultaneously lies in the
fact that the two affect each other. Knowing the hidden structure would yield information
about the grammar, and vice versa, but a single observed form and an initial constraint
hierarchy offer little solid information. The learners described in the preceding sections
address this uncertainty in various ways, from bypassing problematic structures
altogether (NPRL, MLG) to finding ways to safely explore alternatives (IDL, ODL). In
particular, the error-driven learners that incorporate inconsistency detection have

demonstrated the benefit of exploiting the relationships between observed data, inferred



56

structural knowledge, and the grammar. Their strategies provide the foundation for the

Commitment-Based Learner, introduced in chapter 2.
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2 THE COMMITMENT-BASED LEARNER

This chapter introduces the Commitment-Based Learner (CBL) for learning structural
interpretations and underlying forms. First, section 2.1 provides a closer look at how
these hidden structures can interact to pose challenges that any learner must somehow
overcome. Section 2.2 then uses the mutual dependency among structures to motivate the
commitment-based strategy, showing that if the learner can uncover one hidden structure,
it can be used to learn another in turn; sections 2.2.1 and 2.2.2 provide a basic description

of how the learner makes structural and lexical commitments.

Before delving any more deeply into the details of the CBL, section 2.3 introduces the
Stress system used to evaluate this learner in simulations. This system provides the
examples for the remainder of the dissertation, beginning with those illustrating the
CBL’s actual implementation in section 2.4, which constitutes the majority of this
chapter. Section 2.4 explains the CBL’s actions at critical points as the learner develops a
language hypothesis corresponding to target L5 from the Stress system typology. The
focus of this section is identifying what the critical issues are at different stages,
explaining when the learner decides to handle them, and describing how they are

handled.

The complete simulation from which these pieces are drawn appears in chapter 3,
which includes the learner’s progress beginning with the initial data and ending with the
set of all final, consistent language hypotheses. In illustrating the simulation in its

entirety, chapter 3 will demonstrate how the sets of commitments made by different
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language hypotheses can affect when and how the learner confronts the issues identified

n 2.4.

2.1 MUTUAL DEPENDENCY AMONG HIDDEN STRUCTURES

Each word the learner observes includes information about the grammar of the
language that generated the word. Some information is explicit, such as the phonotactic
information conveyed in an overt form. Other information is indirect and implicit. For
example, the overt form represents an output with a particular prosodic interpretation, and
whatever that output is, the grammar has mapped some input to it. The overt form
therefore reflects an input-output mapping, but what the input and output are and what
ranking determines that mapping are questions that cannot be resolved directly from the
overt form. The crux of the learner’s task is to use the direct evidence to infer the
unobservable information, yet attempting to learn about both hidden structures at once
involves untangling complicated interactions between them, within single forms as well

as in combination with other forms.

First, for a single form the hidden structures of inputs and outputs can interact to
make some input-output mappings possible and others not. For example, suppose that the

learner observes the word tirasim ‘corn pl.” (Modern Hebrew).'® Only two structural

' Modern Hebrew was chosen for examples here because its properties can be modeled by the Stress
system. Stress assignment in Modern Hebrew is quantity-insensitive, and in the nominal system primary
stress is by default word final, with secondary stress on alternate syllables to the left (Bolozky 1982,
Bat-El 1993, Graf 2000); this default pattern typically appears in native words (Becker 2003a). I have
assumed the inclusion of secondary stresses, following Bolozky 1982, Bat-El 1993, Graf 2000, and
Graf and Ussishkin 2003, but note that Becker (2003b), citing laboratory experiments and data from a
radio talk show, reports that only the primary stressed syllable exhibits phonetic evidence for stress, in
the form of increased vowel duration. Finally, against previous analyses (Bolozky 1982, Bat-El 1993,
Graf 2000, Becker 2003b), I assume that the language parses iambic feet from right to left; however, in
contrast with Graf and Ussishkin (2003), who derive this effect without recourse to constraints on foot
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interpretations match the observed form in its pattern of stresses: [(tira)sim] and
[(ti)rasim]. The learner must determine an underlying form and constraint ranking that
selects one of these interpretations as optimal against all other candidates. To simplify
this illustration, consider only the possible underlying forms for which candidates incur
no violations of MAXSTRESS'’, namely /tiras+im/ and /tiras+im/. While there are rankings
that will map the input /tiras+im/ to either possible structural interpretation, no ranking
will map the input /tiras+im/, with no lexical stress, to the interpretation [(ti)rasim]; only
the binary trochaic interpretation, [(tira)sim], can be optimal. As the tableau below
shows, the degenerate interpretation is harmonically bounded by a structural description

parsing an iambic foot at the left edge.

(38) Harmonic bounding of /tiras+im/[(ti)rasim]
b a2
1 z [8a] —~ —~ =
clad|la|la % a|8]8|%
< ~ < Z — ) = = 2
/tiras+im/ A R | S| R | DA &
[(ti))rasim] ~ [(tird)sim] | L | L L L

Second, hidden structures can also interact across forms via the ranking conditions
they separately impose on the grammar, making some combinations of structures possible
and others not. To illustrate, suppose that the learner observes another word, mevugar
‘adult sg.’, which has two non-harmonically bounded structural interpretations:
[(mevu)(gar)] and [(mé)(vugeir)].18 Again, two lexical hypotheses incur no MAXSTRESS

violations: /mevugar/ and /mevugar/. The learner must determine the correct underlying

structure, I derive it via the rhythm constraints of the Stress system. The data for Modern Hebrew are
from Bolozky 1982 and Graf 2000.

'7 All constraints are defined in 2.3.

'8 A third interpretation, [(mé&)vu(gar)], is harmonically-bounded by [(mé)(vugar)], regardless of the
underlying stress of the input.
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forms and structural interpretations of both t/rasim and mevugdr, where doing so requires
finding a ranking that makes both input-output mappings optimal. Each word has two
possible faithful inputs and two valid structural interpretations, creating sixteen different

combinations of faithful mappings, shown in the chart in (39).

(39) All faithful mappings of interpretations of tirasim and mevugar

Underlying Forms Structural Interpretations
a. /tirastim/ | /mevugar/ | [(tira)sim] | [(m¢&)(vugar)]
b. /tiras+im/ | /mevugar/ | [(tira)sim] | [(meévu)(gar)]
c. /tirastim/ | /mevugar/ | [(ti)rasim] | [(m¢&)(vugar)]
d. /tiras+im/ | /mevugar/ | [(ti))rasim] | [(mevu)(gar)]
e. /tirastim/ | /mevugdr/ | [(tira)sim] | [(m¢&)(vugar)]
f. /tirastim/ | /mevugdr/ | [(tira)sim] | [(mévu)(gar)]
g. /tirastim/ | /mevugar/ | [(t))rasim] | [(m¢&)(vugar)]
h. /tiras+im/ | /mevugér/ | [(t))rasim] | [(mevu)(gér)]
1. /tiras+im/ | /mevugar/ | [(tira)sim] | [(m¢&)(vugar)]
j. /tiras+im/ | /mevugar/ | [(tira)sim] | [(meévu)(gar)]
k. /tiras+im/ | /mevugar/ | [(t)rasim] | [(m&)(vugar)]
1. /tiras+im/ | /mevugar/ | [(t))rasim] | [(mévu)(gar)]
m. /tiras+im/ | /mevugér/ | [(tira)sim] | [(me)(vugér)]
n. /tirastim/ | /mevugar/ | [(tira)sim] | [(meévu)(gar)]
0. /tiras+im/ | /mevugdr/ | [(ti)rasim] | [(me)(vugar)]
p. /tirastim/ | /mevugar/ | [(t))rasim] | [(mevu)(gar)]

First consider the combinations in (39)a-(39)d, which have unstressed inputs for both
words. The tableau in (40) reveals that the candidates in (39)a, /tiras+im/[(tira)sim] and
/mevugar/[(me)(vugér)], have contradictory ranking requirements. Because these
candidates therefore are impossible in combination, at least one of the underlying forms

or structural interpretations in these mappings must be incorrect.
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(40) /tiras+im/[(tira)sim] and /mevugar/[(m¢)(vugar)] are inconsistent
(o) [+
o | Z K = = |5
2 R T - 3|8 %
S EIZIE|I21%13]2]s
Input W~L (DR I = T e B I =0 < | 2| &
/tiras+im/ | [(tira)sim] ~ [(ti)(rasim)] LIW|IL|W|L | W|W]I|L
/mevugar/ | [(mé)(vugar)] ~[(mévu)gar] | W | L | W | L | W | L | L |W

Changing the structural interpretations offers no improvement. The combination of
mappings in (39)b retains /tiras+im/[(tira)sim] but includes the alternative interpretation
of meévugar: /mevugar/[(mevu)(gar)]. Yet this combination cannot be correct either, as
(41) demonstrates that /mevugar/[(meévu)(gér)] is harmonically bounded. As a result, no

combination that includes /mevugar/[(mévu)(gar)] can be correct. Therefore, (39)b and

(39)d are impossible, as are (39)j and (39)1.

(41) Harmonic bounding of /mevugar/[(mévu)(gar)]
o} 24
g | Z 7 21 2| @
7 @ A
2R IS|lel< 222X
Input W~L é E = E a'eJ % 5 E =
/mevugar/ | [(meévu)(gar)] ~ [(me)(vigar)] L | L

Likewise, (38) has already shown that /tiras+im/[(ti)rasim] is harmonically bounded;
therefore, (39)c is not a valid combination of mappings, and neither are (39)g and (39)h.
These facts together prove that the underlying forms /tiras+im/ and /mevugar/ cannot
both be correct, as (39)a-(39)d are all inconsistent. Additionally, the harmonic bounding
of /tiras+im/[(ti)rasim] and /mevugar/[(meévu)(gar)] has ruled out all combinations that
includes either one of these candidates, thereby eliminating half of the combinations

included in (39). All inconsistent combinations to this point are shaded in (42) below.
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(42) Combinations with /tiras+im/[(ti)rasim] or /mevugar/[(mevu)(gar)] are
inconsistent

Underlying Forms Structural Interpretations
a. /tirastim/ | /mevugar/ | [(tira)sim] | [(m¢)(vugar)]
b. /tirastim/ | /mevugar/ | [(tira)sim] | [(mévu)(gar)]
c. /tirastim/ | /mevugar/ | [(ti)rasim] | [(/m¢)(vugar)]
d. /tirastim/ | /mevugar/ | [(ti)rasim] | [(mevu)(gar)]
e. /tirastim/ | /mevugar/ | [(tira)sim] | [(m¢)(vugar)]
f. /tirastim/ | /mevugdr/ | [(tira)sim] | [(meévu)(gar)]
g. /tiras+im/ | /mevugdr/ | [(ti))rasim] | [(me)(vugar)]
h. /tiras+im/ | /mevugar/ | [(t))rasim] | [(mevu)(gar)]
1. /tiras+im/ | /mevugar/ | [(tira)sim] | [(m¢)(vugar)]
j. /tirastim/ | /mevugar/ | [(tira)sim] | [(mévu)(gar)]
k. /tiras+im/ | /mevugar/ | [(ti)rasim] | [(m¢)(vugar)]
1. /tiras+im/ | /mevugar/ | [(ti)rasim] | [(mévu)(gar)]
m. /tiras+im/ | /mevugar/ | [(tira)sim] | [(m¢)(vugar)]
n. /tiras+im/ | /mevugar/ | [(tira)sim] | [(mevu)(gar)]
0. /tiras+im/ | /mevugdr/ | [(ti)rasim] | [(me)(vugar)]
p. /tirastim/ | /mevugér/ | [(t))rasim] | [(mevu)(gar)]

While tirasim and meévugar cannot both have unstressed inputs, it remains possible
that just one has an unstressed input. In fact, (42)e,f,i,k, are all consistent. First,
/tiras+im/[(tira)sim] is consistent with both interpretations of meévugdr as long as the
input is /mevugar/. As proof, the tableau in (43) includes the W-L pairs that determine a
ranking for the combination in (42)e, /tiras+im/[(tira)sim] and /mevugér/[(me)(vugar)];

the ranking itself appears in (44).

(43) /tiras+im/[(tira)sim] and /mevugar/[(me)(vugar)] are consistent
& o
= = P | = z m
Zlalsle|glalalelf
Input W~L %: LE 5 é 5 E LT[? E ;e_]
a. /mevugar/ | [(me)(vugar)]~[(mevi)gar] | W | L | L | W | W] L | L
b. /tirastim/ | [(tira)sim] ~ [ti(rasim)] W W LW L
c. /tirastim/ | [(tira)sim] ~ [(tird)(sim)] \ L Wi W]JL|L
d. /mevugar/ | [(me)(vugar)] ~ [me(vugar)] W L | L W
e. /tirastim/ | [(tira)sim] ~ [(tird)sim] W L | L
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(44) MAXSTRESS >> {AFL, LMOST} >> {PARSE-G, RMOST} >> {FNF, FT-BIN}
>> {IAMB, *LAPSE}
The combinations of mappings in (42)f,i,k, are also all consistent. Rankings for each

of these combinations appear below.

(45) Ranking for (42)f: /tiras+im/[(tira)sim] and /mevugar/[(mevu)(gar)]
MAXSTRESS >> FNF >> PARSE-c >> {IAMB, FT-BIN, AFL, LMOST} >> {RMOST,
*LAPSE}

(46) Ranking for (42)i: /tiras+im/[(tira)sim] and /mevugar/[(me)(vugar)]
MAXSTRESS >> RMOST >> {IaMB, AFL, LMOST} >> {PARSE-c, *LAPSE} >>
{FNF, FT-BIN}

(47) Ranking for (42)k: /tiras+im/[(ti)rasim] and /mevugar/[(m¢)(vugar)]

{MAXSTRESS, [AMB} >> RMOST >> {AFL, LMOST} >> {PARSE-G, *LAPSE} >>
{FNF, FT-BIN}

As a brief aside, the W-L pairs in tableau (43) constitute the support for the skeletal
basis for that combination of mappings (Brasoveanu 2003, Brasoveanu and Prince 2011,
Prince 2002a). For comparison, the skeletal basis itself is given in (48). For each row of
the support tableau in (43), the skeletal basis includes only the W’s in the highest stratum
represented in the row and the L’s that they immediately dominate; any information that
can be derived by transitivity with other rows has been removed. Thus, the “W” under
*LAPSE in (43)d is absent from the corresponding row of the skeletal basis because (43)d

and (43)e jointly entail that PARSE-c dominate *LLAPSE.
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(48) Skeletal basis for /tiras+im/[(tira)sim] and /mevugar/[(m¢e)(vugar)]

e o
=~ —~ 1 [ Z, s3]
5] wn [Sa} wn = n
“l=elol 2|l & %
< [ ! =

ERC = | < 5 & E E 2l =%

43)a|W]|L | L

(43)b W | W L

(43)c W L

(43)d W L | L

(43)e W L | L

The support of a skeletal basis provides clear and direct evidence of the minimum
W-L pairs required to produce a ranking that ensures the optimality of a set of candidates.
For this reason, in the remainder of this dissertation the support of the skeletal basis will
serve as evidence for any ranking that is not otherwise supported by a set of ERCs
derived from error-driven learning, such as the rankings for the target languages of the

Stress system. The supports of the skeletal bases for the combinations in (42)f,1,k above

can be found Appendix A.

Finally, to finish the discussion of the combinations in (42), those in (42)m-p include
lexically-stressed inputs for both words. The combinations in (42)m-o are consistent.
Again, rankings for these combinations appear below, while the supports for their skeletal

bases are included in Appendix A.

(49) Ranking for (42)m: /tiras+im/[(tira)sim] and /mevugar/[(me)(vugar)]

MAXSTRESS >> {AFL, LMOST, RMOST} >> {IAMB, PARSE-c, * LAPSE} >> {FNF,
FT-BIN}
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(50) Ranking for (42)n: /tiras+im/[(tira)sim] and /mevugar/[(mévu)(gar)]
MAXSTRESS >> {FNF, RMOST} >> {PARSE-c, *LAPSE} >> {IAMB, FT-BIN, AFL,
LMosT}

(51) Ranking for (42)o: /tiras+im/[(ti)rasim] and /mevugar/[(me)(vugar)]
{MAXSTRESS, IAMB} >> {AFL, LMOST, RMOST} >> {PARSE-0, *LAPSE} >> {FNF,
FT-BIN}

The only inconsistent combination is in (42)p. As shown in (52), the ranking

restrictions imposed by the candidates /tiras+im/[(ti)rasim] and /mevugar/[(mévu)(gar)]

contradict for *LAPSE, IAMB, PARSE-c, and AFL: no ranking can make both candidates

optimal.

(52) /tiras+im/[(ti)rasim] and /mevugar/[(mevu)(gar)] are inconsistent
PR SRR
£z = B o DB RO
n o £ : S S om
2 ¢ & e 2 2 2 g
s £ 5 <A I <

Input W-~L Salle LR = A

/tirastim/ | [(ti)rasim] ~ [(ti)(rasim)] LWL W

/mevugar/ | [(meévu)(gar)] ~ [me(vugar)] L L Wi LWL

Although there are sixteen faithful combinations of mappings for tirasim and
mevugar, only seven can be correct for these observed forms. The following chart briefly
summarizes the possible faithful input-output mappings for the observed forms tirasim
and meévugdr. It divides horizontally according to the hypothesized underlying form of
tirasim first, and each part divides horizontally again for the hypothesized underlying
forms of mevugdr, then again for the structural interpretations of each word. Thus, the
topmost row of mappings in the chart indicates that there are no consistent interpretations

of tirasim and mevugar if both are unstressed underlyingly.
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(53) Faithful input-output mappings for tirasim and meévugar
Underlying Forms [ Structural Interpretations
/mevugar/ | no consistent combinations
/tiras+im/ , N [(meévu)(gar)]
/mevugar/ | [(tira)sim - -
gar | W] [ me)vugan)
[(tira)sim] . ,
/mevugar/ ((ti)rasim] [(me)(vugar)]
/tiras+Him/ , [(mevu)(gar)]
/mevugar/ [(tira)sim] [(me)(vugar)]
[(tD)rasim] | [(m¢)(vugar)]

To review, this section has shown the effect of mutual dependency on the range of
possible input-output mappings for two observed forms. Out of sixteen combinations of
mappings, nine are inconsistent. If a third form were introduced, the total number of
combinations would increase as well, but again, the number of consistent combinations
would be far fewer than the total. Only combinations that include the consistent mappings
in (53) have the potential to be consistent at all, and among those, it is likely that many

would be inconsistent due to interactions with the candidate for the new observed form.

This power of mutual dependency to reduce the space of hypotheses has been seen
before, in use with the Inconsistency Detection Learner (IDL) in section 1.3.4. The IDL
uses inconsistency detection to manage structurally ambiguous data like tirasim and
mevugdr in order to learn the grammar for the observed forms, but unlike the

Commitment-Based Learner (CBL), the IDL does not attempt to learn underlying forms.

Section 2.2 will show how the mutual dependency among structural interpretations
and underlying forms can yield the information to simultaneously learn both kinds of
hidden structure. This section provides the fundamental motivation for the CBL’s

approach to learning.
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2.2 LEARNING FROM COMMITTED INFORMATION

The chart in (53) of the preceding section shows that there is no one underlying form
or structural interpretation that is always correct; instead, what one structure can be
depends on what the other structures are. As a result, an assumption about one structure
can affect how the learner interprets another. For example, the shading in chart (54)
below indicates that both consistent combinations of mappings that include [(ti)rasim]
also include [(me)(vugar)]. Therefore, if the learner is committed to interpreting tirasim
as [(ti)rasim], then mevugadr must be interpreted as [(me)(vugar)], simply because it the
only interpretation of that form consistent with [(ti)rasim].

(54) Interpreting firasim as [(ti)rasim] entails interpreting mevugar as
[(mé)(vugar)]

Underlying Forms | Structural Interpretations
/mevugar/ | no consistent combinations

ftirastim/ /mevugar/ | [(tira)sim] {Eﬁg;gﬁi;ﬁ
/mevugar/ &E;?;;ﬁ} [(me)(vugar)]

/tiras+im/ Nt [(mévu)(gar)]
/mevugar/ [(tira)sim] [(me)(vugar)]

[(tD)rasim] | [(m&)(vugar)]

Mutual dependency therefore presents two key, related challenges. First, if learning
these structures requires having learned something about a different structure, how does
the learner ever start learning? Second, how does the learner ensure that each step taken

is correct, or at least that it can recover from any missteps?

The GLA and MLG learners in 1.4.2 and 1.4.3, which share the Commitment-Based

Learner’s goal of learning a grammar and lexicon from structurally ambiguous data,
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answer these questions in different ways. The GLA learner incorporates the lexicon into
the grammar by way of lexical constraints. Because both structural interpretation and
underlying form are evaluated by constraints, no prior knowledge of either structure is
required; determining the most harmonic candidate determines both structures for a given
observed form on a given evaluation. The MLG learner eliminates the need for prior
knowledge by evaluating all possible underlying forms and structural interpretations.
Both of these approaches to mutual dependency rely on the flexibility of probabilistic
hypotheses, allowing these learners to recover from the use of incorrect values for hidden

structure.

Yet, as explained in 1.4.2 and 1.4.3, these learners are both unsatisfactory. In the first
case, the GLA approach introduces an explosion of lexical constraints which must have a
non-trivial effect on the number of learning steps required to converge on a ranking;
additionally, these lexical constraints interact with faithfulness constraints to yield an odd
conclusion about the lexicon — namely, that the underlying form of a morpheme can vary
with its context. The MLG approach is promising but its implementation is a work in
progress, and in simulations the more efficient implementations, the sampling variants,

fail to learn some languages.

Finally, in gaining flexibility both learners sacrifice the ability to capitalize on mutual
dependency: knowing that one structure entails another can greatly reduce the space of
possible grammars to account for the data. The Commitment-Based Learner employs
mutual dependency to its benefit by using commitments to underlying forms and

structural interpretations to winnow all possible hidden structures to just those possible in
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combination. The interactions across kinds of hidden structures become an asset in this
approach. With each newly observed form, the learner can develop more articulated
hypotheses about the hidden structures of the language and its ranking conditions, and the

space of possible grammars shrinks.

To see how this can work, consider tirasim and mevugar again, now from the
perspective of the CBL. Upon observing tirasim the learner, assuming that the identity
map is optimal in the target language, can know that the target’s grammar must generate
a word whose input matches tirasim in its stress pattern and whose output is a valid
interpretation of the overt form. There are two such mappings, /tirasim/[(tira)sim] and
/tirasim/[(ti)rasim], and each entails certain ranking restrictions that will affect what
inferences the learner later draws from new data. Importantly, knowing something about
the ranking conditions of the target language will help the learner to discern the correct
hidden structures in new information. If the learner picks the right mapping here, its
ranking conditions may help the learner determine the structural interpretation or
underlying form of another word later. It therefore pays to learn this information now, but
how? What kinds of commitments need to be made, and how does the learner insure

against missteps while learning?

2.2.1 MAKING STRUCTURAL COMMITMENTS

To exploit mutual dependency effectively, the learner needs a base of information
from which to draw conclusions. Commitments to structural interpretations provide a
portion of that base. Adopting the approach of Prince and Tesar (2004), described in

1.2.1.3, the Commitment-Based Learner attempts to learn phonotactic ranking



70

information from observed forms. The potential for this information is indicated by two

methods of error detection.

First, an error is detected if the current ranking does not map the identity input to
exactly one output, it being any one of the structural interpretations of the observed form.
Because the CBL uses the ranking information derived from error-driven learning
throughout the course of learning, now there must be a particular, stable identity mapping
associated with this overt form in order not to derive conflicting ranking information
later. Therefore, detecting an error on the overt form leads the learner to commit to a
particular structural interpretation to ensure that the interpretation will be the same every
time the learner observes that overt form. If the learner commits to the interpretation
[(ti)rasim] for the overt form tirasim, then any word that has the overt form tirasim will
thereafter be interpreted as [(ti)rasim], even if it has a different morphemic composition
from the word that initially spurred the commitment. Second, once the overt form has a
committed interpretation, an error is detected if the current ranking does not map the
identity input to that committed interpretation. The learner will add W-L pairs to the
support and adjust the ranking until no more errors are detected. In this way, committing
to a structural interpretation also commits the learner to an identity map and its entailed
ranking conditions. Subsequent learning data will be interpreted through the lens of this

ranking information.

To revisit the example in the preceding section, the ranking requirements of
/tiras+im/[(ti)rasim] are inconsistent with those of /mevugar/[(mevu)(gar)], as illustrated

by the chart in (53). Committing to this identity mapping for tirasim will therefore
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require the learner to interpret mevugar as [(me)(vugér)] instead. As a result, this
information leads the learner to search for the target grammar in the space of grammars
that generates the set of mappings /tiras+im/[(ti)rasim] and /mevugar/[(me)(vugar)].
These are the broad strokes of phonotactic learning by the CBL: the learner finds sets of
consistent identity maps for the observed data, committing to the structural interpretations

and attendant ranking conditions of those mappings along the way.

Yet, how does the learner choose which structural interpretation to commit to? This is
the first problem of handling mutual dependency: how does the learner choose a
structural interpretation if picking the correct one requires knowing something more
about the target language? Furthermore, the consequences of committing to a particular
interpretation extend far beyond the interpretation itself: each interpretation commitment
amounts to the decision taken between exploring a space of grammars that permits the
mapping containing that interpretation and the space that does not. Because the learner
cannot know which space of grammars the target language occupies, the safe tactic is to
explore both by committing to each structural interpretation in its own language

hypothesis.

The Inconsistency Detection Learner (IDL; section 1.3.4) uses just this strategy to
learn structural interpretations from overt forms. The learner investigates multiple
interpretations, certain that one of these interpretations is the correct one. The interactions
between committed structural interpretations help to limit the proliferation of hypotheses
over time, as the learner rules out combinations of interpretations with conflicting

ranking requirements. By incorporating the IDL at this point, the CBL not only learns
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about the structural interpretations, but amasses ranking knowledge that will inform later

learning steps, including for learning underlying forms.

2.2.2 MAKING LEXICAL COMMITMENTS

When morphophonemic learning begins, the learner will already have a substantial
foundation of knowledge about the grammar of the target language derived from the
phonotactic information of the observed forms’ identity mappings. Continuing to employ
the IDL’s strategy of pursuing multiple possibilities now would be unwise, both because
it would amount to evaluating all possible underlying forms and structural interpretations,
just as the probabilistic learners do, and because it is possible, through neutralization, that
multiple underlying forms could generate the same data. Moreover, the IDL’s strategy is
unnecessary because the relationships among the accumulated commitments can reveal

quite a lot about the space of possible underlying forms.

To exploit these relationships effectively, it is essential that an observed form have a
committed interpretation. This structural commitment identifies what the word’s input
must map to, even though the precise underlying form remains unknown. Continuing the
example from the preceding section, suppose the learner has committed to the following
interpretations and identity mappings: /tirasim/[(ti)rasim] and /mevugar/[(m¢)(vugar)].
The underlying forms in these mappings do not represent the learner’s knowledge of the
lexicon — at least, not yet. They only indicate some valid mappings in the hypothesized
grammar, but the ranking requirements of these mappings will nonetheless enable the

learner to infer knowledge of the underlying forms.
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Given this set of consistent, committed identity mappings, the learner can ask, what
are the underlying forms of these words? The CBL answers this question by asking
another, slightly different question: how can the inputs for these words differ from their
surface forms? Recall from 2.1 that the mapping from the unstressed input,
/tirasim/[(ti)rasim], is harmonically bounded. Because the learner is committed to this
structural interpretation, the harmonic bounding of /tirasim/[(ti)rasim] is evidence that the
first syllable of the morpheme #iras cannot differ from its surface form and therefore must
be stressed underlyingly."” The shaded cells in chart (55) illustrate this point. Observe
that [(ti)rasim] is only a consistent interpretation if the input is /tirasim/, which matches

the stress contour of the observed form.

(55) The underlying form of [(ti)rasim] must have initial stress

Underlying Forms | Structural Interpretations
/mevugar/ | no consistent combinations

ftirastim/ /mevugar/ | [(tira)sim] &EZ;/(uv)éi Zg}
/mevugar/ &gg:ﬁ} [(me)(vugar)]

/tiras+im/ , [(meévu)(gar)]
/mevugar/ [(tira)sim] [(me)(vugar)]

[(tD)rasim] | [(mée)(vugar)]

In contrast, the mapping /mevugar/[(m¢e)(vugar)] is not only not harmonically
bounded, just like the faithful mapping it is consistent with the committed identity
mapping for tirasim, as shown by the shaded cells in (56). The learner therefore cannot
make any inferences about the underlying form of mevugar based on the mapping with an

unstressed input.

' This conclusion assumes that the target language is output-driven, as are all languages in the Stress
system typology.
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(56) Both /mevugar/[(me¢)(vugar)] and /mevugar/[(me)(vugar)] are consistent
with /tirasim/[(ti)rasim]

Underlying Forms | Structural Interpretations
/mevugar/ | no consistent combinations

/tirasHim/ /mevugar/ | [(tira)sim] EEZ;&E?ZB}
/mevugar/ {832:2} [(me)(vugar)]

/tiras+im/ o [(mevu)(gar)]
/mevugar/ [(tira)sim] [(me)(vugar)]

[(t)rasim] | [(me)(vugar)]

These examples illustrate lexical learning by the CBL in its broadest strokes: if
changing the value of a single feature from its surface correspondent’s value makes the
resultant mapping inconsistent with the other committed structures and mappings, then
the feature must be set in the lexicon to match its surface value. Importantly, this strategy
relies on the target language having an output-driven map, and the CBL therefore
incorporates the Output-Driven Learner (section 1.4.1), which learns underlying forms by

using inconsistency detection as described here.

2.2.3 CONCLUSION

Section 2.2 identified two problems for learning mutually dependent structures. The
first, how the learner can begin to make headway if all structures depend on each other,
has been answered for the CBL already: by using the multiple language hypothesis
strategy of the IDL, the learner can simultaneously but separately commit to all
interpretations of one overt form, knowing that one of these must be correct. Applying
this strategy during the phonotactic learning stage provides a foundation for further
learning, and it is also employed during the morphophonemic stage, when attempting to

learn underlying forms requires words to have full structural descriptions. The second,
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and more fundamental, question is, how does the learner protect against missteps and
make progress in the right direction? The IDL’s branching strategy offers one answer —
pursue all options — and inconsistency detection itself offers another — commit to a

structure because no other structure could follow from the prior commitments.

Underlying these strategies is the basic fact that the mutual dependency among
inputs, outputs, and the ranking is less problematic if any two of the three are known,
because the interactions themselves are informative. Learning structural interpretations
by branching is a brute force response to knowing only one of the three components — the
identity input. Setting features by inconsistency detection is more subtle, but successful
because the learner has at least partial knowledge of two components — a committed
output and whatever ranking conditions are recorded in the support. Learning the ranking
derives from committed input-output mappings, first from identity mappings and later
from mappings that include learned lexical information. By committing to these
components — underlying forms, structural interpretations, and mappings — the learner
builds a store of knowledge used to tease out informative interactions between the

committed structures.

Finally, note that the piecewise commitments to single feature values stand in marked
contrast to the CBL’s treatment of structural ambiguity, where commitments are made to
entire structural interpretations and incite hypothesis branching. Whereas parsing a
syllable into a foot may affect where the boundaries of other feet lie, feature values are
independent of each other, making it permissible to commit to one value without

reference to the others. Moreover, the structure of output-driven maps makes it possible
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to identify single feature values for commitments. In the example of the preceding
section, the harmonic bounding of /tirasim/[(ti)rasim] is not only evidence that this
particular lexical hypothesis is incorrect, but that all lexical hypotheses that include the
-stress value on the first syllable’s stress feature are also incorrect because they include
the same disparity as this initial inconsistent mapping. There is no similar way to
determine the optimal placement of feet independently of one another. These
observations define a broader learning strategy for the CBL: branch only when piecewise

commitments are impossible.

In the remainder of this chapter, section 2.3 introduces the Stress system, used to
evaluate the CBL, while section 2.4 describes the CBL’s use and storage of commitments
for learning a language in the Stress system and focuses on the learner’s actions at several
key points. The illustration in 2.4 shows what information the CBL knows at each
learning step, how the CBL learns from this information, and what conclusions it draws.
The objective is to highlight the details of the CBL in examples of its basic learning
procedures, those the CBL applies to learn most languages in the Stress system typology.
Chapter 3 then follows the CBL step-by-step as it processes a set of learning data to

completion.

2.3 THE STRESS SYSTEM TYPOLOGY AND SIMULATION DETAILS
Computer learning simulations of languages in the Stress system were conducted to
evaluate the Commitment-Based Learner (CBL). This section describes the Stress system

and explains how the data for the learning simulations were produced. The languages of



77

the Stress system are used for all examples of the Commitment-Based Learner throughout

the remainder of the dissertation.

2.3.1 THE STRESS SYSTEM

Words in the Stress system consist of disyllabic roots and monosyllabic suffixes.
Each syllable has a binary stress feature with the value stressed (+) or unstressed (-). In
the input, stressed syllables will be indicated by Y, unstressed syllables by s. The Stress
system contains four unique roots and two unique suffixes, shown in (57). These

morphemes combine to form eight morphological words, in (58).

(57) Morphemes in the Stress system

Roots Suffixes
rl | 2|13 |14 |sl]|s2
ss|Ys|sY|YY | s Y

(58) Morphological words in the Stress system

Words | rlsl | r2sl r3sl r4sl rls2 1282 r3s2 r4s2
UFs | /ss-s/ | /Ys-s/ | /sY-s/ | /YY-s/|/ss-Y/ | /Ys-Y/|/sY-Y/|/YY-Y/

GEN makes the following restrictions on candidates. Each candidate has exactly one
syllable with primary stress. Each stressed syllable is the head of a foot; therefore, each
candidate has at least one foot: the head-foot, bearing primary stress. A foot may contain
one or two syllables, and exactly one must be stressed. Therefore, a foot cannot be
headless, unbounded or ternary. A syllable cannot be a member of more than one foot.
Last, each candidate must have the same number of syllables as its input. These
restrictions generate 24 possible outputs for each of the possible three-syllable inputs in

the Stress system.
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Note that in the Stress system, secondary stress is a property of -stress syllables in the
output. The values +stress and “False” for the secondary-stress property represent the
head of the head-foot, while -stress and “True” represent all other foot-heads; syllables
that are not foot-heads are represented with the values —stress and “False”. In the outputs
described in this section and elsewhere, Y denotes an output syllable bearing primary
stress, and X one bearing secondary stress. The output forms of the Stress system

therefore appear as in (59).

(59) Output forms in the Stress system

[s6Y)] [ [X)M)] | [sOM] | [(Y)ss] | [X)s(Y)] | [(X)(Y)s]

[ss(V)] | [s(Ys)] | [(¥s)s] |[(VEX)] | [(ND(Xs)] | [WEXNX)]

[Y)s] | [s(Y)s] | [(Ys)X)] | [(X)EY)] | [(X)(Ys)] | [DDNX)]
[Y)YEO] [ [sNEX)] | [X)V)] | [V)s(X)] | [(NDXD)s] | [NX)(Y)]

The constraint set for the Stress system includes eight Markedness constraints and a

single Faithfulness constraint, defined below.

(60) Constraints

a. FT-BIN Feet must be disyllabic. (Prince and Smolensky 1993)

b. PARSE-c  Syllables must be parsed into feet. (Prince and Smolensky 1993)

c. *LAPSE Rhythm is alternating; no two adjacent unstressed syllables.*® (Alber
2005)

d. IamB Feet must be right-headed.

e. FOOT-NONFINALITY (FNF) A foot must not be right-headed. (Tesar 2000)

f.  ALL FEET LEFT (AFL) V foot 3 prosodic word such that the left edge of the
prosodic word and the left edge of the foot coincide. (McCarthy and Prince 1993)

g. LEFTMOST (LMOST)ALIGN (PRWD, L, HEAD-FT, L) V prosodic word 3 head-foot of
the prosodic word such that the right/left edge of the prosodic word and the right/left
edge of the head-foot coincide. (EDGEMOST in Prince and Smolensky 1993)

h. RIGHTMOST (RMOST) ALIGN (PRWD, R, HEAD-FT, R)

i. MAXSTRESS For each stressed syllable in the input, assign a violation if the
corresponding output syllable does not bear primary stress. (MAX-HEAD-FOOT in
Graf 2000)

20 The basic insight of this constraint can be found in Selkirk 1984. The constraint has been used in many
more recent analyses, including Alber 2005, Gordon 2002, and Kager 2001, 2006.
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2.3.2 THE LEARNING DATA

Data for the learning simulations were produced from all languages in the typology.
For each language, the output of each word was converted to its overt form. The resulting
data set contains the overt form of each word in association with its morpheme identity;
this is the learning data for the language. For example, the map of language L5 appears in
(61). This language, which will be discussed further in section 2.4 and in chapter 3,
produces the learning data in (62). Note that although the data include the morphemic
composition of the overt forms, the learner does not access that information during the

phonotactic learning stage.

(61) L5
rl=/ss/ | 12=/Ys/ | 13=/sY/ | r4d=/YY/
[s(sY)] | [(Ys)s] | [s(Ys)] | [s(Ys)] sl =/-s/
[s(sY)] | [s(sY)] |[s(sY)] |[s(sY)] s2=/-Y/
(62) L5 learning data

‘ ssYrlsl ‘ ssYrls2 ‘ Yss r2s1 | ssY r2s2 ‘ sYs r3sl | ssY r3s2 ‘ sYs r4sl ‘ ssY r4s2 ‘

After each data set was constructed, it was compared to all other stored data sets and
discarded if it identically matched any of those stored. The data of L5 match those of L4,
whose map appears in (63). Only the two shaded forms differ from L5, and these have the
same overt form, sYs, as they do in L5, making L4 and L5 globally surface-ambiguous, as
defined in the introduction to chapter 3. Because they cannot be distinguished by their
overt forms and thus yield the same learning data, the learner is expected to learn both L4
and L5 from the data in (62), as well as any other language that is globally surface-

ambiguous with them. This process is illustrated in chapter 3.



(63) L4
rl =/ss/ | 12=/Ys/ | 13=/sY/ |r4d=/YY/
[s(sY)] | [(Ys)s] [[(sY)s] |[(sY)s] sl =/-s/
[s(sY)] | [s(sY)] | [s(sY)] | [s(sY)] s2=/-Y/
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The 97 languages in the Stress system typology yield 61 unique data sets like (62).
The CBL processed each of these data sets in separate computer learning simulations. In
every simulation, the CBL successfully learned all the globally surface-ambiguous

languages associated with the data.

2.4 FUNDAMENTAL ISSUES AND PROCEDURES FOR THE COMMITMENT-BASED LEARNER

This section provides examples of the Commitment-Based Learner at key points in
the learning process. These points are presented sequentially to show how the learner
handles the data and language hypotheses at different stages and to highlight how
commitments accumulate and inform later learning steps. An outline of the learner’s

actions appears in (117) in section 2.4.5.

2.4.1 THE TARGET LANGUAGE

The typology of the Stress system, described in 2.3, includes language L5, shown in
(64) and generated by the stratified hierarchy in (65). L5 has lexical stress and by default,
feet are iambic and the head-foot is right-aligned. The following sections illustrate the
elements of the CBL as the learner attempts to learn L5. The learning data for this
language are shown in (66); forms are listed in the order in which they are observed in

this illustration.
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(64) L5
rl =/ss/ | 12=/Ys/ | 13=/sY/ | r4=/YY/
[s(sY)] | [(Ys)s] |[s(Ys)] | [s(Ys)] sl =/-s/
[s(sY)] | [s(sY)] | [s(sY)] | [s(sY)] s2=/-Y/
(65) FT-BIN >>PARSE-6 >> MAXSTRESS >> RMOST >> {IAMB, AFL, LMOST}
>> {FNF, *LAPSE}
(66) Learning data corresponding to L5

| ssYrlsl | ssYrls2 | Yssr2sl | ss¥12s2 | s¥sr3s] | ssY13s2 | s¥s rdsl | ss¥ r4s2 |

2.4.2 PHONOTACTIC LEARNING

The CBL begins learning with an initial language hypothesis, Hyp0, which contains
an empty support, an empty lexicon, and an empty set of structural interpretation
commitments for overt forms. The initial stratified hierarchy is derived by applying BCD
to the support. The result, (67), simply ranks all markedness constraints together, above
the sole faithfulness constraint.

(67) {FNF, IaAMB, PARSE-c, FT-BIN, AFL, LMOST, RMOST, *LAPSE} >>
MAXSTRESS

The objective of the phonotactic learning stage is to learn as much as possible about
the target’s constraint hierarchy from the phonotactic information of the observed overt
forms; learning underlying forms will wait until the learner knows the observed forms’
morphemic decomposition. The CBL’s committed ranking information — the support
ERCs — derives from error-detection, which requires that the learner be able to identity an

error by knowing which input-output mappings the ranking should generate. Each input
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will simply match the observed overt form at this stage, while the output will be some

interpretation of that overt form.

Initially, error-driven learning will apply without committing to any particular
interpretation for the output. The learner will wait to commit to interpretations until
certain that commitments are needed to yield new information. Finding that the current
ranking selects an optimum besides one of the possible identity maps of the overt form,
or that it selects more than one of the possible identity maps as optimal, indicates that
there is ranking information to be learned and that it is time for the overt form to receive
a committed interpretation using the same branching strategy employed by the
Inconsistency Detection Learner (IDL). These phonotactic learning steps are described in

(68).
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(68) Phonotactic learning”’

Def phonotactic learning(overt forms, | hyp list)
WHILE any / hyp in [ hyp_list has changed
Move [ hyp to changed hyps list if I_hyp.hyp change is True*
Move [ _hyp to lang hyp list if [_hyp.hyp change is False
FOR each overt in overt forms
Set ! hyp list = changed hyps
Set changed hyps to empty list
UNTIL [ hyp list is empty
Remove the first / hyp from [ hyp list
Set [ hyp.hyp change to False
Find optima for the identity input of overt given ranking in /_hyp
IF overt has a committed interpretation in /_hyp THEN
IF any optimum does not match the committed interp. THEN
Error detected: perform error-driven learning
Set I hyp.hyp change to True
ENDIF
Add [ hyp to changed hyps list if lang hyp is consistent
Discard /_hyp if it is inconsisent
ELSE // No committed interpretation for overt
IF there is only one optimum AND it matches overt THEN
Add ! hyp to changed hyps list
ELSE
Error detected: extend branches from / hyp
Add each consistent branch to changed hyps list
ENDIF
ENDIF
ENDUNTIL
ENDFOR
Shift all hypotheses in changed hyps list to [ _hyp list
ENDWHILE
Shift all hypotheses in [ _hyp list to lang hyp list
Return lang hyp list
END

To illustrate, suppose the learner is just beginning to learn from the data in (66) and
observes the overt form ssY first. Because HypO has not yet committed to any

interpretation of this form, the learner simply checks whether the initial BCD hierarchy in

21 The actual Ruby code used to implement the CBL is included in Appendix B. Pseudocode included in the
text omits code used for recordkeeping, such as maintaining the list of discarded hypotheses.
22 All language hypotheses are initialized with this value set to True.
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(67) allows for a tie or an optimum that is not an interpretation of ssY. The violation
tableau below includes the two interpretations of the overt form, (69)a and (69)b, and the
remainder of the possible optima — that is, all candidates which are not individually or
collectively harmonically bounded. The degenerate interpretation in (69)b is
harmonically bounded by (69)a. The remaining candidates CTie (see 1.1.1.1) with (69)a

on the constraints in the first stratum, resulting in an error.

(69) Initial ranking produces an error on ssY

*APSE

Input Output

a. /ss-Y/ | [s(sY)]
[ss(Y)]
[(sY)s]
[(sY)(X)]
[s(Ys)]
[(Ys)s]
[(Ys)(X)]
[

[

[

[

[

Xs)(Y)]
(Y)(sX)]
X)(sY)]
(Y)(Xs)]
X)(Ys)]

— = o= |==— o |Co|C || JAMB

olo|lo|lo|jlo|o|—=|~|o|= [ |—| PARSE-G

— o~ |od|o|o|—|o|o ||~ | LMOST
olviolv|o|—|~|o|~|~|oc|o| RMOST

— === == oo = o= 2| FT-BIN

o el Bl I R Ee ISR Ee S
SOOI IO (—m OO | |—|—

This error indicates unresolved conflicts in the ranking, but to correctly resolve the
conflicts, the learner needs to know which candidate should win. In this case, making the
choice appears trivial because one candidate interpretation harmonically bounds the
other; however, the learner will not reach this conclusion until separately evaluating each
interpretation in its own language hypothesis. Here the CBL calls on the IDL to resolve

the structural ambiguity of the overt form.
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Each language hypothesis in the CBL includes a support, a set of committed
structural interpretations, and a lexicon. When the IDL applies to these language
hypotheses, they split into language hypothesis branches according to the method
described in (70). Each branch is created as a copy of its parent hypothesis and inherits
all of the committed information of the parent, including its lexicon, structural
commitments, and W-L pairs, and adds a new structural commitment and any W-L pairs
resulting from its addition. For this first error, each branch simply inherits the empty

support and empty lexicon of Hyp0.

(70) Branch method for language hypotheses

Def branch(overt _form, |_hyp)
Create empty branch_list
Determine the interpretations of overt form
FOR each interpretation
lang hyp = copy of [_hyp
Add a commitment to interpretation for overt in lang hyp
Perform error-driven learning in lang hyp
IF lang hyp is consistent THEN
Set lang _hyp.hyp_change to True
Add lang hyp to branch_list
ENDIF
ENDFOR
Return branch_list
END

GEN provides two interpretations for ssY: [s(sY)] and [ss(Y)]. The IDL directs the
initial language hypothesis Hyp0, on which the error occurred, to extend two branches to
separately accommodate each interpretation. The diagram in (71) charts the learner’s
progress as a tree. The two new branches, Al and A2, commit to [s(sY)] and [ss(Y)],

respectively.
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(71) Branching for first structural commitment

Hyp0

As noted in (70), in each of these branches the learner performs error-driven learning
for a mapping from the input /ss-Y/ to the committed structural interpretation of that
branch. A committed interpretation here entails a committed identity mapping, and the
learner now will be checking that the current ranking makes this mapping the sole
optimum. The learner adds W-L pairs, employing MRCD with BCD as needed until
either there are no more errors, as judged by CTies, or an inconsistency is detected. When
there is a choice of more than one informative loser, as in the example above where any
candidate could be informative about the ranking, the learner could adopt any; in this

computer simulation, it simply adopts the first one it encounters.

A1, the branch with the binary, iambic commitment, adds the three W-L pairs listed
below in (72) during the course of error-driven learning and remains consistent. Applying
BCD to the support produces the ranking in (73). A2 commits to the unary interpretation.
It adds two W-L pairs to its support, (74), and the second reveals that its interpretation is
harmonically bounded. In the support tableaux, the order in which W-L pairs are added is
indicated in the leftmost column, together with a “P” to indicate that that the addition

occurred during phonotactic learning.
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(72) A1 support; committed to [s(sY)]
o »
R 20 a2l
S :m: &8 o 4a: 2 M >
Morph. 2 e 2|28 272 5|3
ERC# | word | Input | Winner | Loser HaRial Bl PR Do
2P | rlsl | /ss-Y/ | [sSY)] | [(Y)SX)] | W i W L{ {L!W! L|W
S 3P| rlsl | fssY/ | [ssY)] | [sY)s] | Wi L|L LW
c. 1P| risl | /ss-Y/ | [sGY)] | [s(Ys)] LW 0 dLiL|w
(73) {RMOST, FT-BIN, [AMB} >> {LMOST, AFL, PARSE-c, FNF, *Lapse} >>
MAXSTRESS
(74) A2 support; commitment to [ss(Y)] is inconsistent
L VR
. 8 &5 g iz
Morph. :z2i 258 2%
ERC# | word | Input | Winner | Loser D= B R e
a. 1P| rlsl | /ss-Y/ | ss(Y) | [s(Ys)] W:L L :W:L L L:L
b. 2P| risl | /ssY/ | ss(Y) | [sGsY)] A A A T

In the tree in (75), the dashed line connecting HypO to A2 indicates that A2 has been
rejected for inconsistency, while the solid line to Al indicates that that language
hypothesis is consistent and remains for processing with further data. Because language
hypothesis Al contains a commitment to the structural interpretation [s(sY)], it is also
committed to the ranking conditions entailed by the identity mapping /ss-Y/[s(sY)],
recorded in the support in (72). Whatever other commitments the learner makes for the

remainder of the data, they must be consistent with the commitments made thus far in

Al.
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(75) One consistent branch after first commitment

Hyp0

The next new overt form observed is Yss. The learner detects an error: the current
ranking of Al does not select any interpretation of this overt form as optimal. The
violation tableau in (76) reveals the problem: candidate (76)a, /Yss/[s(sY)], is not an
eligible interpretation, but it incurs no violations of constraints in the first stratum. The
best an eligible interpretation could do is tie, which is an error in itself, but in this case
both candidate interpretations of the overt form, (76)e and (76)g, do worse, with each
incurring multiple violations in the first stratum. This error indicates that the ranking of
Al has wrongly resolved conflicts, and the learner must commit to structural

interpretations in order to determine how to adjust the ranking.
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(76) Error in A1 for r2s1 Yss

*APSE

Input Output
a. /Ys-s/ | [s(sY)]
[(sY)s]
[(Y)(X)]
[s(Ys)]
[(Ys)s]
[(Ys)(X)]
[(Y)ss]
[
[
[
[

(Y)(sX)]
X)(Y)]
(Y)(Xs)]
X)(Ys)]

SN S |N|N |~ =S |~ |~ [S| RMOST
— =]~ l=l-l8|e|~|o o] FrEm
O R 1 D Y N
— oo oo o |~ |2 (2|~ ]| LMOST
O U R 1 A ) Y P Y Y™

olo|o|lo|N|o|—|—|o|—=|—| PARSE-O

o el b=l SR N [ = o =
OO QO |— O (— OO ||

A1l now extends two branches to accommodate the two interpretations of the overt
form Yss. Branch A1B1 commits to [(Ys)s] and inherits from Al its commitment to
[s(sY)] and its support. Candidate (76)a is adopted as the informative loser for a new W-
L pair, included as (77)d below. The ranking in (78) derived by BCD makes both

committed interpretations optimal.

(77) A1B1 support; committed to [s(sY)] and [(Ys)s]

ol i
ERC# | word | Input | Winner | Loser =213 5“ PR S
a. 2P| rlsl /ss=Y/ | [s(sY)] | [(V)EX)] || W L W] L W \ L
b. 1P| rIsl | /ss-Y/ | [s(sY)] | [s(Ys)] W : : LW
c. 3P| risl | /ss-Y/ | [ssY)] | [(sY)s] w|lL:w:L: = L
d. 4P| 12s1 | /Ys-s/ | [(Ys)s] | [s(sY)] wlwiL: WL
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(78) FT-BIN >> PARSE-G >> MAXSTRESS >> {LMOST, RMOsST, AFL, FNF,
IAMB, *LAPSE}

Branch A1B2 commits to the unary interpretation [(Y)ss] and inherits the
commitment and support of Al also. Like A1B1, it adopts candidate (76)a as a loser for
the new W-L pair 4P, included as (79)d in the support below. The resulting ranking in

(80) makes both committed interpretations optimal.

(79) A1B2 support; committed to [s(sY)] and [(Y)ss]
- E & e E z 2)
B o O “lom
Morph. = % < S S 55:':,5C
ERC# | word | Input | Winner | Loser SlE[=E] A& < e 2 ¥
a. 1P| rlIsl | /ss-Y/ | [ssY)] | [s(Ys)] [W] L | W : f : - L
b. 2P| rlsl | /ss-Y/ | [sGsY)] | [(Y)(sX)] wlwlL w: L W L
c. 3P| rlsl /ss-Y/ | [s(sY)] | [(sY)s] WL W:L : - L
d. 4P| 12s1 | /Ys-s/ | [(Y)ss] | [s(sY)] w LW L:L:
(80) IAMB >> FNF >> MAXSTRESS >> {LMOST, RMOST, AFL, PARSE-c, FT-BIN,

*LAPSE}

Both language hypotheses are consistent, and the learner will evaluate the next

observed form against the ranking of each. The new branches are included in the diagram

in (81).
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(81) Branching for second structural commitment
Hyp0
Al . . A2
{s(sY)} ss(Y)]
AlBL. ATB2
[Ys)s| (Y )ss|

The third and final new overt form observed is sYs. The learner checks this form for
errors against the rankings of both remaining language hypotheses, but detects an error
only in A1BI. The violation tableau in (82) includes all potentially optimal candidates.
The iambic interpretation in (82)b ties with the trochaic interpretation in (82)d through
the top three strata, but they conflict in the shaded bottom stratum. LMOST, AFL and
IAMB prefer the iambic interpretation, RMOST and FNF prefer the trochaic, and the
candidates tie on *LAPSE. Although the trochaic interpretation [s(Y's)] incurs more total

violations in the bottom stratum, by the CTie criterion it ties with [(sY)s].

(82) Error in A1B1 for sYs

*APSE

Input Output
a. /sYs/ | [s(sY)]
[(sY)s]
[Y)(X)]
[s(Ys)]
[(Ys)s]
[(Ys)(X)]
[(Y)(EX)]
[(X)(EY)]
[(Y)(Xs)]
[(X)(Ys)]

— o~ |lolo|lo|~|o|e |~ | LMOST
oINS |—=|— D |—=|—|D| RMOST

— = oo i= == |o|S || JAMB

HHP—‘?—*D—‘OOP—‘OOFT_BIN

o|lo|lo|o|o|~|~|=|~|~| PARSE-o

— = (NN |—= ||| |=|—=| FNF

el el =l Sl R Ee =R [ =
S| |IO |~ |0 ||~
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Based on the error above, the learner must extend a branch from A1B1 for each of the
three interpretations of sYs, producing the tree in (83). The outcome of each branch is
described in section 3.1; however, the remainder of this chapter concerns only the branch
that commits to the trochaic interpretation [s(Ys)]. The support tableau for this branch,
AIBICI, is provided in (84). It adds W-L pair 5P to the inherited support from AIBI.

The updated ranking appears in (85).

(83) Branching from A1BI1 for third commitment
Hypl
Al . . A2
{s(sY)} ss(Y)]
Al1B1. \1B2
l(YFSI )
ALB I \IB1C2 \IB1CS
s(Ys)] (sY)s| Y)s|
(84) A1BICI support after committing to [s(Ys)]
z | 2 5 SR B
m %] > O & o4 g8
Morph. ~|l 212l Z 5|l & =
ERC# | word | Input | Winner | Loser | = | & sl& & ¥ a0 < 3
a. 2P| risl | /ssY/ | [ssY)] (M1 wlLlw]lwiwipL|L:
b. 1P| rlsl /ss-Y/ | [s(sY)] [s(Ys)] W r L L W
c. 3P| rlsl |/ss-Y/ | [s(sY)] | [(sY)s] W WwW: L | L L
d. 4P| 12sl | /Ys-s/| [(Ys)s] | [s(sY)] WL W: WiW:iL
e. SP| 13sl | /sY-s/| [s(Ys)] | [(sY)s] Wi W LiL:L
(85) FT-BIN >> PARSE-¢ >> MAXSTRESS >> {RMOST, FNF, *LAPSE} >>

{LmosT, AFL, IAMB}
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Language hypothesis A1B2 does not have to extend branches at this time because it
processes sYs without error. The violation tableau in (86) shows that there is only one
optimum for /sYs/ given the current ranking, and that optimum includes the trochaic
interpretation of the observed form. The shaded cells indicate that this candidate, in
(86)d, is the most harmonic because it incurs no violations of the constraints IAMB and
FNF in the highest strata. Phonotactic learning will end without language hypothesis

A1B2 ever making a structural interpretation commitment for s¥s.

(86) No error in A1B2 for sYs

*LAPSE

RMOST

Input Output
/sYs/ | [s(sY)]
[(sY)s]
[(sY)X)]
[s(Ys)]
[(Ys)s]
[(Ys)(X)]
[(Y)(sX)]
[(X)(sY)]
[(Y)(Xs)]
[(X)(Ys)]

—|o|—=|lolo|o|—=|o|o|~| AFL
—|—=|—|—=|—=|o|o|—|=|=| PARSE-oc

SN = |—|O|—|—|D| LMOST

ocl|lo|lo|o|o|=|—=|o|=|—| MAXSTR

el =l == I I Fer N Fan Nl Kan)

el R i R = Ec =
ellellellel el s i=di=N =k

Constructing simultaneous language hypotheses to accommodate each possible
interpretation of an overt form guarantees that the learner will construct the correct
structural interpretations of the target language; the only question is how many other
language hypotheses the learner will have to construct and consider also. Applying

inconsistency detection reduces the number of language hypotheses to evaluate for
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further learning and prevents the learner from wasting effort on combinations of
interpretations that cannot be correct. Although there are twelve logically possible
hypotheses containing interpretations of these three overt forms, the learner creates just
five during phonotactic learning: A1B1C1, A1B1C2, A1BI1C3, AlB2, and A2.
Eliminating A2 early on enables the learner to avoid considering any of the six possible

branches that contain its committed interpretation, [ss(Y)].

Error-driven learning helps to limit the number of simultaneous hypotheses as well by
ensuring that hypotheses branch only when necessary. A1B2 does not immediately
branch when the learner observes the third overt form, sYs, because its current ranking
makes one of the valid interpretations the sole optimum. Until branching is required, the
learner can evaluate all data against the commitments made in A1B2, and will be able to

set a number of features before branching for the third time.

2.4.3 IS LEARNING COMPLETE?

For every data set, the learner will derive as much phonotactic ranking information as
possible using the error-driven learning procedures described in section 2.4.2. This
learning stage is complete when the rankings of the consistent language hypotheses can
process all overt forms without error. For some data sets, this will be enough to account
for the target language, and the learner will not have to set the underlying values of
features. For languages with predictable stress, for example, no features need be set at all
as the appropriate ranking will ensure that, whatever the input, the correct output is

optimal.
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After ending the phonotactic learning stage, then, the learner pauses to evaluate
whether each of the remaining consistent language hypotheses fully account for the data.
There are two criteria the learner checks. First, does any word fail error detection in this
hypothesis? Second, for any overt form still without a committed interpretation, would
making a commitment lead to new information? If the answer is “yes” to either question,

there is more to learn in this language hypothesis.

All targets in this simulation have an output-driven map, a fact which allows the
learner to easily determine whether any word in a language hypothesis fails error
detection. Following Tesar (to appear), for each word the learner constructs an input in
which each unset feature is assigned the opposite of its surface value and checks the
resultant mapping for errors against the ranking derived by BCD. Just as in section 2.4.2,
if the word has a committed interpretation, an error is detected if the ranking does not

select this interpretation as the sole optimum.

It is possible for a language hypothesis to successfully derive the grammar of a target
language without making a structural interpretation commitment for every overt form
observed. To evaluate the second criterion of language hypothesis completion, then, it is
necessary to have an error detection procedure for uncommitted overt forms. In the CBL,
this procedure has several parts. First, the identity mapping of the overt form cannot yield
an error under the current ranking derived by BCD; there must be exactly one optimal
candidate whose output is an interpretation of the overt form. This part is the standard
error detection procedure illustrated in (69) for the uncommitted overt form ss¥. Second,

the ranking must map the maximal mismatch input, with all unset features set to
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mismatch their surface forms, to exactly one output with the same overt form as
observed. This is the counterpart to the error detection procedure for words with
committed interpretations. Finally, the optima selected in these previous tests must be

identical.

Whether or not it has a committed interpretation, if a word fails error detection, then
the current grammar is missing some crucial piece of information, whether about the
ranking or the value of an unset feature in this word. If all words in a language hypothesis
pass error detection, then the CBL judges that the language hypothesis is complete. For
the CBL, learning is complete when, for each consistent language hypothesis remaining,

every word passes error detection.

To continue the example from the previous section, the learner performs error
detection on the words in A1B1C1 and determines that this language hypothesis is
incomplete. Note that because the learner has not observed the words during the non-
phonotactic stage, morphemic identities are as yet unknown; however, all that matters for
error detection at this point is the identity mapping. Suppose, then, that the learner
performs the error detection test on a word with the mapping /ssY/[s(sY)]. This word has
a committed interpretation, [s(sY)], and all three stress features are unset; therefore, the
error detection test evaluates the candidate /YY-s/[s(sY)] against the current ranking,
repeated in (87).

(87) FT-BIN >> PARSE-c >> MAXSTRESS >> {RMOST, FNF, *LAPSE} >>
{LmosT, AFL, IAMB}

The violation tableau below reveals an error. The error detection candidate, (88)a, ties
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with the candidates in (88)b,d,e on the two highest ranked constraints and incurs more
violations of MAXSTRESS in the next highest stratum. The pertinent violations of these

candidates are shaded.

(88) A1BI1C1 —/ssY/[(s(sY)] fails error detection

S12|13|18 = 5|¢ 2 ¢

Input Output S8 [aB) 2 (<7 ST — < 5
a. /YY-s/ | [s(sY)] of1]2floi1:1]1:1%0
b. [(sY)s] of1]1|t1i1:0]0:0:!0
c. (sY)YX)]] 1 ]o]1 1 :i2:i0]0:2:0
d. [s(Ys)] O]J1f1]Jo:o0:0]1:1:1
e. [(Ys)s] ol1]1]1:0:1]0:0:1
f. [(Ys)X)J] 1 ]Jo |11 i1i0]0:2:1
g. (X)) 1 ]o]1f2i2i0]0i11:i0
h. (X)sY]] 1 ]o]2foi2i0]1 1110
i. (VX)) 1 ]of1f2i1i0]0:i1:1
j. [(X)Ys)l) t]Joft1]oit1iof1:i14i1

In addition to demonstrating that a language hypothesis as a whole lacks some crucial
bit of information, performing error detection tests over the entire data set indicates for
which words in particular the language hypothesis requires more information. Keeping
track of these words allows the learner to focus effort where it is needed and where it is
likely to be most fruitful. Note that as the language hypothesis grows with new
committed information, which words pass error detection will change as well. Therefore,
it is important to repeat the error detection tests over the entire data set — including for
words which have previously passed error detection — to evaluate whether learning is

complete.
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On the basis of just one word’s failure to pass error detection, the learner can know
that the current grammar is incomplete. What happens next depends on what procedures
the learner has just completed and whether they were successful. In this example for
AI1BICI, the learner has successfully completed the phonotactic learning stage and the
error here means that the learner will next attempt to set the features of individual words.
If some features are set, yet after one pass through the learning data some word still fails
error detection, the learner will attempt another round of learning from individual words.
But if no features can be set from single forms, the learner will appeal to contrast pairs in
the next round of learning. Therefore, after every pass through the learning data hereafter,
the learner will perform error detection and determine whether to continue learning and

by what methods.

2.4.4 NON-PHONOTACTIC LEARNING

During the phonotactic learning stage, the learner commits to structural
interpretations and to input-output mappings — as W-L pairs in the support — to learn
ranking information. While this next stage focuses on learning underlying forms, the
learner can still make any kind of commitment. In fact, reliance on an inconsistency
detection strategy to set features compels the learner to assign structural interpretations to
uncommitted overt forms if those forms are to be used to set features. The CBL
incorporates the Output-Driven Learner (ODL) for learning underlying forms in
languages with output-driven maps. As explained in 1.4.1, the ODL sets features by
evaluating test candidates in which one unset feature at a time is set to mismatch its
corresponding output value. If the resulting test candidate is inconsistent with the current

support, then the underlying value of the feature must match its surface value. Using this
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method, the ODL can more efficiently set features from single words and contrast pairs
than a learner that must evaluate every local lexical hypothesis for consistency, such as

the learners of Merchant (2008), and Merchant and Tesar (2008).

This section describes how the CBL increases both ranking and lexical commitments
during the non-phonotactic learning stage in language hypothesis A1BICI1 from the
preceding section. This branch already includes committed interpretations for each of the
three overt forms in the data set for LS. The learning data are repeated in (89) along with
their interpretations in this language hypothesis; all words currently fail to pass the error

detection. The current support for AIBICI and its ranking by BCD are repeated in (90)

and (91).
(89) Learning data for L5, showing committed interpretations
[s8Y)] | [s(sY)] | [(Ys)s] | [s(sY)] | [s(Ys)] | [s(sY)] | [s(Ys)] | [s(sY)]
rlsl rls2 r2sl r2s2 r3sl r3s2 r4s1 r4s2
(90) A1BI1C support
z | 2 E 2 iy 7
m n > O >} Q1 as)
Morph. 21 = Z: 51 = £ 2
ERC# | word | Input | Winner | Loser Ela| = 5 B A< S
a. 2P| riIsl | /ss-Y/ | [s(SY)] | [(WSX)]( W] L |IW]IW:W:L|L:
b. 1P| rlIsl | /ss-Y/ | [s(sY)] | [s(Ys)] W P Lo L W
c. 3P| rlsl | /ss-Y/ | [s(sY)] | [(sY)s] W W Ll L L
d. 4P| 12sl | /Ys-s/ | [(Ys)s] | [s(sY)] W[lL W, WiW!L
e. SP| 13sl | /sY-s/| [s(Ys)] | [(sY)s] WiW LIL:L
(91) FT-BIN >> PARSE-c >> MAXSTRESS >> {RMOST, FNF, *LAPSE} >>

{LMosT, AFL, IAMB}
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Section 2.4.4.1 describes how the learner sets features using a contrast pair when
single forms prove uninformative. In section 2.4.4.2, the learner uses the new lexical
commitments to derive new ranking information, and section 2.4.4.3 shows how the
commitments of the previous two sections finally enable the learner to set features from

single forms.

2.4.4.1 Setting features by contrast pair

Both single words and contrast pairs can be used to set features using the ODL. For
A1BI1CI1, however, single words fail to set any features. To understand why, suppose the
learner attempts to set features in rlsl [s(sY)] using the test candidates shown below. As
no features have yet been set in the lexicon, there is a test candidate for each of the three
stress features in the word. The syllable whose stress value is being tested in each

candidate is indicated by outlining.

(92) Test candidates for rlsl
a. /Ys-Y/ 2 [s(sY)]

b. /sY-Y/ =2 [s(sY)]
c. /ss-8/ 2 [s(sY)]

Again, this language hypothesis corresponds to target L5, and therefore its support is
consistent with L5, whose map appears below. The reason why the test candidates for
rlsl cannot set a feature should be clear from this map: each is a mapping in L5 and

cannot be inconsistent with the support. The pertinent mappings are shaded below.



(93) L5
rl =/ss/ | 12=/Ys/ | 13=/sY/ |r4d=/YY/
[s(sY)] | [(Ys)s] | [s(Ys)] | [s(Ys)] sl =/-s/
[s(sY)] | [s(sY)] |[s(sY)] | [s(sY)] s2=/-Y/
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Because rls2, 1252, r3s2, and r4s2 have the same interpretation as rlsl, and therefore

the same test candidates at this point as well, they too are unable to set features.

Similarly, two of the three test candidates for r3s1 — and thus r4sl, which shares the

interpretation [s(Ys)] — are mappings in L5 and must be consistent with the support; these

are (94)a and (94)b below. The third test candidate for r3s1, (94)c, as well as those for

r2sl in (95), are not mappings in the target language, and their consistency with the

support must be explained by a lack of crucial ranking information. Contrast pairs prove

vital for uncovering this information. Because the members of a contrast pair must be

consistent with each other as well as with the support, processing in pairs provides more

opportunity to detect an inconsistency and therefore to set a feature.

(94) Test candidates for r3s1

a. /YY-s/ 2 [s(Ys)]
b. /sY-s/ =2 [s(Ys)]
c. /sY-Y/ 2 [s(Ys)]

(95) Test candidates for r2s1

a. /ss-s/ 2 [(Ys)s]
b. /YY-s/ =2 [(Ys)s]
c. /Ys-Y/ 2> [(Ys)s]
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The informative contrast pair identified by the learner is r1s1 [s(sY)] and 2s1 [(Ys)s].
There are five unset features — in rl, r2, and sl — and because the surface value of sl
alternates, the learner must evaluate a total of 10 different test candidates. The values
assigned to each feature to construct the candidates are listed in the chart below, together

with the outcome of inconsistency detection for each pair of candidates evaluated.

(96) Test candidates for contrast pair rlsl [s(sY)], r2s1 [(Ys)s].
Felz;tislsl;zr‘;t}l,ue Input Consistent?
rlsl  /Ys-Y/
q rl r2sl  /Ys-Y/ No
' ol +stress rlsl  /Ys-s/ | same input, different output
r2sl  /Ys-s/
rlsl  /sY-Y/
b rl r2sl  /Ys-Y/ No
' 62 +stress rlsl  /sY-s/ | inconsistent with support
r2sl  /Ys-s/
rlsl  /ss-Y/
. 2 r2s1  /8s-Y/ No
' ol —stress rlsl  /ss-s/ | same input, different output
r2sl  /ss-s/
rlsl  /ss-Y/
d r2 2sl /YY-Y/ Yes
' 62 +stress rlsl  /ss-s/
2sl /YY -s/
rlsl  /ss-Y/
sl 2sl  /Ys-Y/ Yes
stress alternates | r1sl  /ss-8/
r2sl  /Ys-s/

The contrast pair produces several inconsistencies, two of which are quite easy to see.
The pairs in (96)a test the value of stress in the first syllable of rl and are inconsistent
because they involve the same input mapping to different outputs. This inconsistency

allows the learner to set rl’s first syllable to —stress. For the same reason, the pairs in



103

(96)c, which test the value of stress in the first syllable of r2, are inconsistent and allow

the learner to set that syllable’s feature to +stress.

A third inconsistency arises from the pairs in (96)b, which test the stress value of the
second syllable of r1 by setting it to +stress. Tableau (97) includes the support from (90)
as well as, in (97)f,g, W-L pairs constructed for this contrast pair (labeled “test” as these
are test mappings for the contrast pair). FT-BIN, PARSE-6 and MAXSTRESS can be ranked
in the first three strata, but none of the remaining unranked constraints prefer only
winners. For W-L pair 5 of the support, given in (97)e, only FNF and RMOST prefer the
winner, but FNF prefers the loser to the test candidate for rlsl in (97)f, and RMOST

prefers the loser to r2sl in (97)g. Setting rl to /sY/ is therefore inconsistent with the

support.
(97) A1BI1C is inconsistent with r1s1 /sY-Y/[s(sY)]
el el
Moph HHEETIEIEIEE
ERC# | word | Input | Winner | Loser || = | & = EiE IO < S
a. 2P | risl | fssY/ | sV (D01 wlLo | wlw:w:L:L:
b. 1P | risl | /ss-Y/ | [sGsY)] | [s(Ys)] w LiL W
c. 3P rlsl /ss-Y/ | [ssY)] | [(sY)s] wlw: L+ L L
d. 4P | 1251 | /Ys-s/ | [(Ys)s] | [s(sY)] wlL:w. Wowo L
e. 5 r3sl | /sY-s/ | [s(Ys)] | [(sY)s] WW LiL:iL
f. test | rlsl /sY-Y/ | [s(sY)] [s(Ys)] L L W
g. test | 12sl /Ys-Y/ | [(Ys)s] [s(sY)] L W W W L

The other pair in (96)b is also inconsistent. This pair tests the stress value of the
second syllable of r1 as well, but sets sl to —stress, its surface value in r2s1. The resulting

test candidate for rlsl, /8Y-s/[s(sY)], now includes two disparities from its output: one in
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rl, and one in s1. The crucial ERC is in (98)f. For this W-L pair, MAXSTRESS prefers the
loser, leaving no way to rank the remaining constraints after ranking FT-BIN and PARSE-
o: all the remaining constraints prefer the loser in at least one W-L pair. Based on these

inconsistencies, the updated lexicon for A1BICI in (99) now includes three set features.

(98) A1BI1Cl1 is inconsistent with r1s1 /8Y-s/[s(sY)]
A4 R A .
a) i X O N R I
Morph. DI - 725 5 K 2
ERC# | word | Input | Winner | Loser = s = : E EoF A< S
a. 2P rlsl | /ss-Y/ | [s(SY] | [(MEX)]f W L |W: W W: L :L:
b. 1P rlsl | /ss-Y/ | [s(sY)] | [s(Y9)] W v L Lo E W
c. 3P rlsl | /ss-Y/ | [s(sY)] | [(sY)s] Wi W L L Lo
d. 4P | 1251 | /Yss/ | [(Ys)s] | [sGsY)] W L W W WL
e. 5 3sl | /sY-s/ | [s(Ys)] | [(sY)s] ‘Wiwi {Li{L|L
£ test | risl | /sY-s/ | [sGSY)] | [s(Ys)] Li{W{ {L:!L:L:
(99) A1BICI lexicon

rl 12 r3 4 | sl | s2
fss/ | 1Y 2112 -2

As explained earlier in this section, the learner could not set any features in this
language hypothesis using single forms alone. However, because contrast pairs generally
require more effort than single forms in terms of the number of forms that must be
evaluated, the learner appeals to them only after the latest pass through the data fails to
set any features from single forms. For single forms the learner constructs one test
candidate for each unset feature. The maximum number of tests therefore equals the
number of unset features in the word. In contrast pairs, an unset feature can alternate, as it

does for sl in rlsl and r2sl here, and both values must be evaluated in each test. Each



105

alternating unset binary feature therefore doubles the number of tests the learner must
evaluate. For r1sl and r2s1, there are five unset features, and one alternates, causing the

learner to evaluate the ten tests shown in (96).

Just how much more effort the contrast pair requires depends on how many of its
unset features alternate in value. In the Stress system, where all words contain just three
features, at most the learner would have to evaluate 10 tests for a contrast pair, as in (96).
In this worst-case scenario the environment morpheme is a monosyllabic suffix and the
contrast morphemes are disyllabic roots. This pair has a total of five unset features, the
feature of the environment morpheme alternates, so that the learner must evaluate 10
tests. The CBL does not compare all potentially informative contrast pairs to determine
which involves the fewest tests, and instead simply attempts to learn from single forms

first before evaluating any contrast pair.

In total, the contrast pair r1sl [s(sY)] and r2s1 [(Ys)s] enables the learner to set three
features that could not be set by evaluating either form individually. As 2.4.4.3 shows,
the information learned from this pair allows the learner to use r2sl to set the remaining

stress features in that word.

2.4.4.2 Learning ranking information from set features

The task of learning ranking information occurs continually, in both stages of
learning. During the phonotactic learning stage, what committed ranking information the
support contains determines whether a language hypothesis survives for another round of

learning or is rejected due to inconsistency. While this role for the support continues to be
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vital, in the non-phonotactic learning stage the support also becomes essential for setting
features. It is imperative, then, that the support contain crucial ranking information,
balanced as always with the need to gather that information efficiently. The low-
faithfulness ranking bias of BCD enables the learner to detect errors and recover
phonotactic ranking information even when no features have been set; however, set
features themselves are a potential source of new ranking information, if they ever
surface unfaithfully. To draw out informative errors from set features the learner benefits
from employing a low-markedness ranking bias, following Tesar (to appear). This section
illustrates how one of the features set by the contrast pair in 2.4.4.1 contributes new

ranking information to the language hypothesis.

The current support for AIBIC1 from (90) is repeated below in (100). The tableau
shows the support after applying BCD, whose low-faithfulness bias causes MAXSTRESS
to occupy the third stratum, despite it preferring only winners. This ranking is given in

(101).

(100) AI1BI1CI1 support — BCD ranking

|l elEl = gl =1
Moph HEHEIEE LI
ERC# | word | Input | Winner | Loser =] = CEFA < S
a. 2P| rlsl | /ssY/ | [sV)] | (DX W [ L |[wW]wiwiL|L:
b. 1P| rlsl | /ss-Y/ | [sGsY)] | [s(Ys)] ' CLL § W
c. 3P| rlsl |/ssY/ | [sGsY)] | [(sY)s] wlw: ‘rL|LiL
d. 4P| 12s1 | /Ys-s/ | [(Ys)s] | [s(sY)] wlLiwi WiWiL
e. SP| 13sl | /sY-s/| [s(YS)] | [(sY)s] W W L:L:L
(101) FT-BIN >> PARSE-c >> MAXSTRESS >> {RMOST, FNF, *LAPSE} >>

{LMosT, AFL, IAMB}
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The BCD ranking is extremely useful for deriving phonotactic ranking information,
but a different bias can uncover different errors. In an attempt to learn non-phonotactic
ranking information, the learner applies a low-markedness bias to the support to produce
the ranking in (102), in which MAXSTRESS now occupies the highest stratum. Unfaithful

mappings of set features are checked for errors against this ranking.

(102) A1B1C1 low-markedness ranking

MAXSTRESS >> {FT-BIN, PARSE-c, RMOST, FNF, *LAPSE} >> {LMOST, IAMB,
AFL}

Usually an unfaithful mapping of a set feature means that a markedness constraint
crucially dominates some faithfulness constraint(s). For the Stress system, this would
mean that one of the eight markedness constraints must dominate MAXSTRESS. The low-
markedness ranking allows MAXSTRESS to be ranked as high as possible and increases
the likelihood that it will conflict with a markedness constraint to produce an error.
Learning this non-phonotactic ranking information is the intention of the low-markedness

bias.

However, in the Stress system an unfaithful mapping can also arise as a consequence
of the restrictions on GEN. While it is possible for every feature in a word to be
underlyingly +stress, only one can surface with primary stress; the others will each incur
one violation of MAXSTRESS. Therefore, the low-markedness ranking may not produce an
informative error about the relative ranking of MAXSTRESS and a markedness constraint,

but it nonetheless could prove informative for sorting out relations among the markedness



108

constraints themselves. If each candidate must incur at least one violation of MAXSTRESS,
then it falls to the markedness constraints to determine which feature surfaces faithfully.
With the majority of the markedness constraints clumped into the second stratum of the
ranking in (102), the conditions are set to produce errors from CTies. This is just what

happens when the learner checks for errors in A1B1Cl1 using the ranking in (102).

The map of A1BICI is shown in (103) with as-yet unset features indicated by “?”.
From the contrast pair used in section 2.4.4.1, the learner has set rl to /ss/ and 12 to /Y?/.
Only an underlyingly +stress feature in the Stress system can surface unfaithfully, and the
+stress feature in 12 surfaces unfaithfully in r2s2 [s(sY)], shaded. The learner will check

this form for errors against the low-markedness ranking.

(103) A1BICI
rl=/ss/ | 12=/Y? | 3=/ |1t4d=/77/
[s(sY)] | [(Ys)s] [s(Ys)] | [s(Ys)] |sl=/-2
[s(sY)] |[s(sY)] [s(sY)] |[s(sY)] |[s2=/-7

The learner checks for errors on r2s2 using the mapping /Ys-Y/[s(sY)], whose input
includes the value of the set feature in r2 and matches the remaining unset feature values
to their surface forms. Because the input has two underlyingly stressed syllables, every
candidate will violate MAXSTRESS at least once. The violation tableau below includes just
the candidates that incur a single MAXSTRESS violation. The shaded cells indicate the
candidates that are most harmonic through the second stratum; observe that the desired
winner, (104)a, is in a CTie with two other candidates. The learner adopts the first of
these as a loser and adds W-L pair 6 to the support in (105). Applying the low-

markedness bias to the updated support produces the ranking in (106).
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(104) Error in A1B1C1 on 1252 /Ys-Y/[s(sY)] using ranking (102)

= L R L

72! - B B 7 ] : oW

> LH:KQ:EQ:O:% 8- a:° 0

mput | owpwt | 3| E & £ 2 F|2E 2
a. /Ys-Y/ | [s(sY)] 1f1i1:0:0:1]0:1:1
b. [(Ys)s] 1joi1:0:i1:1]1:0:0
c. (YsyxX)) |l 1l1ioi1i1i0f1:210
d. Xy 1 1i0:i1:i0:0f1:2:2
€. [(Y)ss] | 1f1i2i1:i2i1]o0oi0!o0
f VX)) 127012000110
g. NI 1 ]2:i0i1:i0:0]0:i1:1
h. (Xl 11 ioi1i2 011110

(105) A1B1C updated support — low-markedness ranking

=1 3 z e og -
Morph. 2 %}fgg ;%dé
ERC# | word | Input | Winner | Loser = R .
a. 2P| rlsl | /ssY/ | sG] | (MWL iwiwiL]|w: | L
b. 1P| rlsl | /ss-Y/ | [ssY)] | [s(Ys)] | W . 'L | LW @
c. 3P| rlsl | /ssY/ | [sGsY)] | [(sY)s] || W WL . L L
d. 4P| 1251 | /Ys-s/ | [(Ys)s] | [s(sY)] || W DL WiL IWiW
e. 5P| 3sl | /sY-s/ | [s(YS)] | [(sY)s] W WiLIiL .| L
£ 6 | 252 | /YsY/ | [sGsY)] | [(Ys)s] e WL L

(106) A1BI1C1 updated low-markedness ranking
MAXSTRESS >> { PARSE-c, FT-BIN, RMOST, *LAPSE} >> {FNF, IAMB, AFL,
LMosT}
The learner now reevaluates 12s2 /Ys-Y/[s(sY)] and detects a second error under the
updated ranking from (106). As before, the violation tableau below includes just the
candidates with the minimal MAXSTRESS violation, and the shaded cells emphasize the

violations in the second stratum for /Ys-Y/[s(sY)] and the most harmonic competitors.
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There are two informative losers that CTie with the desired optimum, and the learner

adopts (107)g for the seventh W-L pair. The resulting support and low-markedness

ranking appear in (108) and (109).

(107) Second error in A1BIC1 on r2s2 /Ys-Y/[s(sY)] using low-markedness
bias
2l e L L
212 & 2 £l 2 o B
S| £ 2 7|8 22 3
Input Output : : : : : :
a. /Ys-Y/ | [s(sY)] 11001 f1:0:1:1
b. (ys;s] 1 l1ioi1i1foinrioio
c. Yyl 1Joititiol1 1200
d. (X)) 1o i1 0 0]1:i1i2:2
e. [(Y)ss] |1 ]2:1:2i1]1:0:0:0
f sl 1]Joi1i2i0]l210i1 10
o sl 1foi1io o201 i1
h. (Xl 1foir 201117110
(108) AI1BI1C1 updated support — low- markedness bias
é ;| E g
QK 220 O m
ERCH# h/\f&?gf; . Input | Winner Loser %: 5“ & a 5 Lé E E
a. 2P| risl | ssY/ | sV (WX wliwiw]lL Lo L W
b. 1P| rlsl | /ssY/ | [sGsY)] | [s(Ys)] | W : Ll LW
c. 3P| risl | JssY/ | [s6YV)] | [sY)s] | w | W LiL L
d 4P| st | /vss | [ovsys) | sy [ w L W W WL
e. SP| 1r3sl /sY-s/ | [s(Ys)] [(sY)s] W L L W L
£ 6 | 252 | /Ys-Y/ | [s6sY)] | [(Ys)s] W | L L LW
o 7 | 22 | /Ysy/ | [sGsY)] | [(0G6Y)] ‘wlLiLl 1w
(109) A1BICI updated low-markedness ranking

MAXSTRESS >> {RMOST, FT-BIN} >> {PARSE-c, *LAPSE, LMOST, AFL, FNF,
IAMB}
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No further errors are detected on r2s2 using the new ranking above. If there were any
other unfaithful mappings of set features, the learner would continue to perform error-
driven learning using the low-markedness ranking. Once all unfaithful mappings are
processed without error, the learner returns to error-driven learning using the ranking
derived by BCD. The updated support for A1IBIC1 derived by applying BCD is given in

(110), with ranking in (111).

(110) A1B1CI1 current support — BCD ranking

z °| £ = 2 =

Morph. [:E g 2 g E é d E %
ERC# | word | Input | Winner | Loser | & | & = P ] 2 < =
a. 2P| risl | ssY/ | s e wlLwlwio|L: w
b, 7 | 252 | /Ys/ | [ssy)] | oy | wol L L LW
c. 1P| rlsl /ss-Y/ | [s(sY)] | [s(Ys)] Y L L \Y
d 3P| rlsl /ss-Y/ | [s(sY)] [(sY)s] \\ W L] L L
e. 4P| 12s1 | /Yss/ | [(Ys)s] | [s(sY)] wlL: W!IW!W.iL
f. 5P| sl | /sY-s/ | [s(Ys)] | [(sY)s] W | LiL.W!:L
g 6 | 22 | /YsY/ | [ssY)] | [(Ys)s] W | LiL LW

(111) A1B1C1 updated BCD ranking
FT-BIN >> PARSE-G6 >> MAXSTRESS >> {RMOST, *LAPSE} >> {LMOST, AFL, FNF,

IAMB}

The low-markedness bias has served here to flesh out the relationships between the
markedness constraints. This round of error-driven learning focusing on unfaithful
mappings of set features produces two new W-L pairs. Based on these pairs, the learner
now knows that RMOST must dominate all of LMOST, AFL, FNF, and IaMB. Before, the
support had only revealed the less-informative disjunction that either RMOST or FNF

must dominate the other three.
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2.4.4.3 Setting features by single form

The learner can often set some, if not all, features from single forms before ever
appealing to a contrast pair. AIBICI is an unusual exception, as it requires a contrast
pair to set some features initially; thereafter, all remaining features that must be set can be
set from single forms. Having seen already how features can be learned from contrast
pairs, understanding how the learner uses single forms for that purpose should be simple.
The process follows the same principles as for using contrast pairs: the learner varies the
value of one unset feature at a time and checks whether the resulting mapping is
inconsistent with the support. If so, the feature must be set in the lexicon to match its
surface value. This section shows how the learner sets the remaining unset features in

r2s1, one of the members of the contrast pair used earlier.

The current support for AIBICI remains as in (110). The current lexicon, in (112),

includes only the set features learned from the contrast pair in 2.4.4.1.

(112) A1BIC lexicon

rl 2 r3 r4 sl s2
[ss/ | 1Y /22| 122 -2 -2

The learner may now attempt to learn from 12sl [(Ys)s], which has two unset
features. The stress feature of the second syllable of 12 is unset, and its surface value is —
stress. To test the value of this feature, the learner constructs a candidate in which that
feature is set to +stress. The test candidate, /YY-s/[(Ys)s] in (113)h, is inconsistent with

AI1BICI. The problematic ranking conditions appear in (113)f-h.
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(113) AI1IBICI is inconsistent when 12 = /YY/

Morph. TlE12(8 3 ¢ 2 & 2
ERC# | word | Input | Winner | Loser | ™ | & > ‘5 ROl < RS
a. 2P | risl | /ssY/ | [sGY] [ [MEXOI W[ L | WIW: L :L: W
b. 7 1252 | /Ys-Y/ | [s(sY)] | [ | W | L L W
c. 1P | risl | /ss-Y/ | [sGsY)] | [s(Y$)] W 'L . LW
d. 3P | risl | /ssY/ | [sGsY)] | [(sY)s] wlwiLiLiL:!
e. 4P | 12sl | /Yss/ | [(Ys)s] | [s(sY)] wlL: ‘w:w: wW:L
f. 5P | i3sl | /sY-s/ | [s(Ys)] | [(sY)s] Wi fLiLiWiL
g 6 1252 | /Ys-Y/ | [s(sY)] | [(Ys)s] W L L L W
h. test | 12s1 | /YY-s/ | [(Ys)s] | [s(Ys)] L!L ! W W: |

After FT-BIN, PARSE-c and MAXSTRESS are ranked, the ERCs in (113)f-h must
explain the rankings of the other constraints. W-L pairs 5P and 6 contradict each other in
all but RMOST, which prefers the winner in both pairs; however, RMOST prefers the loser
in (113)h. With all unranked constraints preferring losers for at least one pair, the ranking
conditions are inconsistent. The learner updates the lexicon, (114), so that 12 is set to

/Ys/.

(114) A1BI1CI1 lexicon updated for 2

rl 12 r3 r4 | sl | s2
/ss/ | /Ys/ | /22| /22| -2 | /-2

The process repeats for the unset feature in sl, setting it to +stress in the test
candidate: /Ys-Y/[(Ys)s]. The tableau in (115) shows that the test candidate is
inconsistent because its ranking conditions contradict those of W-L pair 6. The learner

can now update the lexicon as in (116), with sl set to /-s/.
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(115) A1BI1CI1 is inconsistent when s1 = /-Y/

E u'.] n 5‘) n - ; : : :
M Zz > DB : : A\
Morph. 21212 2 2 8 2 2
ERC# | word | Input | Winner | Loser || = | R I
a. 6 252 | /Ys-Y/ | [s(sY)] | [(Ys)s] W L L LW
b. test| r2sl | /Ys-Y/ | [(Ys)s] | [s(sY)] L! W! W!W!L

(116) AI1BICI lexicon updated for sl

rl 2 r3 4 | sl | s2
/ss/ | /Ys/ | /22| /22 | [-s/ | [-?/

2.4.5 PUTTING THE PIECES TOGETHER

The preceding sections have provided a close look at each component of the CBL,
from its initial passes through the data during phonotactic learning to how it sets features
and how it judges whether learning is complete. These sections have provided a glimpse
into how these components can fit together, but not yet a full outline of how the learner

uses and re-uses them throughout the course of learning; this is now provided in (117).

(117) Preliminary outline of the Commitment-Based Learner

Within each language hypothesis, beginning with Hyp0, and for each observed
form:

Phoneotactic Learning

1. Check for errors
a. If the form lacks a committed structural interpretation and yields

an error, apply the IDL to extend branches. Repeat step 1 for each
branch.
b. If a form has a committed structural interpretation and produces an
error, perform error-driven learning. Repeat step 1.
c. Ifthe form does not produce an error, process the next overt form.
2. Phonotactic learning ends when no errors are detected on any observed

forms.



115

Non-phonotactic Learning — first pass through data

3. Perform error-driven learning over all known words.
a. Reject hypothesis if it is inconsistent
4. Does the form have a committed interpretation?
a. Yes—apply the ODL to set features from the single form.

i. If features are set, seek non-phonotactic ranking
information from unfaithful mappings using the low-
markedness ranking bias.

1. Ifno features are set, observe the next form.
b. No — perform error detection on the overt form.

a. If the overt form passes error detection, observe the next
form. Go to step 3.

b. If it does not pass error detection, apply the IDL to assign
interpretations and extend branches.

i. Continue learning in the resulting branches, beginning
with the first observed form in the data set. Go to step 3.
5. Perform error detection on the list of known words.
a. If all words pass error detection, this language hypothesis is
complete.
i. Are all consistent language hypotheses are complete?
1. Yes — stop. Learning is complete.
2. No — continue learning in the incomplete language
hypotheses.
b. If some words fail error detection, go to step 6.

Non-phonotactic Learning — after the first pass through the data

6. Were any features set by single-form learning in the last pass through the
data?
a. Yes — repeat steps 3-5 for each word that currently fails error
detection.
b. No — apply the ODL to set features from contrast pairs in the list of
known words. Go to step 7.
7. Were any features set by contrast pairs in this pass?
a. Yes — repeat steps 3-5 for each word that currently fails error
detection.
b. No — wait for new information in the language hypothesis and
repeat steps 3-5 for each word that currently fails error detection..
(See chapter 4).
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2.5 CONCLUSION

The mutual dependency between hidden structures can provide valuable information
about the target grammar. The Commitment-based Learner (CBL) exploits that potential
and uses commitments to some hidden structures to illuminate others. The CBL lays a
foundation of knowledge during phonotactic learning with commitments to structural
interpretations and their entailed ranking conditions, then builds on that foundation
during the non-phonotactic stage with commitments to underlying feature values. To do
so, the CBL incorporates procedures and learners that individually have proved
successful at solving intermediate learning problems. In particular, error-driven learning
yields ranking information and inconsistency detection indicates whether combinations of
structures are permissible. These techniques are incorporated by the Inconsistency
Detection Learner and the Output-Driven Learner, both of which are in turn incorporated

by the CBL.

In addition to describing the motivations for the CBL, this chapter has illustrated how
the CBL makes commitments and manipulates the incorporated learners at critical
learning points. Chapter 3 will expand the scope of the illustration to follow the learner’s
progress from start to finish, through each step described in (117), as the learner

processes this same learning data.
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3 A COMPLETE LEARNING SIMULATION

The preceding chapter described the component procedures of the Commitment-
Based Learner (CBL) for learning hidden structures of the surface and underlying forms.
This chapter follows the CBL as it learns, from start to finish, showing where and when it
uses each component and finally providing a successful outcome from the learning data.
This chapter uses the same data as in chapter 2 and refers to that chapter for some

explanations of the learner’s actions.

The learning data in (118) are from set 15. The forms are listed left to right in the

order in which the learner observes them in this illustration.

(118) Learning data set 15

| ssYrlsl | ssYrls2 | Yssr2sl | ss¥12s2 | s¥s13sl | ssY13s2 | s¥s rdsl | ss¥ r4s2 |

Because the CBL rejects only inconsistent language hypotheses, it is possible to end
learning with more than one consistent language hypothesis. In fact, this chapter will
show that the CBL will learn all three targets associated with the learning data above,
including L5, introduced previously, as well as L4 and L6, whose overt forms match

those of LS. These languages are globally-surface ambiguous, as defined in (119).

(119) Global surface ambiguity (map-based definition)

Languages L4 and LB are globally surface-ambiguous if their maps are identical
with respect to overt forms.
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Each target is described below, along with a stratified hierarchy derived from the
support of its skeletal basis. As expected by their global ambiguity, there are a number of

similarities between these languages. The shaded cells highlight the key differences.

(120) L4
rl=/ss/ | 12=/Ys/ | 13=/sY/ | r4d=/YY/
[s(sY)] | [(Ys)s] [(sY)s] [(sY)s] | sl =/-s/
[s(sY)] | [s(sY)] | [s(sY)] [s(sY)] |s2=/-Y/
(121) FT-BIN >> PARSE-c >> MAXSTRESS >> [aMB >> {FNF, RmMoST} >>

{AFL, LMOST, *LAPSE}

(122) L5
rl=/ss/ | 12=/Ys/ | 13=/sY/ | 4d=/YY/
[ssY)] | [(Ys)s] | [s(Ys)] [s(Ys)] | sl =/-s/
[s(sY)] | [s(sY)] | [s(sY)] [s(sY)] |s2=/-Y/
(123) FT-BIN >> PARSE-6 >> MAXSTRESS >> RMOST >> {IAMB, AFL, LMOST}

>> {FNF, *LAPSE}

(124) L6
rl=/ss/ | 12=/Ys/ |13=/sY/ | r4d=/YY/
[s(sY)] | [(Y)ss] | [(sY)s] [(sY)s] | sl =/-s/
[s(sY)] | [s(sY)] | [s(sY)] [s(sY)] |s2=/-Y/
(125) IAMB >> FNF >> MAXSTRESS >> {FT-BIN, RMOST} >> {PARSE-G, AFL,

LMOST, *LAPSE}

All the languages are sensitive to lexical stress but are by default iambic with

rightmost primary stress. The languages group together according to two major
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properties. First, L4 and L6 sacrifice right-alignment of the head-foot in order to parse
iambs, unlike L5, which makes the opposite sacrifice. Therefore, r3s1 and r4sl both
surface as [(sY)s] in L4 and L6, but as [s(Ys)] in L5. Second, when faithfulness to an
underlying stress pushes the head-foot from the right edge, as for r2s1 /Ys-s/, L4 and L5
pattern alike by parsing a binary trochaic head-foot to reduce the distance from the right
edge, so that r2s1 surfaces as [(Ys)s]. L6 instead prefers to avoid trochaic feet altogether

at a further expense to right-alignment. In that language, r2s1 surfaces with a degenerate

foot: [(Y)ss].

Stress is contrastive in the suffixes of each language. Each language has three root
behaviors, with r3 and r4 behaving alike. Stress is therefore contrastive for the second
syllable of the root, and stress in the first root syllable is neutralized if the second syllable
is stressed underlyingly. If structural interpretations are excluded, the three languages
have the same morpheme behaviors, as illustrated by the table in (126), which groups 13

and r4 together to show that these roots behave alike.

(126) L4, L5, and L6: like morphemes grouped together

_ B r3=/sY/

rl =/ss/ | 12=/Ys/ A= 1YY/
ssY Yss sYs sl =/-s/
ssY ssY ssY s2=/-Y/

This observation suggests the revised definition of global surface ambiguity given in

(127), which specifically compares morpheme behaviors.
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(127) Global surface ambiguity (morpheme behavior definition)

Language L4 and LB are globally surface-ambiguous if they have the same
morpheme behaviors, excluding structural interpretations.

Although the map-based definition of global surface ambiguity in (119) is useful for
quickly identifying some globally-surface ambiguous language, section 4.4 will show that
comparing the overt realizations of morpheme behavior instead will identify cases of
global surface ambiguity that the earlier definition misses. Additionally, reference to
morpheme behaviors will be useful for providing a unified definition of global ambiguity,
encompassing both global surface amibiguity and global lexical ambiguity. For more on
global ambiguity and the CBL’s response to globally ambiguous languages, see chapter

4,

3.1 PHONOTACTIC LEARNING

Some of the actions taken during phonotactic learning for this data set have been
described already in chapter 2. The remainder of this section reviews each step taken by
the learner for all the data, but for the details of the errors and inconsistencies related to
the overt forms ssY and Yss, including the support updates for these forms, see section

24.2.

As explained in the preceding chapter, the CBL begins learning with an initial, empty
language hypothesis, Hyp0, containing no structural commitments, W-L pairs, or lexical
entries. The learner observes the first overt form, without its morpheme identity, and
applies error-driven learning to check for new ranking information. If an error is detected,

the learner applies the IDL and extends new branches. After this point, use of error-
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driven learning and the IDL applies within each separate, consistent language hypothesis,
and it is possible for an overt form to yield a branch-inducing error in one language
hypothesis but not another. The CBL repeatedly cycles through the learning data until all
overt forms are processed in all consistent language hypotheses without error. The outline
for phonotactic learning in (128) is extracted from the more complete learning outline in

2.4.5; a fuller description of phonotactic learning specifically appears in (68) in section

24.2.
(128) Phonotactic learning outline
Within each language hypothesis, beginning with Hyp0, and for each observed
form:

1. Check for errors
a. If the form lacks a committed structural interpretation and yields
an error, apply the IDL to extend branches. Repeat step 1 for each
branch.
b. If a form has a committed structural interpretation and produces an
error, perform error-driven learning. Repeat step 1.
c. Ifthe form does not produce an error, process the next overt form.
2. Phonotactic learning ends when no errors are detected on any observed
forms.

The diagram in (129) summarizes the outcome of observing the first form, ssY. An
error detected on this form causes HypO to branch into language hypotheses Al and A2.

The dashed line to A2 indicates that this branch is inconsistent. Again, the learner rejects

inconsistent language hypotheses and never evaluates them again for learning.
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(129) Branches extended from initial error on ssY in HypO

Hyp0

According to the data set in (118), repeated below, the learner observes ssY again, this
time as the overt form of the word rls2. As explained in 2.4.2, this overt form is
processed without error in the only remaining language hypothesis, A1, which was just
altered to accommodate ssY when the form was observed for the word rlsl. The learner
must evaluate each overt form in each consistent language hypothesis, but the remainder
of this section will avoid discussing overt forms processed in branches that have not

changed since the last time the overt form was processed.

(130) Learning data set 15 (Lgs. 4, 5, 6)

| ssYrlsl | ssYrls2 | Yss12sl | ss¥12s2 | s¥s13sl | ss¥Y13s2 | s¥srdsl | ssY r4s2 |

The next new overt form observed is Yss. An error on this overt form in Al induces
branching into A1B1 and A1B2. These language hypotheses inherit all of the stored
information in A1, as indicated by the repetition of Al in their labels. Additionally, each
makes its own commitment to a structural interpretation for Yss. Both of the branches are

consistent.
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(131) Branches extended from error on Yss in Al
Hyp0
Al . . A2
1s(sY)} ss(Y)]
AlBI. Al1B2
(Ys)s| (Y )ss]

The fourth overt form observed from the data set is ssY, for the word r2s2. This overt
form was last observed for r1s2, when it was processed in the parent language hypothesis
Al; this time it is processed in both A1B1 and A1B2. The additional ranking information
included in these branches make it plausible that a new error could be detected on ssY,

but the rankings of both branches process the form without error.

Finally, the learner observes a new overt form, sYVs, for r3sl. Section 2.4.2 showed
that the learner detects an error on this form in A1B1 but not A1B2; therefore, only A1B1

extends branches now, shown in the tree in below.

(132) A1BI1 branches for error on sY¥s

Hyp0
Al . . A2
fs(sY)} ()]
Al1B1. CALB2
|(Ys)s| (Y )ss|

AIBIC1 AlIB1C2 AIBIC3



124

Branch A1BICI1 commits to the trochaic interpretation [s(Ys)]. Section 2.4.2 explains
that the iambic interpretation [(sY)s] is the informative loser for this branch, and the
appropriate W-L pair is added to the support for A1B1C1, which appears now in (133).
Following the format established in chapter 2, the order in which W-L pairs are added is
indicated in the leftmost column, with a “P” to indicate pairs added during phonotactic

learning; thus, the newly added W-L pair is SP. The updated ranking is shown in (134).

(133) A1B1C1 support; committed to [s(sY)], [(Ys)s], and [s(Ys)]

o) [~
Z al &l g 2 & :
7 5 : & : M
Morph. ol S % Zi5 2 e 2
ERC# | word | Input | Winner | Loser | & | ~ ChEe [ < S
a 2P| sl | sy | sl s fwlowlwiwio o
b. 1P| risl | /ssY/ | [sGsY)] | [s(Ys)] W 'L L LW
c. 3P| rlsl |/ss-Y/ | [ssY)] | [(sY)s] W | W L)L
d. 4P| 12sl /Ys-s/ | [(Ys)s] [s(sY)] WI|]L W WiIW:!L
e. 5P| 13sl | /sY-s/| [s(Y$)] | [(sY)s] w LiL!L
(134) FT-BIN >> PARSE-c >> MAXSTRESS >> {RMOST, FNF, *LAPSE} >>

{LmosT, AFL, IAMB}

The learner then checks for new ranking information, evaluating the identity
mappings of the committed interpretations — that is, all the winners in the W-L pairs — to
determine whether they yield errors under the updated ranking. No further errors are
detected in this branch. Because each of the three unique overt forms in the data set now
has a committed interpretation in A1B1CI1, detecting no more errors means that this
language hypothesis has acquired all the information it can without knowing the

morpheme identities of the learning data: its phonotactic learning stage has effectively
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ended after observing the first five overt forms in the learning data. The learner, however,
does not have this insight. Therefore, as the learner observes the remaining data — ssY for
1352, sYs for r4s1, and ssY again for r4s2 — each form will by duly processed in turn. Each
will be assigned a structural interpretation from the stored commitment list — [s(sY)] and
[s(Ys)], as appropriate — and then its identity mapping will be evaluated against the
current ranking. No errors can arise, as the support in (133) already includes the ranking

conditions necessary to ensure the optimality of /ssY/[s(sY)] and /sYs/[s(Ys)].

The second branch arising from the error on the overt form sYs is A1B1C2, which
commits to the iambic interpretation, and now the trochaic interpretation is the
informative loser. The appropriate W-L pair is labeled 5P in the updated support for
AIBIC2, (135). Again, the learner processes all the committed identity mappings

according to the updated ranking, (136), and detects no further errors.

(135) A1B1C2 support; committed to [s(sY)], [(Ys)s], and [(sY)s]

z ol & LB a2 | e
Morph. A EIEIEIEIE IR
ERC# | word | Input | Winner | Loser == S 8 <F 5“ e
a. 2P| rlsl | /ssY/ | [sGY)] | [VEX]| W] L | W 'L L|wWiw
b. 1P| rlsl | /ss-Y/ | [s(sY)] | [s(Ys)] wlw: | L L
c. 3P| risl | /ss-Y/ | [sGsY)] | [(sY)s] W LI L L |w!
d. 4P| 1251 | /Ys-s/ | [(Ys)s] | [s(sY)] wlrLiwiw! Liw
e. SP| 3sl | /sY-s/ | [(sY)s] | [s(Ys)] WiwW W L L
(136) FT-BIN >> PARSE-6 >> MAXSTRESS >> {IAMB, LMOST, AFL, *LAPSE} >>

{R™MoST, FNF}
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Finally, branch A1B1C3 commits to the degenerate interpretation [s(Y)s], but this
interpretation is harmonically bounded by the iambic interpretation, shown in (137) by
W-L pair 5P. Because no constraints prefer the winner for that W-L pair, the commitment

to [s(Y)s] makes A1B1C3 inconsistent. This language hypothesis is rejected.

(137) A1B1C3 is inconsistent; /sYs/[s(Y)s] is harmonically-bounded

elgl P Pgi
Mo AEIEIEIEINIE I T
ERC# | word | Input | Winner | Loser moae 2S00 <k &
a. 2P| rlsl | /ssY/ [ [sGYV] | [MEX]|W: L :wW: ‘L L W W
b, 1P| rlsl | /ssY/ | [ssY)] | [s(Ys)] "W W: L. L
c. 3P| risl | /ss-Y/ | [s(sY)] | [(sY)s] W L LIL W
d. 4P| 12s1 | /Ys-s/ | [(Ys)s] | [s(sY)] W.L . W W. L W
e. 5P| 3sl | /sY-s/| [s(Y)s]| [sY)s] | LiL i i L L

The last branch to review now is A1B2. This language hypothesis does not yield an
error on the overt form sYs r3sl because, as 2.4.2 explains, its current ranking
information is sufficient to ensure the optimality of exactly one interpretation of the overt
form. For this reason, it is unnecessary at this time to extend branches from A1B2 and
commit to any particular interpretation. Its current support, which will remain unchanged,

is given in (138), with ranking in (139).
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(138) A1B2 support; committed to [s(sY)] and [(Y)ss]

Eleis Sz 8
Morph | HHEHEIEEIEIEE
ERC# | word | Input | Winner | Loser == — DA R x
a. 1P| rlsl | /ssY/ | [s6YV)] | [s(Ys)] [wW] L |w L L
b. 2P| risl | /ss-Y/ | [s(sY)] | [(Y)(sX)] wlwl|L @ w: L:W:L
c. 3P| risl | /ss-Y/ | [sGsY)] | [(8Y)s] wlL iw L L
d. 4P| r2s1 | /Ys-s/ | [()ss] | [s(sY)] w|lwiL| LiL:
(139) IaAMB >> FNF >> MAXSTRESS >> {LMOST,RMOST, AFL, PARSE-o, FT-

BIN, *LAPSE} >> {RMOST, FNF}

To review, at this point the learner has observed the first five overt forms in the
learning data set and created four language hypotheses: AIB1C1, A1B1C2, A1B1C3, and
A1B2. Of these, A1BI1C1, A1B1C2, and A1B2 are consistent. The learner next cycles
through the remaining three overt forms in data set (130), observing sYs once more and
ssY twice more to complete one pass through the data. These forms are processed without

error in each of the three consistent language hypotheses. There are no further changes.

The phonotactic learning stage ends when no more ranking information can be
extracted from the overt forms of the learning data, which in turn means that every overt
form can be processed in every consistent language hypothesis without error. A1B1Cl1
and AIBIC2 have in effect already completed phonotactic learning; having a
commitment for each of the three unique overt forms and then rechecking the stored
commitments for errors as this first pass through the data continues ensures that no new
information can arise from revisiting the data in these language hypotheses. But A1B2

does not have a committed interpretation for s¥s, and therefore the repeated check of



128

stored commitments cannot ensure that this form continues to be processed without error.
If the ranking of a language hypothesis changes after processing an uncommitted overt
form, it is possible for the new ranking to yield an error on that form later. For this
reason, in this simulation the CBL simply keeps track of whether any error occurred in
any language hypothesis during a pass through the data. If so, the CBL keeps evaluating
the whole data set against every language hypothesis, until at last it passes through the
entire data set without detecting any errors. Consequently, in this example the CBL
makes a second complete pass through the learning data before completing phonotactic

learning.

The tree in (140) includes all the language hypotheses created during phonotactic
learning, with dashed lines indicating the inconsistent ones. A1B1C1 has committed to all
the structural interpretations included in L5 and will ultimately derive a grammar for that
target during the non-phonotactic learning stage. Similarly, A1B1C2 will derive a
grammar consistent with the target L4. Finally, A1B2 has made structural commitments
for just two overt forms. This language hypothesis will eventually branch and yield the

grammar for the target L6.

(140) All branches created during phonotactic learning

Hyp0

Al . . A2
1s(sY)} ss(Y)]
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A total of 21 ERCs were stored (and 21 RCD applications were made) during
phonotactic learning. Combined, the three consistent language hypotheses that remain
store 14 ERCs in their supports. The maximum number of hypotheses stored at any one
time is four, when the learner has extended branches from A1B1 for the form sYs and
lasting only until inconsistency detection reveals that the commitment for this form in

branch A1B1C3 is inconsistent.

3.1.1 IS LEARNING COMPLETE?

Before the non-phonotactic learning stage begins, and before each pass through the
learning data thereafter, the CBL checks each consistent language hypothesis to see if it
is complete using the error detection procedure described in 2.4.3. Because the non-
phonotactic learning stage has not yet begun, the learner does not know the morphemic
identities of any of the words observed during phonotactic learning. All features are
currently unset, and therefore all words with the same overt forms will have the same
error detection candidates, regardless of their morphemic identity. This section will refer
to the morphological word labels, such as rlsl, but what matters for error detection now

is simply the identity mapping of that word: /ssY/[s(sY)].

As illustrated in 2.4.3, rlsl /ss-Y/[s(sY)] fails error detection for A1B1C1, whose

current ranking is repeated in (141).

(141) A1BI1CI current ranking

FT-BIN >> PARSE-c >> MAXSTRESS >> {RMOST, FNF, *LAPSE} >> {LMOST,
AFL, IAMB}



130

All three features of rlsl are unset, and as a consequence the error detection
candidate is /YY-s/[s(sY)], with all features set to mismatch the values of their surface
correspondents. As 2.4.3 explains, although this candidate, (142)a in the violation tableau
below, ties for most harmonic through the first two strata, it incurs two violations of
MAXSTRESS in the third stratum, making it less harmonic than the candidates in
(142)b,d,e that remain faithful to one of the underlying stresses. This error is sufficient to

demonstrate that the language hypothesis is as yet incomplete.

(142) A1BI1C1 —rlsl fails error detection

© 5 H Com

512|902 s %2 8

Input Output [: ;-:4 2 [~ E 9’%4 »54 - <
a. /YY-s/ | [s(sY)] o1 fJ2]Joi1:1]o0:i1:1
b. [(sY)s] of1]1|1i1:0]0:0:!0
c. (sY)X)]l 1 ]of1]1:2:i0]0:0:2
d. [s(Ys)] of1]1]Joioio]1:i1:1
e. [(Ys)s] 0OJ1]1]1i0{1]1:0:0
f, (Y]l 1 ]Jo 11 i1io0f1 012
g. (sX)]1]o]l1]2i2i0]0:0:1
h. (XY 1 ]o]2foi2i0]0 111
i. X)) 1]o]1f2i1i0]1:i0:1
j. [(Xyys);f tJojJi1foitrio]1 111

The same word will demonstrate that A1B1C2 and A1B2 are also incomplete. As
branches from the original Al parent, each of these language hypotheses commits to
[s(sY)] for r1s1, and therefore all use the error detection candidate /YY-s/[s(sY)]. In fact,
the violation tableau in (142) above also serves to illustrate the error on rlsl in A1BIC2.

In the current ranking for this branch, repeated in (143), the first three strata are identical
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to those of A1B1C1. Consequently, an error is detected on rlsl [s(sY)] in A1B1C2 for

the same reason as in A1B1Cl.

(143) A1B1C2 current ranking

FT-BIN >> PARSE-c >> MAXSTRESS >> {IAMB, LMOST, AFL, *LAPSE} >>
{RMOST, FNF}

Finally, in A1B2 MAXSTRESS also occupies the third stratum, and its relatively high
rank causes rlsl to fail error detection in this language hypothesis as well. The current
ranking of A1B2 is repeated in (144). As for the other language hypotheses, the error
detection candidate, (145)a in the violation tableau below, fails because it incurs more

violations of MAXSTRESS than a competitor, here (145)b.

(144) A1B2 current ranking

IaMB >> FNF >> MAXSTRESS >> {LMOST,RM0ST, AFL, PARSE-c, FT-BIN,
*LAPSE} >> {RMOST, FNF}

(145) A1B2 —rlsl fails error detection

*APSE

Input Output
a. /YY-s/ | [s(sY)]
[(sY)s]
[(sY)(X)]
[s(Ys)]
[(Ys)s]
[(Ys)(X)]
[(Y)(sX)]
[(X)(sY)]
[(Y)(Xs)]
[(X)(Ys)]

—l— oo~~~ ||| ]| JAMB
— =N N = o || |—|—| FNF
—_ = N = = = = = = [N | MAXSTR

—|om oo~ |||~ | LMOST
oo |—|~|o|~ |~ || RMOST

o|o|o|o|o |~ |—|o|=|—| PARSE-c
— === = oo =2 2| FT-BIN

SIC (O |IC IO~ |IC|IC O |-

TR R e a0 o
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Because all the consistent language hypotheses fail error detection for at least one word, the

learner will seek to set features in each of them during the non-phonotactic learning stage.

3.2 LEARNING UNDERLYING FORMS

Now that the non-phonotactic learning stage has begun, the learner will receive the
morphological information associated with each observed form, but the data continue to
be processed in each consistent language hypothesis according to the order represented in
(118). The CBL assumes that the learner can recall all previously observed words and can
perform error-driven learning over them at any time. To model this assumption in this
implementation of the CBL, each word observed is added to a list of known words unless
it already appears in the list, and the learner performs error-driven learning over the list to
check for new ranking information. Note that keeping a record of these known words is
not essential to the CBL. An implementation that checks for errors only on the current
observed word rather than on all known words will ultimately determine the same
ranking information as this one, with the only difference being precisely when errors are
detected. While the learner might have to complete a pass through the data to cycle back
to a form that produces an error, such an implementation would not be dramatically
slower than this one: each error could delay detection only for as many words as there are

between the current observed word and a word that yields the error.

After checking for new ranking information, the learner will attempt to set features by
employing the Output-Driven Learner (ODL) as long as the word already has a
committed structural interpretation. Otherwise, the learner will check if the word passes

error detection with all unset features set to mismatch their surface values. If it does not,
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then the learner will apply the Inconsistency Detection Learner (IDL) to assign structural

interpretations and extend branches. See 2.4.5 for the outline of these learning steps.

The paths of the branches from A1B1 and A1B2 diverge further in this stage. In order
to best show how the language hypotheses evolve, the following sections will illustrate

each in isolation.

3.2.1 BRANCHES FROM A1B1

This section follows the learner’s progress in the two consistent language hypotheses

that branched from A1B1. These are framed in the tree below.

(146) Consistent branches from A1B1

HypO
Al . . A2
1s(sY)} ss(Y)]
A1B1. \ 182
I(YIS)SI Y)ss|
AIBIC \VIB1C2 \VIBI1CS
s(Ys)] (sY)s] Y )s]

3.2.1.1 A1B1C1

AI1BICI is the language hypothesis that ultimately will yield the grammar of the
target L5. The map of L5 and a stratified hierarchy consistent with its skeletal basis

appear in (147) and (148).
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(147) LS

rl =/ss/ | 12=/Ys/ | 13=/sY/ |r4d=/YY/
[s(sY)] | [(Ys)s] | [s(Ys)] [s(Ys)] | sl =/-s/
[s(sY)] | [s(sY)] | [s(sY)] [s(sY)] |s2=/-Y/

(148) FT-BIN >> PARSE-6 >> MAXSTRESS >> RMOST >> {IAMB, AFL, LMOST}
>> {FNF, *LAPSE}

AIBICI1 begins the non-phonotactic learning stage with the support and ranking

below.

(149) A1B1C1 support

Morph. SlElZ|22 2|8 2 &
ERC# | word | Input | Winner | Loser | ™= | & = SR
a 2P| sl | sy | s | sl wlewlwiwin|ol
b. 1P| rlsl /ss-Y/ | [s(sY)] | [s(Ys)] W L L W
c. 3P| rIsl | /ss-Y/| [sGsY)] | [(sY)s] Wlw: 'L|L /L
d. 4P| 12s1 | /Ys-s/ | [(Ys)s] | [s(sY)] wW|lL: wW: W!W! L
e. 5P| 13sl | /sY-s/| [s(Ys)] | [(sY)s] WiwW| L L!L
(150) FT-BIN >> PARSE-G >> MAXSTRESS >> {RMOST, FNF, *LAPSE} >>

{LMOsT, AFL, IAMB}

3.2.1.1.1 First pass through the data fails to set features

The learner adds each of the eight observed words to the list of known words but can
derive no new grammatical information from them. Each of these words already has a
committed interpretation, and there are no errors because the current ranking is

unchanged from phonotactic learning. As explained in 2.4.4.1, initially no features can be
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set from single forms. Because all the words fail error detection and single form learning

has proved fruitless, the learner appeals to contrast pairs to set a feature.

3.2.1.1.2 Second pass through the data sets features with contrast pair r1s1, r2s1

AI1BICI1 is the language hypothesis of the example in 2.4.4.1, and as detailed there, it
takes a contrast pair to set the first few features. The first contrast pair identified is rlsl
[s(sY)], r2s1 [(Ys)s]. In this pair, the environment morpheme sl alternates between —
stress in rlsl and +stress in r2s1, making this a plausible pair for learning. As previously
described, the pair is informative and enables the learner to set features in rl1 and r2, and
to update the lexicon in (151). Additionally, 2.4.4.2 explains how the unfaithful mapping
of r2’s first syllable in 1252 [s(sY)] yields new ranking information as well. The resulting
W-L pairs 6 and 7 are added to the support in (152); application of BCD yields the

ranking in (153).

(151) A1BI1C1 — Contrast pair r1s1/r2s1 sets three features

rl r2 r3 4 | sl | s2
Iss/ | /Y2 /2| 1) /-2 /-

(152) A1B1C1 support updated using unfaithful mappings of r2s2

ol E1 o =N

Morph. % g 2 g % é = E §
ERC# | word | Input | Winner | Loser ] 2 N RS =
a 2P| rlsl | s/ | [s6sV] | (W01 fwlo]wlwic|ol fw
b, 7 | 252 | /vsy/ | [ssyy] | (e | wl L L w
c. 1P| risl | /ss-Y/ | [ssY)] | [s(Y$)] W L L . LW
d. 3P| rlsl /ss-Y/ | [s(sY)] [(sY)s] W W L|L L
e. 4P| 12s1 | /Yss/ | [(Ys)s] | [s(sY)] wilL W W!W!L
£ 5P| sl | /sY-s/ | [s(Ys)] | [(sY)s] W LiL:!W: L
e 6 | 122 | /s | [ssY)] | [(Ys)s] W | LiL LW
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(153) FT-BIN >> PARSE-G >> MAXSTRESS >> {RMOST, *LAPSE} >> {LMOST,
AFL, FNF, IAMB}

The contrast pair has set some features, but all words continue to fail error detection.
Having added new lexical and ranking information, it is plausible that single forms which
could not be used to set a feature in the first pass through the data might be able to now.
In this simulation, the learner ceases this second pass through the learning data and starts
a third pass, beginning with the first word in the data set, rl1sl. The progress of this pass

through the data continues below.

3.2.1.1.3 Third pass begins: r1s1 [s(sY)], r1s2 [s(sY)], and r2s1 [(Ys)s]

The test candidates for the first two words observed in this pass are consistent with
the current support for A1IB1C1. Because rl was set to /ss/ in the preceding section using
a contrast pair, both rlsl and rl1s2 each have just one unset feature, in the suffix. These
words surface alike as [s(sY)], and therefore they have the same test candidate, shown in

(154).

(154) Test candidate for r1sl and r1s2

/ss-8/ 2 [s(sY)]

In spite of the new lexical and ranking information obtained by the contrast pair in the
preceding section, this test candidate remains consistent with the support. Just as section
2.4.4.1 explains, language hypothesis AIB1C1 corresponds to target L5, which includes

/ss-s/[s(sY)] in its map. Any mapping that is consistent with L5 is consistent with
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AI1BI1C1, whose ranking conditions are less stringent than L5’s. This test candidate will
always be consistent with A1B1C1, and therefore it will always be uninformative for

lexical learning.

The third word, r2s1 [(Y's)s], finally allows the learner to set a feature. With the stress

feature of the first syllable already set to +stress, there are two candidates to test, below.

(155) Test candidates for 12s1 [(Ys)s]

a. /YY-s/ 2 [(Ys)s]
b. /Ys-Y/ 2 [(Ys)s]

A1BI1Cl1 is the language hypothesis described in 2.4.4.3, and the candidates above are
the same ones used in that section. As explained there, both test candidates are
inconsistent with the support for AIB1C1. The learner has now determined that r2 must
be /Ys/ underlyingly and sl /-s/. Three morphemes now have complete entries in the

lexicon, below.

(156) A1BI1CI1 lexicon updated for r2 and s1

rl 2 r3 4 | sl | s2
/ss/ | 1Ys/ | /22 | /22| [-s/ | [-2/

Having set a feature, the learner seeks non-phonotactic ranking information. Although
sl surfaces as +stress in rlsl [s(sY)], this does not count as an unfaithful mapping.
MAXSTRESS assigns violations only for +stress syllables that surface as —stress, not the
reverse. In this case, rlsl is not identified as potentially informative for non-phonotactic

ranking information.
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3.2.1.1.4 Third pass continues: r2s2 [s(sY)]

The next word processed in the third pass through the data is r2s2 [s(sY)], in which
only the suffix s2 remains unset. Each time a word is processed, the learner checks that
the current ranking makes all the known words optimal. In this example, r2s2 /Ys-
Y/[s(sY)] is optimal according to the current ranking, but one word in the list, r1s1 /ss-

s/[s(sY)], is not.

Because all features of r1s1 have already been set, the learner evaluates the mapping
/ss-s/[s(sY)] against the current ranking derived by BCD, in (153). The violation tableau
in (157) includes the candidate for rlsl in (157)a and all other potential optima that
satisfy undominated FT-BIN by parsing only binary feet. All candidates tie in the first
three strata, but the desired winner (157)a loses to the right-aligned trochaic candidate,
(157)c, in the fourth stratum, as the shaded cells indicate. The learner adopts (157)c as a
loser and adds the resulting W-L pair 8 to the support in (158); the updated ranking

appears in (159).

(157) Error in A1B1C1 for r1s1 /ss-s/[s(sY)]

o) o~ ! . . .

zlalalzi 2]l
sl BN I o & o' 1w g
Input | Output £l & § 5 a3 5 % E é
a. /ss-s/ | [ssY)]| of 1f of o: 1| 1. 1{ 1:{ 0
b. [(sY)s]|] of 1| o] 1: o] o oi 1} 0
c. [s(Ys)]| of 1] of o of 1! 1{ 0i 1
d. [(Ys)s]| of 1| ol 1¢ 1] oi 0i{ 0} 1
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(158) AI1BICI support updated after error on rlsl

T = QA o<
ERCH# hg)gfclll . Input | Winner Loser £ & § ‘5 5 % é E a
a 2P| risl | ssY/ | sy | (neop | wl o wlwloi WL
b, 7 | 22 | /YsY/ | [s6Y)] | [ W] L o WL
c. 1P| risl | /ss-Y/ | [ssY)] | [s(Y$)] W WL L
d. 3P| risl | /ssY/ | [sGsY)] | [(sY)s] wlwl|L L L L
e. 4P| 12s1 | /Yss/ | [(Ys)s] | [sGsY)] wlL|w wiL|w!
£ 5P| sl | /sY-s/ | [s(Ys)] | [(sY)s] wlrLioio]|w:
e 6 | 252 | /Y| [ssY)] | [(Ys)s] wlLit iw|r
h. 8 | risl | /ss-s/ | [sGsY)] | [s(Ys)] W[ LL
(159) FT-BIN >> PARSE-6 >> MAXSTRESS >> RMOST>> {LMOST, AFL, IAMB}

>> {FNF, *LAPSE}

With no errors detected on the other words, the learner returns to r2s2 and now
detects a lexically-informative inconsistency using the test candidate /Ys-8/[s(sY)] to set
the feature in s2. The tableau in (160) includes the current support and one W-L pair
created for the test candidate, (160)i. After FT-BIN and PARSE-c are ranked in the first
two strata, each of the remaining constraints prefers a loser at least once. Based on this

inconsistency the learner can set s2 to +stress. The updated lexicon appears in (161).
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(160) A1BICI1 is inconsistent with r2s2 when s2 = /-s/

z E E) e £ : =3

Morph. TIElz £ ¢ 2 £ & 3

ERC# word | Input | Winner | Loser =] = é TSI N

a. 2P | rlsl | /ssY/ | [sGY] [ [MEXOI W | LW W :L: W L

b. 7 252 | /Ys-Y/ | [sGsY)] | [X)sY]| W | L S . W L

c. 1P | risl | /ss-Y/ | [ssY)] | [s(Ys)] wW: { I IW!L:!L

d. 3P | risl | /ss-Y/ | [sGsY)] | [(sY)s] WiwiLiL! { L
e. 4P | 12sl | /Ys-s/ | [(Ys)s] | [s(sY)] W:L W:W:L:W:
£ 5P | sl | /sY-s/ | [s(Ys)] | [(sY)s] WL ILL W,
g 6 1252 | /Ys-Y/ | [s(sY)] | [(Ys)s] W :L L :W:L:

h. 8 rlsl | /ss-s/ | [sGsY)] | [s(Ys)] . :W:!L:L
i. test | 12s2 /Ys-s/ | [s(sY)] | [(Ys)s] L ‘Y L L L :

(161) A1BI1CI1 lexicon updated for s2

rl 2 r3 4 | sl s2
/ss/ | /Ys/ | /2 | /22| /-s/ | /-Y/

3.2.1.1.5 Third pass concludes: r3s1 [s(Ys)], r3s2 [s(sY)], r4s1 [s(Ys)], r4s2 [s(sY)]

The learner continues this pass through the data and processes r3s1, which has unset
features in the root only. Because no errors are detected on any of the known words for
the current ranking in (159), the learner can now attempt to set the features of r3 using the

candidates in (162).

(162) Test candidates for r3s1 [s(Ys)]

a. /YY-s/ 2 [s(Ys)]
b. /ss-s/ =2 [s(Ys)]

The first candidate is consistent with the support for a familiar reason. Recall that

although the learner does not know it, AIB1C1 corresponds to target L5. Test candidate



(162)a is a mapping in L5, as shaded in the map repeated below, and therefore it is

consistent with the support of A1IB1CI.

(163)

L5
rl =/ss/ | 12=/Ys/ |13=/sY/ | r4d=/YY/
[s(sY)] | [(Ys)s] [s(Ys)] [s(Ys)] | sl =/-s/
[s(sY)] | [s(sY)] | [s(sY)] [s(sY)] |s2=/-Y/
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However, test candidate (162)b is inconsistent because it makes contradictory ranking
requirements with W-L pair 8, as shown in (164). The learner therefore can set the

second syllable of 13 to +stress in the lexicon, (165).

(164) /ss-s/[s(Ys)] is inconsistent with W-L pair 8
o =1
zlala 518 C 3
Morph. 212 822 5 g =
ERCH# word | Input | Winner | Loser || = | #~ 2@ di < Sk
a. 8 rlsl | /ss-s/ | [s(sY)] | [s(Ys)] W L L
b. test| r3sl | /ss-s/ | [s(Ys)] | [s(sY)] LW W
(165) A1BI1CI1 lexicon updated for 13
rl | r2 3 | 4 | sl | s2
/ss/ | /Ys/ | /2Y] | /1?2 | /-s/ | /-Y/

Although r3 now has only one unset feature, the next word, r3s2 [s(sY)], will not set

it. The test candidate shown in (166) again matches a mapping in the target L5: it is the

canonical mapping of 12s2.

(166) Test candidates for r3s2 [s(sY)]

/Ys-Y/ =2 [s(sY)]
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Finally, the learner processes r4sl [s(Ys)] and r4s2 [s(sY)]. Because r4 behaves like
r3, the test candidates for these words will be identical to those in (162) and (166), with
the same outcomes. Thus, the learner can set the second syllable of r4 to +stress also.

Only the initial syllables of these roots remain unset in the lexicon, (167).

(167) AI1BICI lexicon updated for r3 and r4

rl 2 r3 r4 sl s2
/ss/ | /Ys/ | /Y] | 17X/ | /-s/ | I-Y/

The set features in 13 and r4 surface unfaithfully in r3s2 and r4s2, making these words
potential sources of non-phonotactic ranking information. The learner applies a low-
markedness bias to the support to produce ranking (168), used in the violation tableau in
(169). Candidate (169)a corresponds to both r3s2 and r4s2. It ties with the right-aligned
trochaic candidate in (169)d through the first two strata, and does better in the third
because it incurs no violations of IAMB. As a result, there is no error, and no new ranking
information to be learned.

(168) MAXSTRESS >> {FT-BIN, RMOST} >> {PARSE-0, LMOST, AFL, [AMB} >>
{FNF, *LAPSE}
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(169) No error on 13s2 /sY-Y/[s(sY)] under low-markedness ranking

*APSE

Input Output
a. /sY-Y/ | [s(sY)]
[(sY)s]
[(sY)X)]
[s(Ys)]
[(Ys)s]
[(Ys)(X)]
[(Y)(sX)]
[(X)(sY)]
[(Y)(Xs)]
[(X)(Ys)]

—_ N = D[RO = [ = [ = [ = MAXSTR
OIN|OIN|=|—=|D|—|— S| RMOST

See|e|e == < |= || PARSE-c
_lo|=lololol=lelo =] Lmosr
N R A 50 Y P 6
—|=lolo|=|=|=lc|olo] ams
— = (NN = ||| |~ |~ FNF

= E e (e |a]e |
(=N el iel el el fel Fal

3.2.1.1.6 A1BI1CI1 is complete

R3 and r4 still have unset features, but now all words pass error detection. In L5,
underlying stress in the first syllable of the root is neutralized if the second syllable is
also stressed underlyingly. R3 and r4 therefore have the same phonological behaviors,
and the feature values of their first syllables do not have to be set in the lexicon, as their
error detection tests indicate: the error detection candidates, shown below, match the
canonical mappings of r4sl and r4s2 in L5 and are necessarily consistent with the

support.

(170) Final error detection candidates

a. 13sl,rdsl /YY-s/ 2 [s(Ys)]
b. 13s2,14s2 /YY-Y/ = [s(sY)]

The final lexicon for A1B1Cl1, in (171), leaves 13 and r4 each with one unset feature.

The final support is repeated in (172), with its ranking derived by BCD in (173).
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(171) A1BI1CI1 — Final lexicon
rl r2 r3 4 | sl | s2
fss/ | s/ L iyr [ ayr s/ |-y
(172) AI1BICI — Final support
AR s
m % > o Q4 /Q 29 -
Morph. [ 2] 32 S B 2|z 3
ERC# | word | Input | Winner | Loser El£] = ‘5 A< S| &R
a. 2P | rist | jssy/ | fsev] el [ w L jwlwfo i WL
b. 7 | 282 | /Ys-Y/ | [s6Y)] | [V W | L L WL
c. 1P| risl | /ss-Y/ | [sGsY)] | [s(Y$)] W WL L
d. 3P| risl | /ssY/ | [sGsY)] | [(sY)s] wlw|L L 'L
e. 4P| sl | /Yss/ | [(Ys)s] | [sGsY)] wlL|lwiwirL]|w!
f. 5P| 13sl /sY-s/ | [s(Ys)] | [(sY)s] W|lL:!L ' 'L]|W:
g 6 1252 | /Ys-Y/ | [s(sY)] | [(Ys)s] Wl L L w|L
h. 8 | rlsl | /ss-s/ | [sGsY)] | [s(Ys)] o iwl Lo
(173) FT-BIN >> PARSE-6 >> MAXSTRESS >> RMOST>> {LMOST, AFL, IAMB}

>> {FNF, *LAPSE}

3.2.1.2 A1B1C2

Language hypothesis A1B1C2, framed in (174), is the second consistent branch that

survives when A1B1 branches to commit to interpretations of s¥s during phonotactic

learning. A1B1C2 corresponds to target L4, whose map appears in (175) followed by a

stratified hierarchy that will generate it.



(174)

(175)

(176)

A1B1C2 in the hypothesis tree

HypO
Al .
{s(sY)}
AlB1. CALB2
I(qu)sl (1)s}
\IBIC2 \VIBICS
(sY)s] s(Y)s
L4
rl =/ss/ | 12=/Ys/ | 13=/sY/ | r4d=/YY/
[s(sY)] | [(Ys)s] | [(sY)s] [(sY)s] | sl =/-s/
[s(sY)] | [s(sY)] | [s(sY)] [s(sY)] |s2=/-Y/

{AFL, LMOST, *LAPSE}

. A2
ss(Y)]

145

FT-BIN >> PARSE-0 >> MAXSTRESS >> [AMB >> {FNF, RmosT} >>

L4 differs from L5 just in r3s1 and r4s1, where L4 parses iambs at the cost of shifting

the head-foot away from the right edge. While the precise details of the learner’s progress

through the data in A1B1C2 differ from those described in A1B1Cl1, the overview is

quite similar. Both language hypotheses must first use the contrast pair r1s1 [s(sY)], r2sl

[(Ys)s] to set features in rl1 and r2. Then, non-phonotactic ranking information following

from setting r2 enables the rest of the features to be set from single forms. Because this

language hypothesis offers no new insight into the CBL, the learning steps are described

in the outline in (177), followed by the final support, (178), ranking (179), and lexicon,

(180).



(177)

N —

Outline of learning A1B1C2

Single form learning fails to set any features
. Contrast pair learning

a.
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Set rl1 to /ss/ and 12 to /Y?/ using contrast pair rlsl [s(sY)], r2sl

[(Ys)s]

b. Add W-L pairs 6 and 7 from unfaithful mapping of 12 in 12s2 [s(sY)],

using markedness-low ranking.

Single form learning.
Add W-L pair 8 from error on r2s2 using BCD ranking.

Set r2 to /Y's/ and s1 to /s/ using 12s1 [(Y's)s]

Add W-L pair 9 from unfaithful mapping of sl in rlsl [s(sY)], using
markedness-low ranking.
Set 13 to /7Y/ using r3s1 [(sY)s].
Set r4 to /7Y/ using r4s1 [(sY)s].
All words pass error detection.

a.
b.
C.

d.
€.

(178) A1B1C2 final support; committed to [s(sY)], [(Ys)s] and [(sY)s]

Z 2 5‘; I 5 z

m ) > S O ‘¢

Morph. [ 22|21 2:7Z2|2 & 3

ERC# | word Input | Winner | Loser ABREE 5“ el B
a 2P| rlsl | fssY/ | V)] | (oo [w L | w wiwlt i L
b. 6 1282 | /Ys-Y/ | [sSY)] | [(Y)ss] [|W | W W L L
c. 7 | 282 |/YsY/| [ssY)] | [()(sX)]|W | L wi:wl]L | L
d. 1P| risl | /ss-Y/ | [ssY)] | [s(Y$)] w|w L . IL
e. 3P| risl | /ssY/ | [ssY)] | [(sY)s] W W L !L L
£ 4P| sl | /Yss/ | [(Ys)s] | [sGsY)] L L iw|wiw!
g. 5P| 13sl /sY-s/ | [(sY)s] | [s(Ys)] WIlL 'L |W W .
h. 8 1252 | /Ys-Y/ | [s(sY)] | [(Ys)s] W |w §L L §L
.9 | risl | Jsss/ | [sGsY)] | [(sY)s] W L !L L
(179) FT-BIN >> PARSE-0 >> MAXSTRESS >> [aAMB >> {RMOST, FNF} >>

{LMosT, AFL, *LAPSE}
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(180) A1B1C2 — Final lexicon

rl 12 3 4 sl s2
/ss/ | /Ys/ | /?Y/ | 17X/ | /-s/ | /-Y/

3.2.2 BRANCHES FROM A1B2

The preceding sections describe the learner’s progress through two branches extended
from AI1B1 after commitments to r3sl sYs. Both survive as complete language
hypotheses, A1IB1C1 and AIBIC2, corresponding to target languages L5 and L4,
respectively. This section follows the progress of A1B2, framed in (181). It is the third
language hypothesis surviving when phonotactic learning ends, and it will ultimately

yield a language hypothesis corresponding to target L6.

(181) A1B?2 in the hypothesis tree

Hypl

Al . . A2
{s(sY)| ss(Y)]

Al1B1.  AlB2

3.2.2.1 First pass: ri1s1 [s(sY)], r1s2 [s(sY)], r2s1 [(Y)ss], r2s2 [s(sY)], r3s1

sYs

When the learner first begins to learn underlying forms, this language hypothesis has
committed to [s(sY)] and [(Y)ss] — its point of difference with A1B1 — but has not yet

made a commitment for s¥s. Its support and current ranking by BCD are repeated below.
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(182) A1B2 support; committed to [s(sY)] and [(Y)ss]

Eleic 18 204
Morph. | Slel3| 2 52 2§ 3
ERC# | word | Input | Winner | Loser == = <A
a. 1P| rlsl |/ssY/ | [sG6sY)] | [s(Ys)] | W] L |WwW S L
b. 2P| rlsl /ss-Y/ | [s(sY)] | [(Y)(sX)] WIlW]L W L W
c. 3P| rlsl | /ssY/ | [sGsY)] | [(sY)s] wlLiwiLi |
d 4P| 1251 | /Ys-s/ | [(Y)ss] | [s(sY)] wlwiLiwiL!iL
(183) IAMB >> FNF >> MAXSTRESS >> {LMOST, RMOST, AFL, PARSE-c, FT-BIN,

*LAPSE}

AI1B2 is notably different from AIB1C1 and AIB1C2 because it allows for the
learner to set features as soon as single form learning begins, even before committing to
an interpretation for the third overt form. First, however, the attempts to set features in
rlsl [s(sY)] and rls2 [s(sY)] fail, just as in the other language hypotheses and for the
same reason: A1B2 will eventually branch and yield the grammar of a target language,
L6, and it happens that the test candidates for these words are mappings in that target. As
the current support of A1B2 is consistent with L6, the test candidates must be consistent
also. But at last the learner processes r2sl, and here A1B2’s commitment to [(Y)ss]
instead of the trochaic [(Ys)s] results in a lexically informative inconsistency. The three

test candidates of r2s1 appear below.

(184) Test candidates for 12s1 [(Y)ss]

/8s-s/ =2 [(Y)ss]
NY-s/ 2 [(Y)ss]
c. /Ys-Y/ 2 [(Y)ss]

o e
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The first candidate is harmonically bounded by the candidate parsing a left-aligned
iamb. The comparative tableau in (185) shows that no constraint prefers the test candidate
to that competitor; likewise, (186) shows that the second test candidate is harmonically
bounded by the same iambic competitor. These inconsistencies enable the learner to set

r2 to /Ys/ and to update the lexicon, (187).

(185) /ss-s/[(Y)ss] is harmonically bounded; sets r2 to /Y?/

Input | Winner | Loser
/ss-s/ | [(Y)ss] | [(sY)s]

= || FT-BIN
= || RMOST
*_APSE

MAXSTR
IAMB
LMosT
FNF

T || PARSE-o

=

(186) /Y'Y-s/[(Y)ss] is harmonically bounded; sets 12 to /Ys/

IAMB
MAXSTR

Input | Winner | Loser
/YY-s/ | [(Y)ss] | [(sY)s]

= || FT-BIN
= || RMOST
*APSE

LMosT
AFL
T || PARSE-c

=

(187) A1B2 lexicon updated for 12

rl 12 3 4 | sl | s2
[V IYs/ | 122 122\ -2 ) 1=

These features do not ever surface unfaithfully, but the learner receives new ranking
information anyway from an error detected on r2s2 [s(sY)] under ranking (183). The
violation tableau below includes the two candidates which best satisfy constraints in the
top three strata. The candidates conflict on the constraints of the bottom stratum, with

LMosT and AFL preferring the competitor (188)b to (188)a, which includes the
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committed output. By the CTie criterion, these candidates tie despite the fact that (188)b
incurs more total violations than (188)a. The learner adopts (188)b as an informative

loser and adds W-L pair 5 to the support, (189). The updated ranking appears in (190)

(188) Error in A1B2 for 12s2 /Ys-Y/[s(sY)]

slo %8 8 2 2 & %
=lzlsl3 2 58 £ £ &
Input | Output | = | = = A LA
a. /YsY/ syl o] 111 i0i1 17011
b. (Wss]J ol 11 ]loi2i0i2:i1:1
(189) A1B2 support updated after error on r2s2
. Gle & 2 8|9
<1 & £ S
Morph. = A 20 5] 305
ERC# | word | Input | Winner | Loser Sl &= Z AR R A P <
a 1P| risl | s/ | [ssY)] | [scys)] | w L |w L L
b. 2P| rlsl | /ss-Y/ | [sGsY)] | [(Y)(sX)] wWlwiL i w: L
c. 3P| risl | /ss-Y/ | [sGsY)] | [(sY)s] wlw: | L L
d. 4P| 1251 | /Yss/ | [(V)ss] | [s(sY)] wlrLiLitL Wi w
e. 5 252 | /Ys-Y/ | [sGsY)] | [(Y)ss] W W L L
(190) IAMB >> FNF >> MAXSTRESS >> {RMOST, PARSE-c, FT-BIN, *LAPSE} >>

{LmosT, AFL}

Because the features of the root r2 have already been set, there is only one test
candidate to evaluate for r2s2, with the feature value disparity in the suffix: /Ys-8/[s(sY)].
The tableau in (191) shows that this test candidate is inconsistent with W-L pair 4P,
which makes contradictory ranking requirements for its winner /Ys-s/[(Y)ss]. The

inconsistency allows the learner to set s2 to +stress, updating the lexicon to (192).
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(191) /Y's-s/[s(sY)] is inconsistent with A1B2
Morph. : z < 3 2 £ 5 2 E

ERC# | word | Input | Winner | Loser S E= ‘5 i A Cx a0 <
a. 4P| 12sl | /Ys-s/ | [(Y)ss] | [s(sY)] W L : L :L: W W
b. test | 12s2 | /Ys-s/ | [s(sY)] | [(Y)ss] LW W W L L
(192) A1B2 lexicon updated for s2

rl 2 | 3 | rd4 | sl | s2

(2201 /Ys/ | /22| /22| /-2 | I-Y/

Halfway into this first pass through the data in language hypothesis A1B2, the learner

has already set three features from single forms and added new ranking information. The

learner next observes r3sl sYs, for which no structural commitment has yet been made

and now error detection reveals that a committed interpretation is finally warranted. The

error detection input is /Ys-Y/, with all features set to mismatch their surface values. The

violation tableau in (193) includes the most harmonic candidates through the first two

strata. Candidate (193)a has the overt form sYs, matching the observed form, but it is less

harmonic than candidates (193)b,c because it receives an additional violation of

MAXSTRESS.
(193) R3s1 sYs fails error detection
2l 4 oz 2] g

sle %18 2. 8 £]8

2l Zls|l2 £ 5 231 %

Input Output | = | = A e | A<

a. /Ys-Y/|[(sY)s]| O 1 2 1:1:0:0]0:0

b. sV of1 1 ]oi1io0:i1 111

c. [(Y)ss]] o | 1 1|2 :i2:i1:i1]0:0
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Now the learner extends branches from A1B2. Each branch will inherit the
information gleaned from this round of single form learning. As the following sections
will show, the inherited support plus the ranking conditions imposed by each new
commitment will cause two branches to die immediately and allow only the branch

corresponding to L6 to survive.

3.2.2.2 A1B2C1 and A1B2C3

Language hypotheses A1B2C1 and A1B2C3, framed in the tree below, are the two

branches that prove inconsistent because of their commitments for s¥s.

(194) A1B2C1 and A1B2C3 in the hypothesis tree

_»___H ypl_
Al _— Tt~ A2
- -‘{“(“Y)]“ ..... ss(Y)]
‘q lBl '--—-——__--——— ---"’u.____.‘ AALI.B2
/(YS)-“’] (Y)ss]
'\l‘li,”fl '\”{"(_'3 A1B1C3  [A1B2C1 .\.IIJ;’("_’ A1B2C3)
A.‘[ —~~,| ,'~l 1,\] ,\:,I Q\_:I ,\:~| "\:’I
;) )

| S

A1B2C1 commits to the right-aligned trochaic interpretation of s¥s: [s(Ys)].
Together, the three commitments of this language hypothesis run the gamut of
possibilities: right-aligned iambic, [s(sY)]; left-aligned degenerate, [(Y)ss]; and now
right-aligned trochaic, [s(Ys)]. It is perhaps no surprise that this third and final

commitment makes the language hypothesis inconsistent.



153

Tableau (195) includes the W-L pairs added by error-driven learning after committing
to [s(Ys)]. The commitment initially leads to adding W-L pairs 6 and 7 using r3s1. Next,
the learner reviews the rest of the forms, which now all have committed structural
interpretations, checking for errors on the new ranking. Detecting an error on rlsl, the
learner adds W-L pair 8, then detects an error on r2s1. The resulting W-L pair 9 produces
the final inconsistency. MAXSTRESS prefers only winners, leaving the remaining
markedness constraints to be ranked. Of these, only RMOST, FT-BIN, and FNF prefer the

winners of pairs 5-8, but they prefer the loser in pair 9.

(195) A1B2C1 support; commitments to [s(sY)], [(Y)ss] and [s(Ys)] are

inconsistent
=4 . . b - . : .
2l 8 , & 2 _ o %
Morph. . S22 5 282 27
ERC# | word Input | Winner Loser : : : : : : :
a. 1P| rlsl | /ssY/ | [sGsY)] | [s(Ys)] | W . L W L
b. 2P| rlsl | /ssY/ | [s6O] [N WL -W: L W W: :L
c. 3P| rlsl | /ss-Y/ | [s(sY)] | [(sY)s] W] L W L : L
d. 4P| sl | /Yss/ | [(Y)ss] | [ssV)] [W|lwW: L w:L L: =
e. 5 | 122 | NsY/ | [s(sY)] | [(V)ss] LW L W w:.
f. 6 3sl | /sY-s/ | [s(Ys)] | [(sY)s] L . wW:L: = ‘W:L.:
g 7 3sl | /sY-s/ | [s(Ys)] | [(X)(Y9)] L LW iW:
h. 8 rlsl | /ss-Y/ | [s(sY)] | [(Xs)(Y)] W - WL W: W L
.9 | 121 | /Ys-s/ | [(Y)ss] | [(Ys)s] 'L {L!LiL W]

Whereas A1B2C1 is inconsistent due to the final combination of its structural
commitments, A1B2C3 is doomed simply on the basis of its commitment to [s(Y)s]. The
parsing of a degenerate foot may be optimal when right- or left-aligned, but not
otherwise; thus, this interpretation is harmonically bounded, and the learner rejects

A1B2C3. The pertinent W-L pair is the same as W-L pair 5P in (137) of section 3.1,
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which shows that this interpretation is harmonically bounded. The learner rejects

A1B2C3 after adding only five ERCs to its support.

3.2.2.3 A1B2C2

Finally, A1B2C2 is the branch that commits to [(sY)s], making it the language
hypothesis for target L6, repeated with a corresponding stratified hierarchy below. In
contrast to L4 and L5, this target prefers iambs over rightmost main stress. It parses a
degenerate foot at the left edge of r2sl, [(Y)ss], to satisfy this preference without

violating MAXSTRESS.

(196) L6
rl =/ss/ | 12=/Ys/ | 13=/sY/ | 4=/YY/
[s(sY)] | [(Y)ss] | [(sY)s] [(sY)s] | sl=/-s/
[s(sY)] | [s(sY)] | [s(sY)] [s(sY)] |s2=/-Y/
(197) IaAMB >> FNF >> MAXSTRESS >> {FT-BIN, RMOST} >> {PARSE-0, AFL,

LMosT, FNF, *LAPSE}

During phonotactic learning in A1B1 and A1B2, there was no commitment made for
sYs because the rankings always made at least one interpretation of the overt form
optimal. Within language hypothesis A1B2, that optimal interpretation was [(sY)s]. This
should be evident from reviewing the conclusions of the previous section. The degenerate
interpretation [s(Y)s] is harmonically bounded, and (195) shows that the trochaic
interpretation [s(Ys)] is inconsistent with commitments to [s(sY)] and [(Y)ss].
Consequently, when the learner commits to [(sY)s] now, the current ranking already

makes the interpretation optimal. The support and lexicon for this branch are inherited
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from A1B2 without any additions, and are included below along with the ranking derived

by applying BCD to the support.

(198) A1B2C2 support; committed to [s(sY)], [(Y)ss], and [(sY)s]

= = i z K =
sl |98 2 2 5|84
Morph. 2l Z| = - B S =
ERC# | word | Input | Winner | Loser S| &= ‘5 e Eiw ] 3 P <
a. 1P| rlsl /ss-Y/ | [s(sY)] [s(Ys)] WI]L|W L
b. 2P| rlsl | /ss-Y/ | [sGsY)] | [(Y)(sX)] wlwlwiLiw: L |
c. 3P| risl | /ss-Y/ | [sGsY)] | [(sY)s] wlwi! | LiL
d. 4P| r2s1 | /Ys-s/ | [(Y)ss] | [s(sY)] w|lL:!L:L Wi W
e. 5 252 | /Ys-Y/ | [s(sY)] | [(Y)ss] W' W W L L
(199) A1B2C2 lexicon
rl 12 3 | r4d | sl | s2
/2 IS/ 22| 12| -2 | 1Y
(200) IAMB >> FNF >> MAXSTRESS >> {RMOST, PARSE-c, FT-BIN, *LAPSE} >>

{LmosT, AFL}

Because A1B2C2 remains consistent after branching from A1B2, the learner can
begin the second pass through the learning data, starting again with rlsl. The first form
to set a feature in the newly extended branch is r2s1, whose unset feature is in the suffix.
The test candidate, /Ys-Y/[(Y)ss], is the loser of W-L pair 5, (198)e, and therefore

inconsistent with the support. The lexicon is updated with s1 set to —stress.

(201) A1B2C2 lexicon updated for sl

rl r2 r3 r4 | sl s2
221 IYs/ | /22| 1?22/ ] /-s/ | /-Y/
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Recall that although sl surfaces as +stress in rlsl [s(sY)], this mapping does not
count as unfaithful according to MAXSTRESS and the learner does not select it to learn
non-phonotactic ranking information from the low-markedness ranking; however, the
word does yield an error on the BCD ranking. The violation tableau in (202) includes the
most harmonic candidates through the first two strata: the two iambic candidates that also
best satisfy FNF by avoiding degenerate feet. The shaded cells reveal an unresolved
conflict between RMOST and *LAPSE in the fourth stratum, with RMOST preferring the
committed desired winner and *LAPSE its competitor. By the CTie criterion, these
candidates tie, and the learner adopts (202)b as a loser, adding the new W-L pair 6 to the
support for A1B2C2 in (203). In the updated ranking in (204), *LAPSE now occupies the

bottom stratum.

(202) Error in A1B2C2 for r1s1 /ss-s/[s(sY)]

Input | Output
a. /ss-s/ | [s(sY)]
b. [(sY)s]

= 1S | RMOST
— [— | PARSE-G

S |© | FT-BIN
< |— | LMOST

< |© | [AMB
— |— | FNF
S |© | MAXSTR
© [— | *LAPSE
< |—=| AFL
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(203) A1B2C2 support after error on rlsl

= = © i
=22 8 &3 . %
Morph. | 2|2 2 2|2 & &
ERC# | word | Input | Winner | Loser == e :
a. 1P| rlsl /ss-Y/ | [s(sY)] [s(Ys)] WI|]L|W L
b. 2P| rlsl | /ss-Y/ | [ssY)] | [(Y)(sX)] wlwlwirLiw]L !
c. 3P| risl | /ss-Y/ | [sGsY)] | [(sY)s] wilw! | LiL |
d. 4P| sl | /Yss/ | [(Y)ss] | [s(sY)] wlticio]|wiw,
e 5 | 1252 | /YsY/ | [sY)] | [(Y)ss] wiwiwloic
£ 6 | rlsl | /sss/ | [sGsY)] | [(sY)s] W L L:L
(204) IAMB >> FNF >> MAXSTRESS >> {RMOST, PARSE-c, FT-BIN} >> {LMOST,

AFL, *LAPSE}

Finally, the new ranking allows the learner to set features in the rest of the roots.
First, continuing to process the data in order, the learner can set r3 and r4 using r3s1 and
rd4sl, which now have a committed interpretation. These roots have the same
phonological behaviors, and the test candidates for 13 in (205) will suffice to demonstrate
those for r4. The first test candidate is consistent with the support, an unsurprising
conclusion as this is the canonical mapping of r4sl in the target L6. The second test
candidate is inconsistent with the support, as it is the loser of W-L pair 6. R3, and by the

same reasoning r4, must have its second syllable set to +stress in the lexicon, (206).

(205) Test candidates for r3s1

a. /YY-s/ 2 [(sY)s]
b. /ss-s/ 2 [(sY)s]
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(206) A1B2C2 — Lexicon updated for r3 and r4

rl r2 r3 r4 sl s2
22\ IYs/ | /12X | 12X | /-s/ | /-Y/

Before continuing, note here the importance of r3sl and r4s1 for learning L6. The
roots 13 and r4 behave alike, and differently from either rl or r2. This difference must be
reflected in the lexicon to explain the observed behaviors, but only a word containing the
unstressed suffix s1 can be informative about the underlying form of the roots. In L6 the
preference to right-align the head-foot means that the rightmost underlyingly stressed
syllable will surface faithfully with primary stress. Therefore, all words containing s2
surface as [s(sY)]. The test candidates for the roots in these words will themselves be
mappings in L6 and are necessarily consistent with the support. Branching and
committing to an interpretation of sYs for r3s1 and r4sl is not simply a consequence of
the learner encountering an uncommitted overt form during the non-phonotactic learning
stage, it is a crucial part of the whole learning process. Without a committed
interpretation, the learner cannot use these words to set features in r3 and r4 by
inconsistency detection, and without distinguishing r3 and r4 from the other roots in the

lexicon, the learner cannot successfully learn the target.

After setting these features, only features in r1 remain to be set. The learner returns to
the beginning of the data set, again observing rlsl, which has two unset features, both in
the root. The test candidate with the disparity in the first syllable, /Ys-s/[s(sY)], is
inconsistent because it is the loser in W-L pair 4P. This inconsistency allows the learner
to set the first syllable of r1 now to —stress. The second test candidate has its disparity in

the second syllable of rl: /sY-s/[s(sY)]. The following comparative tableau shows that
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this candidate, in (207)g, is inconsistent with the support because it has contradictory
ranking requirements with W-L pair 4P, in (207)d. Together, these two inconsistencies

enable the learner to update the lexicon in (208) by setting r1 to /ss/.

(207) A1B2C2 is inconsistent for r1s1 /sY-s/[s(sY)]

Eioig gl g
Morp . AR I
ERCH# word Input | Winner Loser == : CAe R <k
a 1P | risl | /ssY/ [ [s6V)] | [s(Y9] WL )w: - = o ¢ L
b. 2P | risl | /ss-Y/ | [ssY)] | [(Y)(sX)] wlw: wW:L W L:
c. 3P | risl | /ssY/ | [s(sY)] | [(sY)s] wWiwi i ipiL|
d. 4P | 12s1 | /Ys-s/ | [()ss] | [s(sY)] W L L :L:W:W:
e. 5 282 | /YsY/ | [sY)] | [(Y)ss] W IW WL L
£ 6 rlsl | /ss-s/ | [s(sY)] | [(sY)s] S W "L L :L
g. test | rlsl /sY-s/ | [s(sY)] | [(sY)s] L \\% L L L

(208) A1B2C2 lexicon updated for rl

rl 2 r3 r4 sl s2
/ss/ | /Ys/ | /Y] | 17X/ | /-s/ | I-Y/

To be sure that the language hypothesis is complete, the learner evaluates the error
detection candidates for the words containing unset features: r3s1, r3s2, r4sl, and r4s2.
These candidates, shown below, correspond to canonical mappings for r4sl and r4s2 in
the target language and are therefore consistent; again, the stress in the first syllable of a
root is not contrastive if the second syllable is stressed underlyingly. These features can

remain unset in the lexicon.
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(209) Error detection candidates for r3 and r4

a. /YY-s/ 2 [(sY)s] r3sl, rdsl
b. /YY-Y/ =2 [s(sY)] r3s2, r4s2

This language hypothesis has concluded learning. The final support and lexicon

remain as in (203) and (208), respectively.

3.3 CONCLUSION

The learning data in set 15 correspond to three target languages whose maps are
identical in their overt forms. Over the course of this simulation, the learner successfully
derives a consistent language hypothesis for each target. Four additional language
hypotheses are created and rejected for being inconsistent. The tree in (210) shows the

outcomes of all of the language hypotheses created during the course of learning.

(210) All language hypotheses

_-___HypO_-_
A1B1— T A1B2
/(YJS)SJ\ J(YJ)SS]\
'\l‘li_l L A '\’_]'( 2 XiBics  AaB2ci Al ‘\’ﬁ-"( 2 X1B203
s(Ys)] (sY)s] s(Y)s| s(Ys)| (sY)s] s(Y)s]

L5 L4 L6
The simulation demonstrates how relationships among commitments enable the
learner to simultaneously learn two kinds of hidden structure. Phonotactic learning

provides a solid base of ranking information derived when the learner commits to
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particular structural interpretations. In that learning stage, committing to an interpretation
in effect means committing to an identity mapping containing that interpretation, which
in turn means committing to the ranking conditions entailed by that mapping. The
interpretation commitment has significant and lasting consequences. For example, the
ranking information provided by structural commitments can affect when and how
features get set. A1B1C2 and A1B2C2 make the same commitments for ssY and sYs (the
Al and C2 commitments), but their different commitments for Yss means that only the
latter, which commits to [(Y)ss], can set all features by single forms. Because A1B1C2
lacks the ranking conditions entailed by that committed interpretation, the learner first

must use a contrast pair to draw out a lexically informative inconsistency.

Making structural commitments continues to be important in the non-phonotactic
learning stage. In order to set features of a morpheme in a given word using inconsistency
detection, that word must have a committed interpretation. A1B2 illustrates this point.
The lexicon must sufficiently distinguish the three root behaviors observed in the target
language, but only words containing the underlyingly unstressed suffix s1 will enable the
learner to set features in roots. Additionally, using inconsistency detection to set features
requires a full structural description: an input and a specific output, not just an overt
form. Therefore, all words containing s1 must have committed structural interpretations
in order for the learner to set the necessary root features and, ultimately, to successfully
learn the language. For A1B2, this requirement forces s¥s to finally receive a committed

interpretation during the non-phonotactic learning stage.
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The Stress system generates a typology of 97 languages represented by 61 sets of
learning data, including set 15, and the learner’s progress through this data set is typical
of the progress through the majority of the others. This simulation has demonstrated the
CBL’s successful use of committed information to exploit the mutual dependency
between structural interpretations and underlying forms. Moreover, the CBL has
succeeded at learning having processed and stored a reasonably small amount of
information. For the seven language hypotheses created, RCD applies only 44 times
(once for each ERC stored), and only 26 times within the three consistent language

hypotheses.
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4 PARADIGMATIC RELATIONSHIPS AND GLOBAL AMBIGUITIES

Languages can relate to one another in ways which may make it difficult for a learner
to distinguish between them. Identifying and understanding the relationships between
languages is crucial for ensuring that the learner has the means to successfully learn every
language in the typology. For example, a language that contains a subset of the forms of
another language gives rise to the “subset problem” mentioned in 1.2.1.3: positive
evidence cannot distinguish between the two such languages. Biased Constraint
Demotion (BCD) (Prince and Tesar 2004) or Low-Faithfulness Constraint Demotion
(LFCD) (Hayes 2004) ranking biases arise as a response to this problem. By applying a
low-faithfulness ranking bias, the learner enforces a more restrictive ranking until
positive evidence supports a less restrictive one and derives different rankings for the

subset language and its superset.

This chapter focuses on three other relationships between languages, including global
ambiguities and the heretofore unrecognized relationship of paradigmatic equality. The
chapter examines both how the CBL handles these relationships and what consequences

follow from the learner’s methods.

Sections 4.1 and 4.2 examine how paradigmatic relationships can interfere with the
Commitment-Based Learner’s standard learning procedures described in chapter 3.
Section 4.1 introduces paradigmatic equality, in which two languages share all of the
same morpheme behaviors. Paradigmatic equals are problematic because the learner
cannot derive the ranking information required to distinguish one language from another

using error-driven learning. In turn, inconsistency detection fails because of the missing
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ranking information. Once again, it is the interactions between hidden structures that pose
trouble for the learner, but paradigmatic equality presents a new twist: the learning data
alone cannot decide between competing language hypotheses. This section proposes a
procedure called ERC by Consistent Mismatch (ECM), which uses consistent surface-
mismatched candidates to extract additional ranking information, allowing the learner to

untangle the paradigmatic equals that both explain the data.

Section 4.2 discusses learning paradigmatic subsets, which contain a proper subset of
the morpheme behaviors of another language in the typology (Tesar, to appear).
Paradigmatic subsets likewise pose a problem for setting features by inconsistency
detection, because although the learner derives a restrictive ranking by applying BCD, the
support is nonetheless consistent with the less-restrictive superset language. Section 4.2
further shows that even if the learner acquires the ERCs to support the restrictive ranking,
inconsistency detection may still fail to set features in some paradigmatic subsets. For
these cases, the CBL learns the lexicon using the Fewest Set Features procedure (Tesar,

to appear).

With section 4.3, the focus turns to the learner’s response to languages that relate in
multiple ways to other languages in the typology. Section 4.3 presents a language that is
both a paradigmatic subset and a paradigmatic equal. This section demonstrates that the
separate learning complications of each relationship need and can be overcome using the
procedures described in 4.1 and 4.2. Section 4.4 is concerned with global ambiguities, in
particular with the interactions of global lexical ambiguity, evinced by paradigmatic

equals, and global surface ambiguity, in which two languages share the overt forms of all
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words. Section 4.4 shows that the Commitment-Based Learner will learn all globally
ambiguous languages from a data set, so that learning data for a language with a
paradigmatic equal will also yield language hypotheses corresponding to all globally

surface ambiguous counterparts of that paradigmatic equal.

Finally, section 4.5 considers some reasons and criteria for selecting a single language

hypothesis out of all the consistent branches when learning ends.

4.1 PARADIGMATIC EQUALS AND GLOBAL LEXICAL AMBIGUITY

Paradigmatic relationships are defined by the morpheme behaviors evinced between
two languages. This section will begin by first examining the maps and morpheme
behaviors of two languages that are paradigmatic equals, before launching into more

specific definitions of this relationship and global lexical ambiguity.

The central languages for this section are L75 and L76, which appear in (211) and
(213), each followed by a ranking that will generate it. Both languages require exhaustive
parsing, and their preference for left-alignment leaves the degenerate foot always at the
left edge. Suffixes are contrastive in these languages. Observe that one language is no
more restrictive than the other, as each has a phonotactic inventory of three forms:

[(X)EY)], [(Y)(sX)], and [(X)(Ys)].

(211) L75
rl =/ss/ | 12=/Ys/ | r3=/sY/ |4=/YY/
[X)(sY)] | [(NEX)] | [KY)] | [(NEX)] | s1=/-s/
[(X)(sY)] | [X)sY)] | [X)Y)] | [(X)EY)] | s2=/-Y/




(212)

{PARSE-c, *LAPSE} >> {AFL, FT-BIN} >> MAXSTRESS >> [AMB >>

{R™MOST, FNF} >> LMOST

(213) L76
rl=/ss/ | 12=/Ys/ | 13=/sY/ | t4=/YY/
[V | [DEX)] | [KD)(Ys)] | [XNYs)] | sl =/-s/
[(X)EY)] [ [V [ [X)EY)] | [X)(Y)] | s2=/-Y/
(214) { PARSE-c, *LAPSE} >> {AFL, FT-BIN} >> MAXSTRESS >> RMOST >>

{IaMB, LMOST} >> FNF

R4s1 manifests the only overt difference between the two languages. Its input, /YY-
s/, entails a violation of MAXSTRESS, and the languages crucially differ on which syllable
of the root r4 is realized faithfully. For L75, the ranking IAMB >> {RMOST, FNF} causes
the first syllable to surface faithfully in a unary head-foot at the left edge, and the
requirement for exhaustive parsing forces an iambic secondary foot to the right, yielding
[(Y)(sX)]. In this language, stress in the second syllable of the root is neutralized if the

first syllable is underlyingly +stress.

Morphemes that behave alike in L75 are grouped together in the chart below. L75
evinces two suffix behaviors and three root behaviors. Roots with an unstressed initial
syllable contrast for the values of the second syllable, yielding two of the three behaviors.
The third behavior is evinced by roots with a stressed initial syllable. Thus, 2 /Ys/ and r4

/YY/ behave alike, differently from both rl /ss/ and r3 /sY/.



(215) L75 — like morpheme grouped together

2=/Ys/
rl =/ss/ A= VY 3 =/sY/
(X)) | [D)EX)] | [(XNYS)] | sl =/-s/
[X)EYV] | [XDEY] | [X)EY)] [ s2=/-Y/
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By contrast, in L76 the ranking RMOST >> IAMB allows the output of /YY-s/ to

preserve stress on the second root syllable by parsing the head-foot as a trochee at the

right edge, with a secondary degenerate foot aligned to the left: [(X)(Ys)]. Like L75, L76

distinguishes two suffix behaviors and three root behaviors, shown in (216). The key

difference is that in L76 stress in the first syllable of the root is neutralized if the second

syllable is +stress underlyingly; thus, roots r3 /sY/ and r4 /YY/ behave alike, and

differently from both rl1 /ss/ and 2 /Ys/.

(216) L76 — like morpheme behaviors grouped together

rl=/ss/ | 12=/Ys/ rrj://ﬁsg{//
(XY | [NDEX)] | [(X)(Ys)] | s1=/-s/
[X)sY)] | [XXsY)] | [(X)EY)] | s2=/-Y/

A comparison of (215) and (216) reveals that the languages exhibit all the same

morpheme behaviors. In fact, if (215) were laid over (216), the languages would look

identical, as shown in (217).

(217) L75 and L76 overlaid

Iss/ /Ys/ /sY/
(/YY/L75) | (/YY/L76)

[X)(sY)] | [(V)EX)] | [XXYs)] | /-s/

[X)sY)] | [XDEY)] | [X)sY)] | /-Y/
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There is one final, and crucial, observation to be made about the morpheme behaviors
in these languages: they are identical in structural interpretations as well as overt

realizations. For this reason, L75 and L76 are paradigmatic equals.

(218) Paradigmatic equal
Languages L4 and LB are paradigmatic equals if the set of morpheme behaviors,

including structural interpretations, in L4 is identical to the set of morpheme
behaviors in LB.

What is remarkable about paradigmatic equals, and problematic for using
inconsistency detection to set features, is that from the learner’s perspective the data for
these different languages appear to be the same. This similarity is deeper than the
similarity evinced in chapter 3 by the globally surface ambiguous languages L4, L5, and
L6. Those languages have the same overt form for each morphological word, but the
overall morpheme behaviors differ when structural interpretations are included. For
paradigmatic equals, what differs are the specific input-output mappings associated with
each behavior. The problem for the learner using inconsistency detection now becomes
clearer: when different input-output mappings can produce the same behavior, there will
be no inconsistency. In short, paradigmatic equals are problematic because they exhibit

global lexical ambiguity, defined as in (219).

(219) Global lexical ambiguity

Languages L4 and LB are globally lexically-ambiguous if they have the same
morpheme behaviors, including structural interpretations, but differ only by which
underlying forms of the rich base produce which behaviors.
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Thus, L75 and L76 are globally lexically ambiguous because, while particular inputs
behave differently in the languages due to the differing rankings, the set of behaviors
themselves remains the same. This characteristic distinguishes global lexical ambiguity
as the term is applied here from other conceivable uses of the term. For comparison,
consider a language with fully predictable stress, like L78%, which maps all inputs of the
rich base to [(X)(sY)]. There is a sense in which the local lexical ambiguity of each word
— the uncertainty of the word’s underlying form — is a global ambiguity, because the
ranking permits each word to have any underlying form. L78 therefore could have a
lexicon that reflects the rich base or a lexicon in which every input simply matches the
surface form, or any lexicon between these extremes. However, L78 is not globally
lexically-ambiguous. It is the only language in which all outputs are [(X)(sY)]; there is no
way to achieve the same neutralization behavior with the ranking from a different skeletal
basis, regardless of the underlying forms assigned in the lexicon. The opposite is true for
L75 and L76: the ranking of one language will produce exactly the same behaviors as the
other language, as long as the lexicon changes also. It is this characteristic that so

complicates learning a paradigmatic equal.

As paradigmatic equals, L75 and L76 have a very special relationship to one another.
To review, they are not distinguished by restrictiveness, as they have the same
phonotactic inventory. For the same reason, they are not globally surface ambiguous: L75
and L76 do not include different interpretations of the same overt forms, they have the
same interpretations of the same overt forms. Yet, the simple identity of the phonotactic

inventories does not sufficiently characterize the paradigmatic equality relationship.

21,78 is discussed further in section 4.5.
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Consider language L65 below, which like L75 and L76 has an inventory consisting of

[(X)EY)], [(Y)(sX)], and [(X)(Ys)].

(220) L65
rl=/ss/ | 12=/Ys/ | 13=/sY/ |rt4=/YY/
[Y)(sX)] | [(YV)(X)] | [XYS)] | [(Y)(EX)] | s1=/-s/
[X)EY)] [ [)EX)] | [X)Y)] | [(Y)(sX)] | s2=/-Y/

L65 has contrastive stress and distinguishes three root behaviors, illustrated in (221).
Stress is contrastive for the initial root syllables, and contrastive for the second root

syllable only if the first is stressed. Thus, /Ys/ and /YY/ behave alike, differently from

both /ss/ and /sY/.
(221) L65 — like morpheme grouped together
rl =/ss/ rrj://;{;// 3 =/sY/
[(DEX)] | [NEX)] | [X)YS)] | sl =/-s/
[OEY] | [NDEX)] | [(X)Y)] [ s2=/-Y/

L65 therefore resembles L75 and L76 superficially, with its two suffix behaviors and
three root behaviors, and the same phonotactic inventory. Moreover, its morphemes
group together in just the same way as those in L75, with r2 and r4 behaving alike and r1
and r3 each evincing a different behavior. However, L65 is not the paradigmatic equal of
L75 or L76. Contrast the compressed morpheme behaviors of L75 and L76 repeated
below in (222), with those of L65 in (223). Differences in the surface alternation
behaviors, indicated by the shaded cells, clearly reveal that these languages are not

paradigmatic equals.
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(222) L75 and L76 compressed for r4

/ss/ /Ys/ /sY/

[XEY)] | [(V)(EX)] | [(X)(Ys)] | /-s/
[X)EY] [IEOEY] ] [X(Y)] | /-Y/

(223) L65 compressed for r4

/ss/ /Ys/ /sY/

[DEX] | [(NDEX)] | [X)(YS)] | /-s/
[(XEY)] IODEX)] | [(X)SY)] | /-Y/

In order to successfully learn either L75 or L76, the learner must set the values of all
contrastive features in addition to deriving an appropriate ranking. The features that must
be set for both targets include all the stress features in the suffixes and in r1. Additionally,
learning L75 further requires distinguishing r3 from 12 and r4, such as by setting both
features in r3 and the first syllable’s stress feature in r2 and r4 to produce the lexicon in
(224). Similarly, learning L76 requires distinguishing 12 from r3 and r4, which can be
accomplished by setting both features in 12 and the second syllable’s stress feature in r3

and r4, as in (225).

(224) Idealized lexicon for L75

rl 12 r3 r4 sl s2
/ss/ | IX? | /IsY/! | /XYY | /-s/ | /-Y/

(225) Idealized lexicon for L76

rl 12 r3 r4 sl s2
/ss/ | /Ys/ | /12X | /1?Y) | /-s/ | /-Y/
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To derive rankings that will generate each target, the learner needs to determine the
relative rankings of RMOST and IAMB, the conflict which distinguishes L75 from L76.
The only mappings that are informative about this conflict include the input /YY-s/.
Therefore, in order to learn the ranking, the learner must detect an error for a candidate

with the input /Y'Y-s/.

This mandate seems simple enough, but for paradigmatic equals, uncertainty about
the ranking and lexicon may not be so easily unraveled. Here the problem of global
lexical ambiguity emerges in full force. In this example, learning that /Y'Y-s/ is the input
for one of the observed outputs would lead to an informative error resolving the conflict
between RMOST and [AMB; however, the inconsistency-detection strategies for setting
features cannot ever learn this input. Because the test candidates evaluated to set the
remaining unset features all include the input /YY-s/, the learner needs to know the
relative ranking of RMOST and IAMB to detect the lexically-informative inconsistency.
Thus, the learner of this paradigmatic equal is trapped in a cycle of persistent uncertainty:
the correct underlying form is needed in order to detect the error that will illuminate the
missing ranking information, but that same ranking information is needed to detect the

inconsistency that will reveal the correct underlying form.

This cycle is a consequence of global lexical ambiguity: the data will support either
paradigmatic equal as an explanation and therefore cannot single out just one language as
correct. Completing learning requires that the learner commit to information that supports
one language hypothesis over another, but what kind of commitment, and on what

grounds? The remainder of this section works through the details of learning L75 to
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expose where global lexical ambiguity impedes further progress by inconsistency
detection. This section also proposes handling persistent uncertainty by using the
procedure ERC by Consistent Mismatch (ECM) to derive ranking information that will

make inconsistency detection again viable for learning.

4.1.1 LEARNINGL75

The learning data for L75 are shown below in the order the learner observes them in
this simulation. LgHyp75 is the corresponding language hypothesis for this target. The
support produced for LgHyp75 from the phonotactic data only is shown in (227), with the

ranking derived by BCD given in (228).

(226) L75 learning data

| XsYrlsl | XsYrls2 | YsX12sl | Xs¥12s2 | X¥s13sl | XsVr3s2 | YsXrdsl | XsY rds2 |

(227) LgHyp75 support from phonotactics

218l E|%8 &g
ERC# N\Ex?gf; . Input | Winner Loser & o % a § 5 5 é E
a. 1P| rlsl /ss-Y/ | [X)(sY)] | [s(Ys)] W LW W L
b. 3P| rlsl | /ss-Y/ | [C)GY)] | [sY)s] | W i L:iL|w]|L:w;: L
c. 2P| risl | /ssY/ | [X)GsY)] | [(Y)EX)] ’ ’ wlL!w!
d. 4P| 12s1 | /Ys-s/ | [(Y)sX)] | [(X)(sY)] wlwiL:
e. 5P| 13sl | /sY-s/ | [X)(Y9)] | [(V)EX)] wlrLiwiL]|w
£ 6P| risl | /ssY/ | [(OG6Y)] | [()(Xs)] wlriwiwl|L
g. 7P| 12sl /Ys-s/ | [(Y)(sX)] | [(Y)(Xs)] W L
(228) {PARSE-c, *LAPSE} >> {AFL, FT-BIN} >> MAXSTRESS >> {LMOST,

RMmosST, IAMB} >> FNF
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With seven W-L pairs added from phonotactic information, the learner has derived
many of the crucial ranking conditions of the target. In fact, this support enables the
learner to set the values of seven features in LgHyp75 from single forms once the

phonotactic learning stage ends. The resulting lexicon appears in (229).

(229) LgHyp75 lexicon

rl 2 3 r4 sl s2
/ss/ | /YY) | /XY | /-8 | /-Y/

During the process of setting features by single forms, the learner adds two new W-L
pairs to the support, in (230). W-L pair 8 in (230)h is added after the learner sets sl to /-s/
and detects an error on rlsl /ss-s/[(X)(sY)] using the BCD ranking from (228). This W-L
pair contributes the ranking condition RMOST >> LMOST. Then, after setting the first
syllable of r2 to +stress, the learner detects an error on 1252 /Ys-Y/[(X)(sY)]. This error is
detected under the ranking derived by applying the low-markedness bias to the first eight
W-L pairs. That low-markedness ranking appears in (231), and the resulting W-L pair 9
is shown in (230)c. Applying BCD to the support after adding these new W-L pairs

produces the ranking in (232).
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(230) LgHyp75 support updated during single form learning

ol = |
- AR IR N NI
ERC# wo(ffd. Input Winner Loser & a % = | = E = 5 E
a 1P| risl | fssY/ | [COGY)] | [s(Ys)] | W Llw LW L
b. 3P| rlsl | fss-Y/ | [0OGY)] | [sY)s] | W ! L |w|w! LiL
e 9 | w2 | sy | o] ey [wiw L i L
d. 2P| risl | /ssY/ | [X)GY)] | [(Y)(sX)] ! wlw: L
e. 4P| 12s1 | /Yss/ | [(V)(sX)] | [(X)(sY)] wlrL: w
£ 5P| 13sl | /sY-s/ | [(X)(Ys)] | [(Y)(sX)] wlw L]|L!w
g 6P| rlsl | /ssY/ | [COGY)] | [(Y)(Xs)] wlwiw|LiL
he 8 | risl | Jfsss/ | [OOGY)] | [(Y)sX)] , W | L
i 7P| sl | sy | [(DEX] | (D] | wl| L

(231) Low-markedness ranking detects error on 12s2 /Ys-Y/[(X)(sY)]

MAXSTRESS >> {PARSE-c, *LAPSE, AFL, FT-BIN, RMOST, [AMB} >> {LMOST,
FNF}

(232) LgHyp75 updated ranking

{PARSE-c, *LAPSE} >> {AFL, FT-BIN} >> MAXSTRESS >> {RMOST, [AMB} >>
{LMOST, FNF}

W-L pair 9 arises from a conflict among the markedness constraints grouped together
in the second stratum of the ranking in (231). The mapping tested, 12s2 /Ys-Y/[(X)(sY)],
incurs one violation of MAXSTRESS, but no other candidate incurs fewer; thus, any error
for this candidate must be due to conflict between markedness constraints. W-L pair 9
contributes a new disjunction — at least one of PARSE-c and *LAPSE must dominate both
FT-BIN and FNF — but this information does not alter the stratified hierarchy by BCD nor

indicate a conflict involving MAXSTRESS. At the end of single-form learning, the learner
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has acquired evidence from W-L pair 8 that RMOST must dominate LMOST, but, as

expected, has not determined the relative ranking of RMOST and IAMB.

The learner must still distinguish 2 and r4, which behave alike, from r3 in the
lexicon. Only words containing sl can be informative about alternations in these roots, as
root stress in the target L75 is neutralized when the suffix is underlyingly stressed. The
pertinent test candidates for r2 and r3 are shown in (233), with the syllable containing the

unset test feature outlined.

(233) Test candidates for unset features in r2 and r3

a. 1281 /YY-s/ 2 [(Y)(sX)]
b. 3s1 /YY-s/ > [(X)(Ys)]

Unfortunately, these candidates are testing which syllable of the root gets neutralized
for the input /YY-s/, and this is the very question whose answer distinguishes L75 from
its paradigmatic equal, L76. Neither candidate is informative. Candidate (233)a is
consistent with L75. Given the correct ranking, the stress feature of the second syllable of
r2 could remain unset in the lexicon of LgHyp75, as stress in the second syllable of the

root is contrastive in the target only if the first syllable is unstressed.

By the same reasoning, both stress features of r3 should be set in the lexicon to
distinguish it from r1 on the one hand and 12 and r4 on the other, yet candidate (233)b is
uninformative about r3’s remaining unset feature. Despite being inconsistent with the
target, this candidate is consistent with the support in (230) because the ranking of

RMOST and IAMB remains at issue. In other words, there is a language in the space of
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possible languages that meets the ranking conditions imposed by the support and by test
candidate (233)b; that language is L76. It is the existence of this paradigmatic equal that

prevents the learner from setting any of these unset features.

Leaving the features unset in the lexicon is not an option. R2s1 and r3s1 differ in their
surface forms, and their underlying forms must reflect that difference. The learner
determines that something more must be learned in this language hypothesis by
performing error detection tests on r2sl, r3sl, and r4sl. The violation tableau below
shows the result of error detection. While these words are different, the input that
maximally differs from the surface form is the same for each word, /YY-s/, and each
candidate with this input fails error detection. As shown in (234), RMOST and [AMB
conflict in the fourth stratum, with each preferring a different structural interpretation, as

expected.

(234) R2s1, r3s1, and r4s1 all fail error detection

S T |
Qoo CEZl el 5 &
v oAy I oM I
2z <2 RlElgi ]2 B
< =S | z . Z
Input Output | &~ * | <! = = E S AR
a. YY-s/|[[(MEX)]] o001 i1 1 f2y0fo0:2
b. [(X)Ys)] 0o f1 i1 1 o111

The error detection test exposes the primary problem with leaving these features
unset: what happens if the learner attempts to use the underlying form /YY-s/? The
current ranking will yield an error if given this input. In order to distinguish these words,
either r3 must be set to /sY/, allowing r2 and r4 to each leave one feature unset, or else

both 12 and r4 must be fully set in the lexicon, allowing 13 to leave one feature unset.
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The learner is at an impasse. Single-form learning cannot set a feature because the
test candidates are either consistent with the target language or its paradigmatic equal.
R2s1 and r3s] form a contrast pair, but it is not informative either. Regardless of where
the disparity is, the test candidate and its unchanged counterpart will be consistent with
one of the targets. For example, in (235)a, 12 contains the disparity, and the resulting two
candidates are consistent with L75. In (235)b, 13 contains the disparity, and the resulting

candidates are consistent with L76.

(235) Test candidates for contrast pair 12s1, r3s1

a. 1281 /YY-s/ 2 [(Y)(sX)]
r3s1 /sY-s/ 2 [(X)(Ys)]

b. 12sl /Ys-s/ 2 [(Y)(sX)]
r3s1 /YY-s/ =2 [(X)(Ys)]
It is clear that inconsistency detection can do no more to set features until the

language hypothesis receives new information.

4.1.2 ERC BY CONSISTENT MISMATCH

The learner has already extracted all of the ranking information available from error-
driven learning and all of the lexical information available from inconsistency detection.
The data cannot provide any other information by these methods. This section offers
another source of ranking information, a consistent mismatch candidate, such as those in
(233), and introduces ERC by Consistent Mismatch (ECM) as the procedure for

procuring this information.
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Using the test illustrated in (234), the learner has detected errors on the mismatch
candidates of r2s1, r3s1, and r4sl, in which the sole unset feature of each word is set to

mismatch its surface form. These are minimal mismatch candidates, as defined below.

(236) Minimal mismatch candidate
A minimal mismatch candidate includes exactly one unset feature whose

underlying value mismatches its surface value; all other unset features in the candidate
match their underlying values to their surface values.

Failing error detection indicates that the ranking must be refined, remaining unset
features must be set in the lexicon, or both. Additionally, the learner has determined that
these same mismatch candidates are consistent, as the candidates in (233) have failed to
yield any inconsistency to support setting the remaining unset feature in either form.
These facts offer a solution to the problem of persistent uncertainty. By adopting one of
these mismatch candidates as a winner, the learner can be certain to identify new ranking
information consistent with the current support. This information will allow the leaner to
disambiguate the data of the paradigmatic equals enough to continue learning using the
routine error- and inconsistency-detection procedures described in chapters 2 and 3.

Pseudocode for the ECM procedure is given below.
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(237) ERC by Consistent Mismatch (ECM) procedure™*

DEF ECM(lang hyp)
FOR each word in lang hyp that fails error detection
Create the minimal mismatch candidates for the word*
FOR each minimal mismatch candidate
IF the minimal mismatch candidate is consistent THEN
IF the minimal mismatch candidate adds a new ERC THEN

Commit to this mapping
Update lang hyp

BREAK
ENDIF
ENDIF
ENDFOR
ENDFOR

END

In LgHyp75, the words r2s1, r3s1, and r4s1 all fail error detection. Following the
procedure in (237), the learner determines that the mismatch candidate /YY-s/[(Y)(sX)]
derived from r2s1 (or r4sl) is consistent. The error anticipated by the CTie in (234) now
contributes W-L pair 10 in (238)i, which resolves the ranking of RMOST and IAMB. The

new stratified hierarchy, (239), matches the stratified hierarchy of L75, repeated in (240).

% This procedure is a simplification of several different methods included in the actual Ruby code given in
Appendix B.

> See 4.1.3and 4.3.3 for discussion of using maximal versus minimal mismatch candidates.
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(238) LgHyp75 support updated by consistent mismatch candidate
YY-s/[(Y)(sX)]
. . o .
ERC# \A(/);-I[')d. Input Winner Loser > a % AR 5“ L% 5
a. 1P| risl | fssY/ | [OGY] | [s(Ys)] | W i L w]|w L
b. 3P| risl | /fssY/ | [OGY)] | [sY)s] | W | LiL|W wiL|L
. 9 | 22 | /sy | (06| [sesY)] | Wi w L L
d 2P| rlsl | sssY/ | [00GY)] | [(Y)X)] | | w W | L
e. 4P| 12sl /Ys-s/ | [(Y)(X)] | [(X)(sY)] W L \\%
f. 5P| r3sl /sY-s/ | [(X)(Ys)] | [(Y)(sX)] WIL|W WIlL
g. 6P| rlsl /ss-Y/ | [(X)(sY)] | [(Y)(Xs)] wlwlwiL]|L
h. 7P| 12sl /Ys-s/ | [(Y)(X)] | [(Y)(Xs)] \\% DL
i 10| sl | /YY-s/ | [(V)EX)] | [(X)(Ys)] wlL ! L|w
j. 8 rlsl /ss-s/ | [X)EY)] | [(Y)(sX)] W L
(239) LgHyp75

{PARSE-c, *LAPSE} >> {AFL, FT-BIN} >> MAXSTRESS >> [AMB >> {RMOST,
FNF} >>LMOST

(240)

L75

{PARSE-c, *LAPSE} >> {AFL, FT-BIN} >> MAXSTRESS >> [AMB >> {RMOST,
FNF} >>LMOST

This ranking allows the learner to complete the language hypothesis. The test

candidate for r3sl1, /YY-s/[(X)(Ys)], is inconsistent with the new support — in fact, it is

the loser of W-L pair 10. The test candidates for r2s1 and r4sl are consistent, as their

mappings are identical to the winner of W-L pair 10. The updated lexicon, (241), now

matches the idealized lexicon for L75 from (224), repeated below.
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(241) LgHyp75 lexicon

rl r2 3 r4 sl s2
Iss/ | /Y | /sY/ | /XYY | /-s/ | /-Y/

(242) Idealized L75 lexicon

rl r2 r3 r4 sl s2
Iss/ | /Y | /sY/! | /XYY | /-s/ | /-Y/

By adopting /YY-s/[(Y)(sX)] as a winner, the learner in effect resolves that the
learning data are from target L75; however, the learner has no reason a priori to adopt
one consistent mismatch candidate over another. These learning data are globally
lexically-ambiguous between a solution corresponding to L75 and one corresponding to
L76. Therefore, the learner could just as well have selected the other consistent mismatch
candidate from (233), /YY-s/[(X)(Ys)], corresponding to r3sl. In that case, the final

language hypothesis would correspond to L76.

The support in (243) derives from this alternative solution. The new W-L pair in this
support, (243)h, commits to /YY-s/[(X)(Ys)] as a winner, and from the CTie error
illustrated in (234) adopts /YY-s/[(Y)(sX)] as its loser. This alternative W-L pair 10
entails that RMOST must dominate IAMB. Applying BCD to the support produces a same
stratified hierarchy, (244), for this alternative language hypothesis that matches the

ranking of L76 given in (214).
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(243) Alternative LgHyp75 support

Sisl iz &5 AR
22 2R\ S o | =
ERC# N\fvogfél . Input Winner Loser & a Lé 2 § 5 é 5 E
a 1P| risl | fssY/ | [COGY)] | [s(Ys)] | W Llw W | L
b. 3P| rlsl | fss-Y/ | [0OGY)] | [sY)s] | W ! Lo w|w L L
e 9 | w2 | sy | o] ey [wiw L i L
d. 4P| 12s1 | /Ys-s/ | [(Y)sX)] | [(X)(GsY)] ! wl|L LW
e. 2P| rlsl | /ssY/ | [COGY)] | [()(sX)] wlw DL
£ 5P| 13sl | /sY-s/ | [(X)(Ys)] | [(Y)(sX)] wlwlL:L|WwW
g. 6P| rlsl /ss-Y/ | [(X)(sY)] | [(Y)(Xs)] Wl W W L|L
h. 10 | sl | /YY-s/ | [X)(Ys)] | [(V)(sX)] wlL L|w
i 8 | rlsl | /ss-s/ | [(X)GY)] | [(Y)(sX)] W DL
i 7P| 12sl | Yss/ | [O)X)] | [0Y)(Xs)] : : W | L
(244) { PARSE-G, *LAPSE} >> {FT-BIN, AFL} >> MAXSTRESS >> RMOST >>

{IAMB, LMOST} >> FNF

This alternative support leads to alternative lexical information. This time, the test
candidates for r2s1 and rdsl, /YY-s/[(Y)(sX)], are inconsistent, enabling the learner to set
both roots to /Ys/ in the lexicon. Now the unset feature in r3 can remain unset. The final

lexicon appears in (245).

(245) Alternative LgHyp75 lexicon, corresponding to L76

rl 12 r3 4 sl s2
/ss/ | /Ys/ | /?Y/ | /Ys/ | /-s/ | /-Y/

4.1.3 ASSESSING ECM
To review, the learner is unable to set all necessary features by inconsistency
detection because the crucial ranking and lexical information each depends on knowing

which output the input /YY-s/ maps to in the target language. By committing to either
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consistent minimal mismatch candidate as a winner, the learner takes an uninformed
stand on the output and forces the acquisition of new ranking information that resolves
the conflict between RMOST and IAMB. The final lexical information follows as a result,

regardless of which way the conflict is decided.

ECM is successful here, but it makes a strong and potentially dangerous departure
from other methods incorporated in the CBL by requiring that the learner commit to
uncertain information. Consider how the CBL handles uncertainty otherwise. To resolve
structural uncertainty, the CBL applies the Inconsistency Detection Learner, or IDL, and
creates language hypothesis branches. Although the learner cannot be certain that a
particular branch is correct for the target, as long as every possible interpretation is
included among the branches the learner can be certain that some branch is correct for the
target. To resolve lexical uncertainty, the CBL applies the Output-Driven Learner (ODL).
The learner can be certain that a feature value set by inconsistency detection could not be
set to any other value and remain consistent with the language hypothesis. By contrast,
the learner cannot be certain that the consistent mismatch candidate is a winner in the
target language. It is this very uncertainty — that the target could have a different winner
for that mismatch input — which provokes the learner to commit to the ranking conditions

imposed by a consistent mismatch candidate in the first place.

The danger of making an uncertain commitment is that it could be inconsistent with
information learned later and, lacking the insurance of branching, the learner might fail to
derive any language hypothesis at all consistent with the observed data. The risk depends

on the unresolved conflicts remaining when the learner selects a consistent mismatch
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candidate for inclusion in the support. The learner adds W-L pairs to the support only as
needed to prevent errors, and as a result the support may not include all of the ranking
conditions entailed by its winners. Based on this incomplete information, a mismatch
candidate could be consistent with the current support even though it is inconsistent with
the full set of ranking conditions entailed by the other words. A later round of error-

driven learning would reveal the fatal inconsistency.

Although the CBL avoids branching as a method of learning underlying forms,
branching could offer a solution to the problem described above. A consistent mismatch
candidate adds lexical information indirectly, by adding ranking information that
contributes to lexically-informative inconsistencies. Viewed in this way, adopting a
consistent mismatch candidate as a winner is not unlike choosing a structural
interpretation for an overt form and adopting its identity map as a winner during
phonotactic learning: in both cases, the learner commits to an input-output mapping
without knowing for certain that the mapping is consistent with the target language or
even with all the ranking conditions entailed by the other committed mappings. Yet, this
approach to phonotactic learning is tenable because the learner simultaneously evaluates
all possible interpretations in separate language hypotheses, and if an interpretation is
consistent with the prior commitments, the learner will find it. Similarly, extending
branches for each consistent mismatch winner might enable the learner to derive at least

one consistent language hypothesis for the data. For the example described in this
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section, by branching the learner would ultimately derive language hypotheses

corresponding to both L75 and its paradigmatic equal, L76.%°

Setting aside this concern over making an uncertain commitment, there is also a
question to ask about the implementation of ECM; specifically, what effect, if any, would
choosing a maximal mismatch candidate have on learning with ECM? A maximal

mismatch candidate is defined as in (246).

(246) Maximal mismatch candidate

A maximal mismatch candidate has surface-mismatched underlying values for all
unset features.

To learn L75, the learner commits to the consistent minimal mismatch candidate —
one like a test candidate used to set a feature by inconsistency detection. In an output-
driven map, committing to a mismatch candidate entails a commitment to all mappings
with inputs more similar to the output. Committing to a minimal mismatch candidate is
therefore a conservative choice, while the aggressive choice is to commit to the maximal
mismatch candidate. The advantage of the aggressive choice is that it affords the learner
all of the ranking information of these entailed mappings, but this could be a
disadvantage if later information should reveal that only some of those mappings should

be consistent.

*® The branching procedure would need to be sensitive to the ranking information imparted by the ERCs to
prevent the creation of identical branches. In LgHyp75, consistent mismatch candidates could be
derived from r2s1, r3sl1, and r4s1, but those derived from r2s1 and r4s1 would add identical W-L pairs
and therefore yield identical branches. Instead of branching for each consistent mismatch candidate,
then, the branching procedure could instead create branches for each unique ERC derived from
consistent mismatch candidates.
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For LgHyp75 and LgHyp76, these choices happen to be identical: the maximal
mismatches have only the one disparity that the minimal mismatches have. However,
there are nine pairs of paradigmatic equals generated in the Stress system, and for some
of these, the aggressive and conservative options differ. The learner can safely commit to
the aggressive, maximal mismatch candidate in each of these cases, but these are not

strong evidence that the aggressive choice is always safe, nor even warranted.

For example, consider the paradigmatic equals L39 and L51. Both languages parse
only binary trochees, but they differ on the default alignment of the head-foot: L39 aligns
the head-foot to the right, L51 to the left. Maps and stratified hierarchies by BCD for

each language appear below. The shaded cells indicate the default behavior in each map.

(247) L39
rl =/ss/ | 12=/Ys/ |13=/sY/ | r4d=/YY/
[s(Ys)] | [(Ys)s] | [s(Ys)] | [s(Ys)] sl =/-s/
[s(Ys)] | [(Ys)s] |[s(Ys)] | [s(Ys)] s2=/-Y/
(248) {FNF, FT-BIN} >> {IAMB, PARSE-G} >> MAXSTRESS >> {RMOST,

*LAPSE} >> {AFL, LMOST}

(249) L51
rl =/ss/ | 12=/Ys/ | 13=/sY/ | 4=/YY/
[(Ys)s] | [(Ys)s] | [s(Ys)] |[(Ys)s] sl =/-s/
[(Ys)s] | [(Ys)s] | [s(Ys)] [[(Ys)s] s2=/-Y/

(250) {FNF, FT-BIN} >> {IAMB, PARSE-G} >> MAXSTRESS >> {AFL,

LMOST}>> { RMOST, *LAPSE}
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Suppose the learner has received the data of L39.*” After phonotactic learning, the
support appears as in (251). At this point, the learner reaches the familiar impasse of
paradigmatic equals. The support has an unresolved conflict among the constraints in the
bottom stratum, but the known data cannot resolve it. The lexicon, in which all features
are currently unset, (252), requires that both features of 12 be set to distinguish it from the
other roots, and for the remaining roots to each set one feature to distinguish themselves
from r2; however, the unresolved conflict in the ranking prevents the necessary lexically-
informative inconsistencies. Because neither root behavior is yet distinguished in the
lexicon for any root, all words currently fail error detection. The learner therefore can
now apply ECM to find additional ranking information from a consistent mismatch

candidate.

(251) LgHyp39 support

2 180 Bl s s

Morph sis|Zig|ZlE ¢ 2 ]

ERC# | word | Input | Winner | Loser el Bl ol R
a. 2P| rlsl | /sY-s/ | [s(Ys)] | [V)(Xs)] | W g WL g WL g W g g

b. 1P| risl | /sY-s/ | [s(Ys)] | [s(sY)] W LW : : W

c. 3P| risl |/sY-s/ | [s(Ys)] | [(Ys)s] ! ! WILIiWiL W

d. 4P| 12s1 | /Ys-s/ | [(Ys)s] | [s(Ys)] W lwiL i w:L

(252) LgHyp39 lexicon

rl 12 r3 4 | sl | s2
22V 122 1221 122 1= ] -2

27 Because L39 is a paradigmatic subset as well as a paradigmatic equal, it is discussed in detail in 4.3.
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Since all words fail error detection, consider first the maximal mismatch of r1sl, /Ys-
Y/ = [s(Ys)], shown as the winner in (253)c. This mapping incurs an additional violation
of MAXSTRESS than does the loser /Ys-Y/ = [(Ys)s]. As a result, the W-L pair is

inconsistent with W-L pairs 3P and 4P, as shown in (253).

(253) Maximal mismatch rls1 /Ys-Y/ - [s(Ys)] is inconsistent

12 Bl 2 s

Morph. Tisl2iE|z|E s 2 3

ERC# word | Input | Winner | Loser [ & | = | & — ol P
3P rlsl /sY-s/ | [s(Ys)] | [(Ys)s] | WIlL W L W
4P | 12s1 | /Yss/ | [(Ys)s] | [s(Ys)] i wlwi!L i w!L

c. test| rlsl /Ys-Y/ | [s(Ys)] | [(Ys)s] LlLiLiw:iw

The maximal mismatch of r2sl is /sY-Y/ = [(Ys)s], and the tableau in (254)

demonstrates that this mapping is inconsistent with the current support for the same

reason as above.

(254) Maximal mismatch r2s1 /sY-Y/ = [(Ys)s] is inconsistent

z f_] ! 5 = E 2

ERC# | word | Input | Winner | Loser [ & ! = | & — o LS
3P | rist | /sY-s/ | [s(YS)] | [(Ys)s] | wlriwioiw

. 4P r2sl /Ys-s/ | [(Ys)s] | [s(Ys)] Wi W L \\% L
c. test| r2sl | /sY-Y/ | [(Ys)s] | [s(Ys)] ! Llw:!L :w:L

Because inconsistent W-L pairs cannot be productively added to the support, these
maximal mismatch candidates have provided no help for learning the language, but the
minimal mismatch candidates for these words turn out to be more informative. The

complete lexical space for rlsl appears below, with the minimal mismatch candidates in
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the second row. By comparison with the map of L39 in (247), it is clear that any of the

minimal mismatch candidates will be consistent: each of the minimal mismatch inputs

maps to the output [s(Ys)] in L39.

(255) Lexical space of rlsl

7N
-
-
7N
| -
I
Ry

,\
-
~ N
N
-
-
]
|
\/
-
.

The tableau in (256) includes the updated support with a minimal mismatch
candidate, /ss-s/[s(Ys)], added as W-L pair 5 in (256)e. The ranking in (257) now

matches the target’s ranking; the minimal mismatch candidate has correctly resolved the

conflict between RMOST, *LAPSE, LMOST and AFL.
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(256) LgHyp39 support updated with minimal mismatch candidate
| | < |
Morph. N B S5 3
ERC# | word | Input | Winner | Loser 2 e 5] = 5 px | A<
a. 2P| rlsl | /sY-s/| [s(YS)] | [X)] | W | W | L W w: L
b. 1P| risl | /sY-s/ | [s(Y9)] | [s(sY)] W L w W §
3P| rlsl | /sY-s/ | [s(Ys)] | [(Ys)s] ! ! wlwiw|LiL
d. 4P| 12s1 | /Ys-s/ | [(Ys)s] | [s(Ys)] wW|lL: L|W:' W
e. 5 rlsl | /ss-s/ | [s(Ys)] | [(Ys)s] W:!W]|L:L
(257) {FNF, FT-BIN} >> {IAMB, PARSE-6} >> MAXSTRESS >> {RMOST,

*LAPSE} >> {AFL, LMOST}

Of course, there is a solution consistent with L39’s paradigmatic equal, L51, which
the learner could derive instead by also finding a consistent minimal mismatch candidate
containing r2, such as r2s1 [(Ys)s]. The minimal mismatch candidates of r2s1 include the
inputs /ss-s/, /YY-s/, and /Ys-Y/. Each of these candidates are consistent with L51, as

illustrated by the shaded cells of the map of that language, repeated below.

(258) L51
rl =/ss/ | 12=/Ys/ | 13=/sY/ |rd=/YY/
[(Ys)s] | [(Ys)s] |[s(Ys)] |[(Ys)s] sl =/-s/
[(Ys)s] | [(Ys)s] | [s(Ys)] |[(Ys)s] s2=/-Y/

Adopting one of these minimal mismatch candidates will therefore result in a

language hypothesis consistent with L51. In the alternative support for LgHyp39 below,

W-L pair 5 in (259)e includes a minimal mismatch candidate for r2s1. Committing to this

candidate resolves the conflict among the four lowest-ranked constraints so that AFL and
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LMOST dominate RMOST and * LAPSE. The final stratified hierarchy for this alternative

appears in (260).

(259) Alternative LgHyp39 updated support

z E E = = 9
ERC# | word | Input | Winner | Loser aElal Balle <A D ¥
a. 2P| rlsl | /sY-s/ | [s(YS)] | [(V)Xs)] | W i W[ L | w LW
b. 1P| risl | /sY-s/| [s(Ys)] | [s(sY)] LW LW ! LW
c. 3P| rlsl |/sY-s/ | [s(Ys)] | [(Ys)s] ’ ' wlLiL|wiw
d. 4P| 12s1 | /Ys-s/ | [(Ys)s] | [s(Ys)] Wl lwW:W]|]L:L
e. 5| 12s1 | /ss-s/ | [(Ys)s] | [s(Ys)] W wW|L:L

(260) {FNF, FT-BIN} >> {IAMB, PARSE-6} >> MAXSTRESS >> {AFL,
LMOST}>> { RMOST, *LAPSE}

Learning L39 and L51 provides some evidence in favor of the conservative choice of
mismatch candidates, in that only the minimal mismatch is consistent with the
information derived from phonotactic learning. In general, a strategy that commits the
learner to fewer entailed mappings would be safer than the alternative, and for that
reason, pursuing ranking information from minimal mismatch candidates is preferable to
using maximal mismatch candidates instead. However, it may be that the choice makes
no substantive difference. Section 4.3 will continue the discussion of learning L39, which
is a paradigmatic subset in addition to being a paradigmatic equal. As a paradigmatic
subset, learning L39 will require the use of Fewest Set Features, a procedure explicitly
for setting features when inconsistency detection fails. Fewest Set Features must be

employed to fully learn the lexicon, regardless of when the complete ranking conditions
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are learned. Section 4.3 will show that the maximal mismatch candidate by ECM can be

informative, if the learner has first set a feature in r1, r3, or r4 using Fewest Set Features.

This section has exposed the phenomenon of paradigmatic equality and illustrated the
difficulties it poses for a learner that relies on the ODL’s inconsistency detection
procedures to set features, yet much more remains to be learned. The ECM procedure
offered here may be a reliable last-resort mechanism for adding ranking information if it
incorporates a branching procedure also, but without knowing more about paradigmatic
equality in general it is unclear how successful it can be overall. How paradigmatic
equality interacts with other language relationships is another important area for future
investigation. A language can have multiple different relationships to other languages in a
typology, and a solution aimed at untangling the paradigmatic equality relationship may

not fully address these others, as the following section will show.

4.2 PARADIGMATIC SUBSETS

The Stress typology also contains a number of paradigmatic subset languages (Tesar,
to appear). Like a paradigmatic equal, all of the paradigmatic subset’s morpheme
behaviors are shared with another language in the typology; however, the paradigmatic

subset is a proper subset, making it a special example of restrictiveness.

The familiar “subset problem,” briefly discussed in 1.2, concerns a language whose
forms are a subset of another language in the typology. The learner lacks the negative
evidence that a form in the superset is not allowed in the subset, and the more restrictive
ranking conditions of the subset language cannot be derived by error-driven learning. As

described earlier, one solution to this problem is to apply a low-faithfulness ranking bias,
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such as BCD, to the support. The bias maintains a more restrictive ranking until positive

evidence supports a less restrictive one.

The ranking bias is useful for error-driven learning of the ranking, but it cannot
address the problem of learning the underlying forms of paradigmatic subsets. The
Output-Driven Learner (ODL) sets a feature’s value using inconsistency detection.
Because the support derived from the subset’s learning data is consistent with the
superset language as well, the learner can only set features from test candidates that are
inconsistent with both the subset target and its superset. The test candidates for other
feature values may indeed be inconsistent with the subset target, but without more
ranking knowledge to distinguish the subset from the superset, these features cannot be
set by inconsistency detection. This is the problem of learning underlying forms in the
paradigmatic subsets in Tesar’s Stress/Length typology (to appear): the existence of a
superset language stymies the ODL from setting features by inconsistency detection. The
paradigmatic subsets in the Stress typology further demonstrate that it may not be
possible to set some features by inconsistency detection even if all the ranking conditions

of the subset language were known.

For example, L83 is a paradigmatic subset language in the Stress system whose
features cannot all be set by inconsistency detection. The map of L83 appears in (261),
and a stratified hierarchy derived by applying BCD to the skeletal basis of L83 is given in
(262). L83 has leftmost main stress and exhaustive parsing, and it is by default trochaic.

Suffixes in L83 neutralize in all environments, as do rl, 12, and r4, due to the ranking
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LMOST >> MAXSTRESS. Because MAXSTRESS dominates both FNF and AFL, 13 contrasts

with the other roots and surfaces faithfully in an iambic foot at the left edge.

(261) L83

rl=/ss/ |12=/Ys/ |3=/sY/ |t4=/YY/

[(NDX)] | [DXs)] | [(Y)X)] | [(Y)(Xs)] | s1 =/-s/
[(NDX)] | [DX$)] | [X)] | [V)Xs)] | 2 =/-Y/

(262) {PARSE-G6, LMOST, *LAPSE} >> FT-BIN >> MAXSTRESS >> {FNF, AFL}
>> {[AMB, RMOST }

L83 is a paradigmatic subset of L82, in (263). L82 includes the phonotactic inventory
of L83 plus one additional form, for r1s2 [(X)(sY)], shaded below. This language also
has leftmost main stress and exhaustive parsing and is by default trochaic, but it differs
from L83 because it will allow a rightmost head-foot in order to satisfy MAXSTRESS. The
stratified hierarchy in (264) shows that MAXSTRESS dominates LMOST, allowing the
underlying stress of suffix s2 to surface faithfully in the context of r1, whose syllables are
both underlyingly —stress. As a result, rl behaves differently from r2 and r4, which have
underlyingly +stress first syllables, and from r3, whose first syllable is —stress also but
whose second syllable is +stress. Thus, L82 has two suffix behaviors and three root

behaviors.

(263)  L82

rl=/ss/ |2=/Ys/ |3=/sY/ |r4=/YY/

[(N(Xs)] | [V)Xs)] | [YIX)] | [(V)(Xs)] | s1=/-s/
[GOEY] | [(NDXs)] | [YIX)] | [)(Xs)] |82 =/-Y/




(264)

{PARSE-c, *LAPSE} >> FT-BIN >> MAXSTRESS >> LMOST >> {FNF,

AFL} >> {IAMB , RMOST }
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The restrictiveness relation between L83 and L82 is evident by comparison of the

phonotactic inventories, but the paradigmatic subset relation requires consideration of the

morpheme behaviors in each language. In L83, s1 and s2 behave alike, as shown by their

grouping in the description of the language in (265). This suffix behavior is identical to

the behavior of sl in L82, indicated by the shaded cells in (266). Thus, L83 is a

paradigmatic subset of L82.

(265)

(266)

L&3 - one suffix behavior

rl=/ss/ | 12=/Ys/ | 13=/sY/ |rt4=/YY/

(VXS] | (V&S] | (V0] | (DX | S
L82 (L83 subset shaded)

rl =/ss/ |12=/Ys/ |13=/sY/ |t4=/YY/

[(VXs)] [ [VDEX)] | [(sYIX)] | [(Y)(Xs)] | sl =/-s/

[V | [NDEX)] | [EX)] | [(YIXS)] | s2=/-Y/

However, L83 can be compressed further from (265). It has only two root behaviors:

one for 13, and one for every other root. The compression of these morpheme behaviors

means that with the correct ranking, the stress features of the suffixes can remain unset in

the learned lexicon and the roots rl, r2 and r4 each need only set the single feature that

will distinguish them from r3. R3, then, must have both of its features set in the learned

lexicon. These behaviors are shown in the compressed table below.



(267)

/?s/
Y/ sY/
[(Y)XS)] [ [sY)YX)] | /-

L83 - two root behaviors, one suffix behavior
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In L82, roots 12 and r4 behave alike, giving this language the three root behaviors and

two suffix behaviors described in (268). The learner must set all the features of sl1, s2, rl,

and r3, and additionally must distinguish 2 and r4 from the other roots by setting their

first syllables to +stress.

(268)

L82 — three root behaviors, two suffix behaviors

/ss/ /Y?/ /sY/
[(Y)(Xs)] | [(Y)(Xs)] | [(sY)X)] | /-s/
[(X)(sY)] | [V)Xs)] | [((sY)X)] | /-Y/

Learning L82 presents no problem, as the data are sufficient to distinguish the

language from its paradigmatic subset and all other languages in the typology. But

learning L83 is another matter. As the remainder of this section will show, it is not just its

paradigmatic superset, L82, which stands in the way of setting features, but the precise

morpheme behaviors of L83 itself.

The phonotactic information for L83 enables the learner to derive the support in (269)

and to set both features of r3; the ranking derived by BCD for this language hypothesis,

LgHyp83, appears in (270). The lexicon, (271), includes no other set feature at this point,

and because r3 always surfaces faithfully, it offers no potential for learning non-

phonotactic ranking information.
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(269) LgHyp83 support from phonotactics
- 2 oslzla] s,
Morph. %;%:ﬁcg sl 5 Z =
ERC# | word | Input | Winner Loser 38 FlEl=E]< e ‘5 =
a 1P| risl | Ys-s/ | [(V)X9)] | [s(Ys)] | Wi W | L|w LL
b. 3P| risl | /Yss/ | [(Y)Xs)] | [(sY)s] LW Llw]L: L L
c. 5P| 1r3sl /sY-s/ | [sY)X)] | [(Y)(Xs)] : ! wlLiL|w!w
d. 4P| rlsl | /Ys-s/ | [(Y)(Xs)] | [(Y$)()] W L |
e. 2P| rlsl | /Ys-s/ | [(Y)Xs)] | [(Y)(sX)] W ' L
(270) {LMOST, PARSE-G, *LAPSE} >> FT-BIN >> MAXSTRESS >> {AFL, FNF}

>> {RMOST, [AMB}

271)

LgHyp83 lexicon

rl

2

13

r4

sl

s2

17?

/7?2

/sY/

17?/

/-2

/-

The suffixes are not contrastive for stress and can remain unset, but the other three

roots each must have one syllable’s stress feature set to a value that will distinguish it

from r3. The test candidates used for these roots to set features by inconsistency detection

are identical because the roots behave alike in all words. Candidate (272)a attempts to set

the stress feature of the first root syllable, candidate (272)b attempts to set the stress

feature of the second.

(272)

Test candidates for rl, r2, and r4

a. /ss-s/ 2 [(Y)(Xs)]
b. /YY-s/ > [(Y)(Xs)]
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Both candidates are consistent with the support in (269) and therefore will not permit
the learner to set any feature in the three roots. The support above is missing some of the
ranking information of the target’s skeletal basis; in particular, in the support LMOST
dominates MAXSTRESS only by application of BCD — there are no explicit ranking
arguments for this relationship otherwise. However, it is important to note that the
consistency of the test candidates is not due to inadequate ranking information, but rather
due to each of these candidates being a mapping in the target L83. Resolving the conflict
between LMOST and MAXSTRESS would not produce the inconsistency required to set

features.

To make this point more plainly, suppose the learner had access to the support for the
skeletal basis of L83, in (273). The only mapping that distinguishes the paradigmatic
subset .83 from its superset L82 is /ss-Y/[(Y)(Xs)]. This candidate is the winner in
(273)b, and by transitivity this W-L pair and that in (273)d contributes the ranking LMOST

>> MAXSTRESS .

(273) L83 skeletal basis support

o L =
Worfd. Input | Winner Loser & 5 j L = L% LE = 5"
a. 13sl | /sY-s/ | [(sV)0O] | [6sY)s] | Wi L LiL i
b, rls2 | fss-Y/ | [(Y)(X9)] | [(Xs)(Y)] W L W L
. 13sl | /sY-s/ | [(sY)O] | [(Y$)X)] L wlL! W |
d. sl | /sY-s/ | [(sY)] | [(Y)(sX)] W L LW
e. rlsl | /ss-s/ | [(Y)Xs)] | [(Y)(sX)] W L
f. rlsl | /ss-s/ | [(Y)(Xs)] | [(Ys)(X)] LW L
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Even this support would not enable the learner to set features in rl, 2, or r4. No test
candidate based purely on phonotactic knowledge could produce the inconsistency
necessary to set a feature in these roots. The problem is that MAXSTRESS cannot prefer
any desired loser when the test input differs from the observed output by only one
feature. Either the single disparity must involve setting to — a feature that is + at the
surface, in which case no candidate will incur a MAXSTRESS violation on that feature, or
it will involve setting a feature to + that is — on the surface, in which case every

candidate, including the desired winner, will incur at least one MAXSTRESS violation.

To better illustrate this point, consider [(Y)(Xs)], the output of all six words
containing roots rl, r2, and r4. When the disparity is in the first syllable, forming the
input /ss-s/, no candidate violates MAXSTRESS at all. When the disparity is in the second
syllable, forming /YY-s/, then every candidate must have at least one MAXSTRESS
violation. Since [(Y)(Xs)] itself would incur just one MAXSTRESS violation for this input,
no other competitor could do better. Therefore, MAXSTRESS cannot prefer another
candidate over either of the test candidates from (272), even with all crucial ranking

information known.

Each of rlsl, r2sl, and r4sl forms a contrast pair with r3sl, but again, the test
candidates are not inconsistent. Because both features of r3 have already been set, there
are three test candidates to evaluate: one for each syllable of the root and one for the
suffix. The test candidates for the roots are those in (272), and evaluating them as
contrast pairs yields no new information. Because the winner of W-L pair 5P in (269)c is

r3s1 /sY-s/[(sY)(X)], the learner has in effect been evaluating the consistency of the test
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candidates for the roots with r3s1 all along, even during single form learning. Finally,
suffix stress is neutralized in the target, making it unsurprising that the test candidate for

sl is also consistent.

Just as with the paradigmatic equals, the learner has reached a point where
inconsistency detection cannot set features, yet features must be set in order to distinguish
the other roots from r3. For LgHyp83, however, even if new ranking information could
be useful, there is no consistent mismatch winner to reveal that information. The minimal
mismatch candidates derived from words containing rl, 2, and r4 are shown in (274),
and they are the same candidates used to determine by inconsistency detection if a feature
could be set in the roots. The candidates were uninformative then because they are
consistent and they are uninformative now because the current ranking already makes

them optimal.

(274) Minimal mismatch candidates for r1, r2, and r4

a. /ss-s/ 2 [(Y)(Xs)]
b. /YY-s/ > [(Y)(Xs)]

The maximal mismatch candidate is also uninformative. The maximal mismatch for
all words containing rl, r2, or r4 is /sY-Y/[(Y)(Xs)]. It is not unexpected that this
candidate is inconsistent, given that suffix stress neutralizes in the language and the
support already includes the winner /sY-s/[(sY)(X)], with the same root and the
unstressed suffix. These two candidates make contradictory ranking requirements,
demonstrated in (275); note that although the maximal mismatch test candidate is labeled

rlsl here, the candidate will be the same for all words containing r1, 12, and r4 .
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(275) Maximal mismatch candidate is inconsistent

Morph. = 2 3% 22 & 2 ;3
ERC# | word | Input | Winner Loser e F s 2 < B -
a. 5P | 13sl | /sY-s/ | [sY)X)] | [(Y)(Xs)] W L L :W:W
b. test | rlsl /sY-s/ | [Y)(Xs)] | [(sY)(X)] L W W L L

The learner has exhausted the potential to set features by inconsistency detection,
whether by single forms or contrast pairs, yet r1, r2, and r4 must each have the value of at
least one feature set to distinguish them from r3. The learner cannot derive new ranking
information, as all the mismatch candidates for words containing rl, r2, and r4 are
uninformative. Moreover, having new ranking information would not help anyway, as the

test candidates for the roots are consistent even with the skeletal basis of the target

language.

Here the learner must employ the Fewest Set Features procedure, introduced by Tesar
to complete the learning of a paradigmatic subset language. The Fewest Set Features
procedure exploits the property of output-drivenness to determine, for a word that is
currently failing error detection, the fewest features whose values must be set to match
their surface correspondents’ in order to create for that word a consistent mapping that
passes error detection. The procedure is employed only on words that continue to fail
error detection and only after single forms and contrast pairs fail to set any features and
no new ranking information is derived by any means, including from a consistent

mismatch candidate.
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In the CBL’s implementation of Fewest Set Features, the learner takes one of the
words which has failed error detection — say, rlsl — and systematically evaluates the
candidates in its viable lexical subspace for consistency with the support and with the
other words which have passed error detection. In order to set the fewest features
possible, the learner begins by testing those candidates whose inputs contain only one
unset feature that matches the value of its surface correspondent. If one of these is
consistent, then the learner sets the value of that matching unset feature to its surface
value and resumes learning as before. When more than one is consistent, the learner can
choose either to inform the feature-setting. To learn languages in the Stress system, the
CBL does not require Fewest Set Features to evaluate candidates containing two unset
features, although in theory the procedure could be modified to do so if necessary. The
pseudocode for Fewest Set Features, adapted for the CBL from the work of Tesar (to

appear) is given below.

(276) Fewest Set Features — CBL adaptation

DEF Fewest Set Features(lang hyp)
FOR each word in lang hyp that fails error detection
Determine the feature value to pass error detection
IF there is such a feature value THEN
Set the feature to this value in the lexicon
Check for ranking information from the set feature
BREAK
ENDIF
ENDFOR
END

The lattice in (277) shows the entire lexical space for rlsl. The Fewest Set Features
procedure works upward through this space. In effect, the procedure begins with the test

for error detection on the input of the bottom node, containing the maximum three
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disparities. If the word with this input passes error detection, then the fewest features to
be set is zero. Here, however, rlsl has failed error detection. The learner must evaluate
the inputs in the next row up from the bottom. All of these contain two disparities,

leaving only one feature set to match the surface form.

(277) Lexical space for rlsl

D

In the row of inputs with two disparities, the only inconsistent input is /sY-s/, in
which the feature values of the root match those of r3. The other two inputs are
consistent, leaving the learner with a choice. To distinguish r1 from r3, only one feature
need be set: either the first syllable of the root must be set to + stress, as in /YY-Y/, or the
second syllable must be set to —stress, as in /ss-Y/. In this computer simulation, the

learner always selects the first option found, and here sets r1 to /Y?/ in the lexicon.

The newly set feature in r1 never surfaces unfaithfully, and therefore yields no new
ranking information. With the updated lexicon and the support unchanged from (269),

rlsl and rls2 now pass error detection, but the words containing 2 and r4 do not.
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Because these morphemes behave like rl1, the process for setting the fewest features in
words containing them is identical to that for r1sl, with a similar outcome. The learner

sets r2 and r4 to /Y?/, producing the lexicon in (278). The support remains unchanged.

(278) LgHyp83 lexicon — final

rl 2 3 r4 sl | s2
Y VI | IsY! | /XY | -2 /-2

4.2.1 FEWEST SET FEATURES AND PARADIGMATIC EQUALS

Fewest Set Features is also a potential solution for learning paradigmatic equals. If it
were applied to learning L75, the final lexicon of LgHyp75 would appear as in (279). The
features of 12, r3, and r4 which could not be set by inconsistency detection are set to

match their surface values.

(279) LgHyp75 lexicon learned using Fewest Set Features

rl 12 r3 r4 sl S2
/ss/ | /Ys/ | /sY/ | /Ys/ | /-s/ | /-Y/

Using Fewest Set Features would leave the support of LgHyp75 unchanged from
(230) in section 4.1.1, when it was updated by single-form learning, and the conflict
between RMOST and IAMB would remain unresolved. From the perspective of the learner,
this version of LgHyp75 is acceptable, as it fully accounts for all of the learning data.
Yet, in another sense, this language hypothesis is unsatisfactory because it will result in
error when applied to the rich base. The ranking derived from (230) yields a CTie
between [(Ys)(X)] and [(X)(Y's)] for the input /Y'Y -s/; this is the error illustrated in (234).

Fewest Set Features allows the learner to work around incomplete ranking information by
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fixing the lexicon to include a subset of the underlying forms in the rich base, but because
the features it sets never alternate in L75, no new non-phonotactic ranking information is
ever learned. For this reason, the CBL employs ECM first when confronted by a situation

where inconsistency detection fails to set required features.

4.2.2 CONCLUSION

The Fewest Set Features procedure was originally proposed as a solution for learning
paradigmatic subsets, but L83 suggests that this procedure may have wider usage.
Although L83 is a paradigmatic subset, it is not the existence of its paradigmatic superset,
L82, that prevents the learner from setting features in rl, 12, and r4 by inconsistency
detection. Instead, the problem is that the root behaviors of L83 compress into two
groups: 13, and everything else. Each time the learner attempts to set a feature of rl, 2, or
r4, the test candidate is consistent because it is a member of the non-r3 mappings of L83
itself. To put the matter differently, only a test candidate using /sY/ as the underlying
form of rl, r2, or r4 could ever be inconsistent with L83, and constructing such a
candidate would require that the learner have already set the stress feature of the first
syllable to —stress or the second to +stress; however, this is impossible because both
features are only ever set to match their surface correspondents’ values. The features of
rl, 12, and r4 never alternate, leaving no way for the learner to ever set the first syllable
of one of these roots to —stress or the second to +stress and therefore no way to construct

a test candidate using /sY/ as the underlying form of any of these three roots.

A procedure like Fewest Set Features is necessary for learning languages like L83,

which cannot be fully learned by inconsistency detection alone, no matter how much
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ranking information is known, and it also has value for learning languages like L75.
Whether it should replace the ECM solution advocated in 4.1 for untangling global
lexical ambiguity is unclear, as neither procedure is well understood at this point. It
should be noted that of the nine pairs of paradigmatic equals produced in the Stress
system, seven are also paradigmatic subsets of other languages and require the learner to
apply Fewest Set Features regardless of learning from consistent mismatch candidates.
Section 4.3 covers the topic of languages that are simultaneously paradigmatic equals and
paradigmatic subsets using L39, a language first introduced in 4.1.3, to illustrate how
Fewest Set Features and ECM can be interwoven to handle the complications of both
relationships. Given that languages can participate in both paradigmatic relationships at
once, the risks of committing to the ranking information of consistent mismatch
candidates by ECM may appear too great. These relationships must be investigated

further, along with the learning procedures described in sections 4.1 and 4.2.

4.3 'WHEN THE PARADIGMATIC SUBSET IS A PARADIGMATIC EQUAL

The paradigmatic relationships described in the preceding sections can occur in
combination, as they do for seven pairs of languages in the Stress system. One of these
languages is L39, which was introduced in 4.1.3 to illustrate some consequences of
committing to minimal versus maximal mismatch candidates. Learning a language like
L39 requires the learner to overcome the common challenge of both kind of paradigmatic
relationships — the inability of inconsistency detection to set all required features — but it
also requires the learner to properly handle the relationships’ unique characteristics: that

the data for one paradigmatic equal can be inconsistent with the other given the right
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ranking, but the data of a paradigmatic subset can never be inconsistent with its superset

language.

The preceding sections have described alternative procedures for managing each
paradigmatic relationship based on these properties. Thus, ERC by Consistent Mismatch
(ECM) exploits the paradigmatic equal’s potential for learning crucial ranking
information by creating a consistent mismatch candidate, while Fewest Set Features
provides a means of setting features when inconsistency detection fails — and even when
inconsistency detection would fail with the target’s ranking conditions fully known. This
section demonstrates how the learner weaves together these different approaches to learn
languages like L.39, which participates in both kinds of paradigmatic relationships. It will
also provide a fuller look at the relative benefit of pursuing minimal mismatch candidates

by ECM.

4.3.1 THE PARADIGMATIC RELATIONSHIPS OF L39

The map of L39 and a stratified hierarchy derived from its skeletal basis by BCD are
repeated below, along with the map and ranking of its paradigmatic equal, L51. These
languages both parse binary trochees and differ only by the default alignment of the head-
foot, with L39 aligning it to the right and L51 aligning it to the left. The shaded cells

indicate the default behavior in each map.

(280) L39
rl =/ss/ | 12=/Ys/ | 13=/sY/|r4d=/YY/
[s(Ys)] | [(Ys)s] |[s(Ys)] | [s(Ys)] sl =/-s/
[s(Ys)] | [(Ys)s] | [s(Ys)] | [s(Ys)] s2=/-Y/




(281)

{FNF, FT-BIN} >> {IAMB, PARSE-G} >> MAXSTRESS >> {RMOST,

*LAPSE} >> {AFL, LMOST}

(282) L51
rl =/ss/ | 12=/Ys/ | 13=/sY/ | 4=/YY/
[(Ys)s] | [(Ys)s] | [s(Ys)] |[(Ys)s] sl =/-s/
[(Ys)s] | [(Ys)s] | [s(Ys)] [[(Ys)s] s2=/-Y/

(283) {FNF, FT-BIN} >> {IAMB, PARSE-G} >> MAXSTRESS >> {AFL,

LMOST}>> {RMOST, *LAPSE}

Suffixes in these languages are not contrastive, and the root behaviors display the
same pattern shown by L83 in 4.2: there is a behavior for one specific root — r2 in L39, r3
in L51 — and then a default behavior for all the other roots. The map of L39 is shown
compressed in (284) to highlight the single suffix behavior and two root behaviors; the

compressed map of L51 would be similar.

(284) L39 - two root behaviors, one suffix behavior
/s?/
Py | Y
[s(Ys)] | [(Ys)s] | /-7/

L39 is a paradigmatic subset of five other languages in the Stress system typology,
including L.37, whose map is shown in (285) with shaded cells indicating the L39 subset.
L37 parses trochees by default just as L39 does, but r1s2 and r2s2 show that it will also
parse iambs. For rls2, the ranking FT-BIN >> {PARSE-c, * LAPSE} forces the right-
aligned iambic head-foot even at the cost of an initial stress lapse. With two underlyingly

stressed syllables, r2s2 must violate MAXSTRESS once. For this form, the crucial ranking
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is RmMosT >> {FNF, AFL, LMOST}, which forces s2 to surface faithfully in the iambic
head-foot instead of preserving stress on r2 with the left-aligned trochaic output [(Ys)s].
The stratified hierarchy for L37 derived by applying BCD to the support of the skeletal

basis is given in (286).

(285) L37 (L39 subset shaded)

rl=/ss/ | 12=/Ys/ | 13=/sY/ | r4d=/YY/
[s(Ys)] | [(Ys)s] |[s(Ys)] |[s(Ys)] sl =/-s/
[s(sY)] | [s(sY)] |[s(Ys)] |[s(Ys)] s2=/-Y/

(286) FT-BIN >> PARSE-G >> MAXSTRESS >> {RMOST, *LAPSE} >> {FNF, IAMB,
AFL, LMOST}

4.3.2 COMBINING ECM AND FEWEST SET FEATURES

L37 is included here to demonstrate unequivocally that a paradigmatic equal, L39,
can also be a paradigmatic subset of another language. However, the fundamental issue
for this section — that there can be multiple reasons within a language for why
inconsistency detection fails to set all necessary features — does not rely on L39 having a
paradigmatic subset. The similarity of the chart of L39’s morpheme behaviors in (284)
with L83’s chart in (267) makes it clear that the learner will face the same kind of
problem learning L39 as learning L83: the test candidates for the roots with the default
behavior will all be consistent simply because every single-disparity test will produce
another of the default, non-r2 mappings, and not just because there is a superset language.
What makes learning L39 different from learning L83 is that not a single feature can be

set by standard inconsistency detection initially. Before delving into learning L39, then, a
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question must be answered: when inconsistency detection fails, which paradigmatic

relationship does the learner attempt to address first?

The CBL first tackles paradigmatic equality, attempting to learn by ECM on the
grounds that it is preferable to produce new ranking information than not. Unlike Fewest
Set Features, the objective of ECM is to uncover ranking information. ECM forces a
resolution to a conflict exposed during error detection by committing to an input-output
mapping which is not explicitly produced by the current commitments of the language
hypothesis. For example, in section 4.1 error detection reveals an unresolved conflict
between RMOST and [AMB, but it takes a mapping from the input /YY-s/, which ECM

finds in a consistent mismatch candidate, to resolve the conflict.

As has been seen throughout the preceding chapters, learning more about the ranking
can produce a range of benefits. First, the new ranking information can allow the learner
to set features by inconsistency detection and consequently enable words to pass error
detection. For LgHyp75 in 4.1, an ERC added by the consistent mismatch candidate
allows for r3 to be set to /sY/ by inconsistency detection, causing r3sl finally to pass
error detection. Second, new ranking information can allow words which previously
failed error detection to now pass without setting any additional features, just as in
LgHyp75 features in r2 and r4 could remain unset once the new ERC was added. Finally,
ranking information helps to reduce the potential for error when the ranking is applied to
a rich base, just as adding the ERC produced by ECM to LgHyp75 expressly eliminates
the error that otherwise would have occurred given the input /YY-s/. Section 4.1 shows

that LgHyp75 derives all of these benefits from one application of ECM. While setting a
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single feature can cause a word to finally pass error detection, the other benefits will not

accrue without that feature inciting an error that leads to a ranking change.

The objective of Fewest Set Features is simply to set the fewest features needed for a
single word to pass error detection, and any ranking information recovered is incidental.
Although it is at least theoretically possible for new ranking information to arise if the
newly set feature ever surfaces unfaithfully elsewhere, Fewest Set Features does not ever
produce new ranking information when it is implemented for languages in the Stress
system, regardless of whether ECM is implemented first. For these reasons, the CBL

attempts to learn from ECM before employing Fewest Set Features.

The CBL bundles contrast pair learning, ECM, and Fewest Set Features together and
employs them one after the other once a round of single-form learning passes without
making any changes to a consistent but incomplete language hypothesis. As soon as one
of these procedures sets a feature, the language hypothesis is updated and, if the
hypothesis is not yet complete, a new round of single-form learning begins on the hope
that this latest change will lead to more information. The pseudocode below describes the

further learning attempts that occur.
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(287) Further learning beyond single forms

DEF FURTHER LEARNING(lang hyp)
IF learning is complete in lang hyp THEN
Store lang hyp with completed language hypotheses
ELSE
SET learning change to true
WHILE learning change is true
Set learning change to false
IF features are set with a contrast pair THEN
Set learning change to true
ELSE
Employ ECM procedure
IF ranking information is learned by ECM THEN
Set learning change to true
ENDIF
IF learning change is false THEN
Employ Fewest Set Features
IF a feature is set using Fewest Set Features THEN
SET learning change to true
ENDIF
ENDIF
ENDIF //features set by contrast pair
IF learning change is true THEN
IF learning is complete in lang hyp THEN
Store lang hyp with completed language hypotheses
ELSE
Perform single-form learning
BREAK out of WHILE loop
ENDIF
ELSE
IF lang hyp is consistent THEN
Store lang hyp with incomplete, consistent language hypotheses

ELSE
Discard lang hyp
ENDIF
ENDIF
ENDWHILE
ENDIF
END

A complete outline of the Commitment-Based Learner, beginning with phonotactic
learning, appears in (288). The ECM and Fewest Set Features procedures begin at step

7.b.
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(288) Outline of the Commitment-Based Learner

Within each language hypothesis, beginning with Hyp0, and for each observed form,
repeat until learning stops in all language hypotheses:

Phonotactic Learning

1. Check for errors
a. If the form lacks a committed structural interpretation and yields an
error, apply the IDL to extend branches. Repeat step 1 for each branch.
b. Ifa form has a committed structural interpretation and produces an error,
perform error-driven learning. Repeat step 1.
c. Ifthe form does not produce an error, process the next overt form.
2. Phonotactic learning ends when no errors are detected on any observed forms.

Non-phonotactic Learning — first pass through data

3. Perform error-driven learning over all known words.
a. Reject hypothesis if it is inconsistent
4. Does the form have a committed interpretation?
a. Yes— apply the ODL to set features from the single form.

i.  If features are set, seek non-phonotactic ranking information
from unfaithful mappings using the low-markedness ranking
bias.

ii.  Ifno features are set, observe the next form.

b. No — perform error detection on the overt form.

i.  If the overt form passes error detection, observe the next form.
Go to step 3.

ii.  If it does not pass error detection, apply the IDL to assign
interpretations and extend branches.

iii.  Continue learning in the resulting branches, beginning with the
first observed form in the data set. Go to step 3.
5. Perform error detection on the list of known words.
a. Ifall words pass error detection, this language hypothesis is complete.
i. Are all consistent language hypotheses complete?
1. Yes - stop. Learning is complete.
2. No — continue learning in the incomplete language
hypotheses.
b. If some words fail error detection, go to step 6.

Non-phonotactic Learning — after the first pass through the data

6. Were any features set by single-form learning in the last pass through the data?
a. Yes — repeat steps 3-5 for each word that currently fails error detection.
b. No — apply the ODL to set features from contrast pairs in the list of
known words. Go to step 7.
7. Were any features set by contrast pairs in this pass?
a. Yes —repeat steps 3-5 for each word that currently fails error detection.
b. No - employ ECM procedure. Go to step 8.
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8. Was any ranking information learned by ECM?
a. Yes — repeat steps 3-5 for each word that currently fails error detection.
b. No —employ Fewest Set Features. Go to step 9.

9. Was a feature set by Fewest Set Features?
a. Yes — repeat steps 3-5 for each word that currently fails error detection.
b. No — store this language hypothesis with the incomplete, consistent

language hypotheses. Stop.
Having shown where ECM and Fewest Set Features fall with respect to single-form

and contrast pair learning, the next section will demonstrate how both of these alternative

procedures are implemented to learn L39.

4.3.3 LEARNING L39

The map of L39 and the stratified hierarchy derived from its skeletal basis are

repeated in (289) and (290).

(289) L39
rl =/ss/ | 12=/Ys/ | 13=/sY/ |r4d=/YY/
[s(Ys)] | [(Ys)s] | [s(Ys)] | [s(Ys)] sl =/-s/
[s(Ys)] | [(Ys)s] | [s(Ys)] | [s(Ys)] s2=/-Y/
(290) {FNF, FT-BIN} >> {IAMB, PARSE-G} >> MAXSTRESS >> {RMOST,

*LAPSE} >> {AFL, LMOST}

Suffixes in L39 are not contrastive and can remain unset in the learned lexicon. The
two root behaviors evinced in the language require setting r2 to /Ys/ and, for the
remaining roots, some combination of setting the first syllable to —stress or the second

syllable to +stress. These requirements are summarized in the idealized lexicon for

LgHyp39 below.
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(291) LgHyp39 idealized lexicon

rl 12 13 r4 sl s2
/s? ot 12X/ | /XYs/ | /s?/ or /?Y/ | /s? or /?Y/ | /-2 | [-?/

The support for LgHyp39 created from phonotactic learning appears in (292), with its

ranking in (293).

(292) LgHyp39 support from phonotactics

= 2 A Z R %

Z- . . -

Morph. cielzisl2] e Q% ES

ERCH word | Input | Winner Loser T B =1 = : Lk

a. 2P| rlsl | /sY-s/ | [s(Ys)] | [(V)Xs)] | Wiw]| L wlLiwi |

b. 1P| rlsl | /sY-s/ | [s(Ys)] | [s(sY)] W L | W R

c. 3P| rIsl | /sY-s/| [s(Ys)] | [(Ys)s] ' WlL!IW!ILI!W

d. 4P| 12sl | /Ys-s/ | [(Ys)s] | [s(Ys)] Wl w:L:w:L
(293) {FNF, FT-BIN} >> {IAMB, PARSE-6} >> MAXSTRESS >> {LMOST, RMOST,

AFL, *LAPSE}

The unresolved conflict involves the constraints in the lowest stratum. In order to set
all the features required to distinguish the root behaviors, the learner needs to determine
that RMOST and *LAPSE dominate AFL and LMOST. Doing so in turn requires a
committed mapping with an input that makes those constraints decisive in determining
the winner, such as /ss-s/, for which no candidate will incur a MAXSTRESS violation, or
/YY-s/, for which every candidate will incur one MAXSTRESS violation. But L39 is a
paradigmatic equal, and as expected, the unresolved conflict between the constraints in
the lowest stratum means the learner will not be able to commit to these mappings using

inconsistency detection.
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First, for single-form learning the test candidates for the root in rlsl are /YY-
s/[s(Ys)] and /ss-s/[s(Ys)], which are both actual mappings in the target and therefore
would be consistent even if all ranking conditions were already known.”® These
candidates cannot produce the lexically-informative inconsistency, but neither can the
test candidates for r2, which map the same inputs to different outputs -- /YY-s/[(Ys)s]
and /ss-s/[(Ys)s]. This time, the test candidates are consistent with the paradigmatic
equal, L51, whose map is repeated in (294). Having the correct ranking information for
L39 would allow the learner to detect inconsistencies and set features with these test
candidates, but here the familiar problem of paradigmatic equals arises: the correct
ranking is needed to set these features, and these feature values are needed to determine

the correct ranking.

(294) L51
rl=/ss/ | 12=/Ys/ |13=/sY/ | r4d=/YY/
[(Ys)s] | [(Ys)s] | [s(Ys)] [(Ys)s] | sl=/-s/
[(Ys)s] | [(Ys)s] | [s(Ys)] [(Ys)s] | s2=/-Y/

Contrast pairs face the same problems for setting features: the pairs are always
consistent with one of the paradigmatic equals. The test candidates used to attempt to set
root features in the contrast pair rlsl and r2s1 are shown in (295). All other contrast pairs

will use the same mappings and achieve the same uninformative outcome.

28 Because the roots r3 and r4 behave like rl, their test candidates and outcomes will be identical to those
of rl.
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(295) Test candidates for contrast pair rlsl, r2sl

a. rlsl /YY-s/ =2 [s(Ys)] rl ol: consistent with L39
r2s1 /Ys-s/ 2 [(Ys)s]

b. rlsl /ss-s/ =2 [s(Ys)] rl 62: consistent with L39
12s1 /Ys-s/ =2 [(Ys)s]

c. rlsl/sY-s/ 2 [s(Ys)] r2 ol: consistent with L51
2s1 /ss-s/ 2 [(Ys)s]

d. rlsl /sY-s/ 2 [s(Ys)] r2 62: consistent with L51
r2s1 /YY-s/ 2 [(Ys)s]

4.3.3.1 Committing to a minimal mismatch candidate

Single-form and contrast pair learning have both failed; this is the point at which the
discussion of LgHyp39 in section 4.1.3 begins. Any further ranking information must
come from committing to a consistent mismatch candidate. As 4.1.3 explains, the
maximal mismatch candidates for r1sl and r2sl are inconsistent, but each of the minimal
mismatch candidates is consistent and informative. After committing to one of these, rlsl
/ss-s/[s(Ys)], the learner updates the support as below, repeated from (256). The minimal

mismatch candidate is the winner in W-L pair 5.

(296) LgHyp39 support updated with minimal mismatch candidate

Z f] g & 2| &
Morph. TiE %% g%g S g
ERC# | word | Input | Winner | Loser sl EaEle P =<
a. 2P| risl | /sY-s/ | [s(Y9)] | (X)) | Wi w ]| L ww! L |
b. 1P| rlsl | /sY-s/ | [s(Ys)] | [s(sY)] LW L|w LW :
c. 3P| risl | /sY-s/ | [s(Ys)] | [(Ys)s] | wlwiw|rLitL
d. 4P| 12sl /Ys-s/ | [(Ys)s] | [s(Ys)] WIlL LW \Y
e. 5 rlsl /ss-s/ | [s(Ys)] [(Ys)s] w W] L L
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(297) {FNF, FT-BIN} >> {IAMB, PARSE-G} >> MAXSTRESS >> {RMOST,
*LAPSE} >> {AFL, LMOST}
The ranking in (297) is now correct and complete, as it matches the ranking for the
target L39 given in (290). Moreover, the ERC added by committing to the minimal
mismatch candidate /ss-s/[s(Ys)] enables the learner to set both features of r2 by

inconsistency detection, using the candidates below.

(298) Test candidates for r2s1

a. 12sl /ss-s/ 2 [(Ys)s]
b. 1251 /YY-s/ 2 [(Ys)s]

These test candidates have the same ranking restrictions: both require that LMOST and
AFL dominate RMOST and *LAPSE. The tableau in (299) exposes a contradiction between
these ranking conditions and those of the minimal mismatch candidate /ss-s/[s(Ys)]. With

these lexically-informative inconsistencies the learner updates the lexicon, (300).

(299) R2 test candidates inconsistent with r1s1 maximal mismatch
2 12 &g ig] g
Mo SEIEHEIFIEIEIE
ERC# | word | Input | Winner | Loser [ & @ = | &~ i — = | & pe 2 <
a. 5 rlsl | /ss-s/ | [s(Ys)] | [(Ys)s] w!wl|L L
b. test | 12sl /ss-s/ | [(Ys)s] | [s(Ys)] LiL|wW:iw
c. test| r2sl | /YY-s/| [(Ys)s] | [s(Ys)] LIL|WiW
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(300) LgHy39 lexicon updated for r2

rl 12 3 4 | sl | s2
122\ 1Ys/ | /1?22 | 122 | /-2 | 1-2/

All that remains now is to distinguish the remaining roots from r2 by setting at least
one feature in each. Yet, just as in L83, even with the complete ranking information,
inconsistency detection cannot set the required features. The ERC from the consistent
maximal mismatch candidate, represented by the W-L pair in (296)e, has only eliminated
the interference of the paradigmatic equal, L51, but not the subset problem. That is, the
single-disparity candidates for rl, r3 and r4 are a subset of the mappings corresponding to
the non-r2 behavior in this language, and therefore they are necessarily consistent. The
only recourse is the true last resort, Fewest Set Features. One feature in each of the roots
must be set to match its surface form. In the lexicon below, the first syllable in each root

is set to -stress. The language hypothesis is now complete.

(301) LgHy39 lexicon — final

rl 12 3 |4 | sl | s2
8?2V 1Ys/ | /s | [s?] | /-2 | /-2/

4.3.3.2 Committing to a maximal mismatch candidate

Section 4.1.3 ends the discussion of the consequences of maximal versus minimal
mismatch candidates by mentioning that under the right circumstances, r1sl in L39 can
contribute a consistent maximal mismatch candidate. To do so, a feature of r1 must have
already been set in the lexicon. Further, section 4.3.3.1 above has shown that because rl1,
r3, and r4 can never be set by inconsistency detection, a procedure like Fewest Set

Features will always be necessary to set features in these roots. The failure of
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inconsistency detection to set these features is independent of how complete the support
is, making the question not if, but when, Fewest Set Features must apply. This section
briefly shows that because Fewest Set Features must occur regardless, here it is possible
to maintain a strategy of committing only to consistent maximal mismatches in spite of

an initial failure to find one.

To begin, section 4.1.3 described why the phonotactic support, repeated in (302),
originally fails to produce a consistent maximal mismatch. A strategy that would only
allow commitments to maximal mismatches would next have to seek an alternative
means of adding to the language hypothesis and would employ Fewest Set Features. A

feature in r1 could be set now, as in (303).

(302) LgHyp39 support from phonotactics

Z 2 & & e =2

Morph AR IR AR T

ERC# | word | Input | Winner | Loser ==l Bl — P
a. 2P| rlsl /sY-s/ | [s(Ys)] | [)X)] || W Wl L Wl L W

b. 1P| rlsl | /sY-s/| [s(Y)] | [sGsY)] W L|w L W

c. 3P| rlsl |/sY-s/ | [s(Ys)] | [(Ys)s] ! wlLiw:Liw

d. 4P| sl | /Yss/ | [(Ys)s] | [s(Ys)] wlwiLiw:iL

(303) LgHy39 lexicon — updated for rl

rl r2 | r3 4 | sl | s2
IS 122\ 12 122 | 12| -2

This feature cannot elicit new ranking information because it never surfaces
unfaithfully; however, the language hypothesis is far from complete: r2 must still have

both of its features set, and r3 and r4 must each set one. Single-form and contrast pair
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learning repeat, but with no changes to the ranking, all test candidates will continue to be
consistent. ECM applies next, and now setting r1 has changed the maximal mismatch
candidate for rlsl into a consistent mapping that can contribute ranking information. The
viable lexical subspace for r1sl [s(Ys)] includes only the underlying forms in the lattice
in (304). With the newly set feature in rl, the maximal mismatch candidate is /ss-
Y/[s(Ys)], which is a mapping in the target language. This candidate is necessarily

consistent with the support.

(304) Viable lexical subspace for rlsl

(=YD

D @D,

D,

Committing to this maximal mismatch candidate yields the expected error brought on
by the conflict between constraints that favor the right-aligned output [s(Ys)] and those
that favor the left-aligned output [(Ys)s]. The conflict is resolved as in the preceding
section, with RMOST and *LAPSE dominating AFL and LMOST. The updated support
appears in (305); again, W-L pair 5 in this support is produced from the error on the

consistent mismatch candidate.
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(305) LgHyp39 support updated by maximal mismatch /ss-Y/[s(Ys)]

- el Bl
Morph. AEAE IR IR -
ERC# | word | Input | Winner | Loser aial Eal i L =<
a 2P| risl | /sY-s/ | [s(Ye)] | [0xe | W iw | L wlwi L
b. 1P| risl | /sY-s/ | [s(YS)] | [s(sY)] W L w W |
c. 3P| risl | /sY-s/ | [s(Y$)] | [(Ys)s] ' wlw w|Lic
d. 4P| 12s1 | /Ys-s/ | [(Ys)s] | [s(Ys)] wlL:iL|w:!w
e. 5 | risl | /ssY/ | [s(Ys)] | [(Ys)s] Wi w|L L

The commitment to the maximal mismatch /ss-Y/[s(Ys)], with two disparities, also
commits the learner to the mappings containing the single-disparity inputs from (304):
/ss-s/[s(Ys)] and /sY-Y/[s(Ys)]. The learner will only commit to a maximal mismatch
candidate if it is consistent with the current support; thus, both of these entailed mappings
must also be consistent with the current support. Moreover, because all three are
mappings in the target L39, they will remain consistent with all the current commitments,
regardless of whether the full ranking conditions of those commitments are already
represented in the support. In this instance, the learner’s commitment to the maximal
mismatch candidate works, and LgHyp39 will remain consistent so long as all further
commitments are also consistent with L39. The commitment to the mismatch candidate
will enable the learner to set both features of r2 by inconsistency detection, as in the

preceding section, and Fewest Set Features will apply to set one feature each in r3 and r4.

4.3.4 CONCLUSION
Learning a language that is both a paradigmatic equal and a paradigmatic subset
requires separately addressing the complications of each relationship. Paradigmatic

equality poses a ranking-based problem: an unresolved conflict in the ranking makes it
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impossible to set some needed features by inconsistency detection. ECM offers a
ranking-based solution: resolve the conflict by committing to a consistent mismatch
candidate for one of the words that currently fails error detection. For paradigmatic
subsets and languages like L39 and L83, however, the problem is that even the complete
ranking may be insufficient to set features by inconsistency detection. Fewest Set
Features offers a lexical solution to this problem: if all else fails, set features to match

their surface values.

For languages that participate in both relationships, both solutions can be employed.
For L39, using ECM resolves a conflict that ultimately enables features in 12 to be set by
inconsistency detection. However, because the remaining three roots all behave alike,
inconsistency detection fails to set their features, and Fewest Set Features can be applied

to complete the lexicon.”’

This section has also revisited the question introduced in 4.1.3: should ECM commit
to maximal or minimal mismatch candidates? Again, LgHyp39 does not offer persuasive
evidence for either choice. A strategy seeking only maximal mismatch candidates will
fail to find a consistent candidate initially, but once Fewest Set Features steps in and
assigns a value to a feature — as it must do at some point anyway — the change to the
lexical subspace results in a new, and consistent, maximal mismatch candidate. It is

conceivable that this process could repeat on a larger scale if necessary, with Fewest Set

%% In fact, it is worthwhile to recall that Fewest Set Features can be used exclusively, setting all features to
match their surface forms as described for LgHyp75 in 4.2. The disadvantage to this method is that it
does not resolve the ranking conflict and therefore the ranking will generate errors when applied to the
rich base.
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Features slowly causing the maximal mismatch candidate to have fewer and fewer

disparities until at last the maximal mismatch is consistent.

In general, whatever advantages or disadvantages the maximal mismatch choice
offers are tied to the fact that in an output-driven map, a commitment to one mapping
entails a commitment to all mappings with fewer disparities. The disadvantages are clear:
if a later round of error-driven learning exposes ranking conditions that make the
mismatch candidate inconsistent with prior commitments, the language hypothesis is
inconsistent, and the target may not be learned. The advantages are less clear, however.
In LgHyp39, the commitment to the maximal mismatch candidate does not make it
possible to set any more features by inconsistency detection than committing to the

minimal mismatch candidate does.

If all paradigmatic equals are like L75 or L39, then the circumstances of learning a
paradigmatic equal may ensure that either choice produces the same outcome, whether
because the maximal mismatch candidate has exactly one disparity, as in LgHyp75, or
because the maximal mismatch entails only the mappings of morphemes that behave
alike, as in L39. The phenomenon of paradigmatic equality and the outcome of this
particular solution could appear very different in a system with more features and more
constraints. Determining exactly what benefit, if any, the maximal mismatch candidate
offers will require more investigation of paradigmatic equals beyond those in the Stress

system.
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4.4 GLOBAL SURFACE AMBIGUITY AND THE PARADIGMATIC EQUAL

The preceding section illustrates how one language can simultaneously participate in
both kinds of paradigmatic relationships with other languages in the typology. L39 is a
paradigmatic equal with L51 and a paradigmatic subset of L37, among others. Both
relationships preclude setting features by inconsistency detection given the observed data,
but the learner’s response to each relationship differs; most importantly, for paradigmatic
equals the learner can add ranking information that makes inconsistency detection viable
for setting features. This section similarly examines the learner’s response to languages
that relate in multiple ways to others in the typology, but now the focus shifts from
paradigmatic relationships to global ambiguities. What is interesting about this
combination of relationships is not what the learner has to do to process the data, but

what the learner ultimately learns from the data.

4.4.1 GLOBALLY AMBIGUOUS LANGUAGES AND THE LEARNING DATA

First, as explained in 4.1, paradigmatic equals exhibit global lexical ambiguity: the
languages have identical morpheme behaviors, including structural interpretations, but
those behaviors arise from different underlying forms. Because the languages have
different rankings, their maps are different, too, yet the shared morpheme behaviors mean
that, from the learner’s perspective, the data of the languages are the same. To illustrate,
compare L75 and L76, the paradigmatic equals introduced in 4.1 and whose maps and

rankings appear below.



(306) L75
rl =/ss/ | 12=/Ys/ | 13=/sY/ |r4=/YY/
[V | [DEX)] | [XDY)] | [(N)(EX)] | sl =/-s/
[V | [EOEY] | [EOEY] | [X)(EY)] [ 82 =/-Y/

(307) {PARSE-G, *LAPSE} >> {AFL, FT-BIN} >> MAXSTRESS >> [AMB >>

{RMOST, FNF} >> [ MOST
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(308) L76
rl=/ss/ | 12=/Ys/ | 13=/sY/ |t4=/YY/
[(X)EY)] [ [DEX)] | [X)(Ys)] | [X)(Ys)] | sl =/-s/
[(X)EY)] | [V [ [XD)EY)] | [X)(Y)] | s2=/-Y/
(309) { PARSE-c, *LAPSE} >> {AFL, FT-BIN} >> MAXSTRESS >> RMOST >>

{IAMB, LMOST} >> FNF

Both languages have two suffix behaviors and three root behaviors, but whereas r4
/YY/ behaves like r2 /Y's/ in L75, it behaves like r3 /sY/ in L76. This difference is caused
by the differing dominance relations between IAMB and RMOST. When IAMB dominates
RMOST, the second syllable of r4 surfaces unfaithfully, producing a binary, iambic
secondary foot at the right edge. As a result, the output looks like a faithful mapping from
r2 /Ys/. For the opposite ranking, the second syllable of r4 surfaces faithfully instead, as
the head of the right-aligned trochaic head-foot. This output looks like a faithful mapping

from r3 /sY/.

The chart in (310) compresses and overlays the morpheme behaviors of both
languages to show that their morpheme behaviors are identical, with the only difference

being the underlying forms producing the behaviors. L75 and L76 are therefore globally
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lexically-ambiguous: they produce the same morpheme behaviors from different
underlying forms. Consequently, the learning data for these languages appear identical to

the learner.

(310) L75 and L76 overlaid

Iss/ /Ys/ /sY/
(/YY/L75) | (/YY/L76)

[X)sY)] | [(VEX)] | [XUYs)] | /-s/

[(X)sY)] | [X)6Y)] | [(X)sY)] | /-Y/

In addition to being globally lexically-ambiguous with L75, L76 is also globally
surface-ambiguous with L69. The maps for these languages appear in (311) and (312).
These languages contain the same overt forms for each morphological word, but they
assign different interpretations to r2sl, shaded. The map-based definition of global

surface ambiguity given in (119) of chapter 3 is repeated in (313).

(311)  L76

rl=/ss/ | 2=/Ys/ | t3=/sY/ |r4=/YY/
[XEYV] [IDEX)] | [(XD)Ys)] | [X)Ys)] | s1=/-s/
[XEY] [ [X)SY)] | [X)Y)] | [X)(sY)] [ s2=/-Y/

(312)  L69

rl=/ss/ |12=/Ys/ |t3=/sY/ |t4=/YY/
[XEY)] | [YS)EO] | [DYs)] | [XXYs)] | sl =/-s/
[DEY)] | [V | [DEY)] | [(X)(sY)] | s2=/-Y/

(313) Global surface ambiguity (map-based definition)

Languages L4 and LB are globally surface-ambiguous if their maps are identical
with respect to overt forms.



229

The stratified hierarchies derived by BCD for L76 and L69, below, indicate that the
relative rankings of AFL and RMOST are responsible for the languages’ differences. In
L76, AFL dominates RMOST, and r2sl is parsed with a unary head-foot, reducing the
AFL violations incurred by the secondary foot at the cost of making the head-foot farther
from the right edge. When RMOST dominates AFL, as in L69, the secondary stressed
syllable in r2s1 is parsed into a unary foot so that the head-foot is only one syllable from

the right edge.

(314) L76 ranking

{PARSE-c, *LAPSE} >> {AFL, FT-BIN} >> MAXSTRESS >> RMOST >> {[AMB,
LMosT} >> FNF

(315) L69 ranking

{PARSE-c, *LAPSE} >> FT-BIN >> MAXSTRESS >> RMOST >> {IAMB, AFL,
LMosT} >> FNF

As globally surface-ambiguous counterparts, L69 and L76 produce the same learning
data, shown in (316) grouped by morpheme behavior. Yet, because L76 is the
paradigmatic equal of L75, L76 and L75 also produce data that appear the same to the

learner. These data are given in (317), again grouped by morpheme behavior.

(316) Learning data for L69 & L76

/sY/
/ss/ | /Ys NY/

XsY | YsX | XYs | /-s/
XsY | XsY | XsY | /-Y/
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(317) Learning data for L75 & L76

Jss/ /Ys/ /sY/
(/YY/L75) | (/YY/L76)

XsY YsX Xys /-s/

XsY XsY XsY /-Y/

Because L76 has the same learning data as both L69 and L75, it will appear to the
learner that L69 and L75 have the same learning data, too. In fact, this transitive
outcome simply demonstrates that L69 and L75 are globally surface-ambiguous, as
defined by reference to their morpheme behaviors. This revised definition, originally
given in (127) of chapter 3, is repeated in (318). For comparison, the definition of global

lexical ambiguity given in section 4.1 is also repeated, in (319).

(318) Global surface ambiguity (morpheme behavior definition)

Language L4 and LB are globally surface-ambiguous if they have the same
morpheme behaviors, excluding structural interpretations.

(319) Global lexical ambiguity
Languages L4 and LB are globally lexically-ambiguous if they have the same

morpheme behaviors, including structural interpretations, but differ only by which
underlying forms of the rich base produce which behaviors.

Thus, global ambiguity can be identified through the morpheme behaviors of two
languages. The variety of global ambiguity is then distinguished by comparing the
structural interpretations associated with the morpheme behaviors. If two languages share
all the same morpheme behaviors, and those behaviors yield the same structural

interpretations, then the languages are paradigmatic equals and are globally lexically
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ambiguous. If the languages share all the same morpheme behaviors, but those behaviors
yield different structural interpretations, the languages are globally surface-ambiguous.

The definition for general global ambiguity appears in (320).

(320) Global ambiguity

Languages L4 and LB are globally ambiguous if they have the same morpheme
behaviors.

Because the CBL has the ability to construct and retain separate language
hypotheses, it is possible for this learner to derive language hypotheses corresponding to
a variety of globally ambiguous languages from the same learning data. Chapter 3 and the
preceding sections of this chapter have already illustrated this ability, but only with
regard to one kind of global ambiguity at a time. The remainder of this section will show
that the CBL effectively manages the learning data of targets that are globally ambiguous
in both ways, as L75 and L76 are globally lexically ambiguous with each other and

globally surface-ambiguous with L69.

4.4.2 LEARNING GLOBALLY AMBIGUOUS LANGUAGES

Suppose the learner observes the data in (321).

(321) Learning data

| XsYrlsl | XsYrls2 | YsX12sl | Xs¥12s2 | X¥s13sl | Xs¥r3s2 | YsXrdsl | XsY rds2 |

When phonotactic learning ends, two consistent language hypotheses remain. In the
tree in (322), language hypothesis A1B1C1 corresponds to both L75 and L76, while

A1B2C1 corresponds to L69.
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(322) Language hypothesis tree

_Hyp0

X)(sY)l (Xs)(Y)] X)s(Y)]
7 | N
| O ™
ALBI B2 A1B3 \2B1 A2B2 A2B3
Y)(sX)] (X)] (Y)s(X)] Y)(sX])]| (Ys)(X)] Y)s(X)]
b \ / \
N\ \ / \
1 1y \ \ / \
‘\\'“‘\(f AIBIC?2 \1B202  AIB3C1  A1B3C2
(XS] 1 1x)(Y)s) X)(Y)s]  [(X)(Ys)]  [(X)(Y)s]

The fact that these three languages split into two branches reflects the difference in
how the CBL handles global surface ambiguity versus global lexical ambiguity. Chapter
3 has shown that the CBL will learn all globally surface-ambiguous languages from a
data set as a consequence of the branching that occurs when an error is detected on a
form without a committed interpretation. Errors provide evidence for the grammar; when
an error occurs on a form lacking a committed interpretation, branching for each possible
interpretation enables the learner to explore different grammars simultaneously. In this
case, when the overt form YsX is processed in the Al hypothesis, it yields an error that
causes Al to extend three branches. L69 is globally surface-ambiguous with L76, and
because it assigns a different interpretation to Ys.X, its corresponding language hypothesis

occupies a different branch in the tree.

In contrast, although globally lexically-ambiguous languages like L75 and L76 have
different grammars, the differences are not expressed in a way that a learner can
distinguish on the basis of observed forms. L75 and L76 assign the same structural
interpretations, and therefore they occupy the same branch of the tree. The difference

between the languages instead lies in which underlying forms map to these
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interpretations, and learning that requires knowing additional mappings beyond those

observed.

The remainder of the learner’s progress through the data is unexceptional. Repeated
rounds of single-form and contrast pair learning will complete L69, which is merely
globally surface-ambiguous with a paradigmatic equal and not a paradigmatic equal
itself. Learning L75 and L76 will follow the procedure established in 4.1, committing to a
consistent mismatch candidate to derive ranking information that the observed data
cannot themselves produce. By committing to one consistent mismatch candidate the
learner will derive the ranking for the corresponding paradigmatic equal, while
implementing a branching procedure for each consistent mismatch candidate that
produces a unique ERC, as discussed at the end of 4.1, would enable the learner to derive

both paradigmatic equals.

When learning terminates, the language hypothesis corresponding to L69 will have

the support in (323), with ranking (324) and lexicon (325).
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(323) A1B2C1 (L69) — final support
Morph. =512l = S 2 2|z
ERC# | word | Input | Winner Loser & FlE] = é a< S| &
a. 1P| risl | jssy/ | [O6Y)] | [s(Ys)] | W L|w iwlL
b. 3P| rlIsl | /ss-Y/ | [X)Y)] | [(sY)s] || W LIW|W]|L L L
c. 10| 3s2 | /sY-Y/ | [V | [s6sY) | wiw]| L Lo L
d. 2P| risl | /ssY/ | [X)GY)] | [(Y)(sX)] ! wlwlL:
e. 4P| 12sl | /Ys-s/ | [(Ys)X)] | [(X)(sY)] wlL|w:L: ! L|W
£ 5P| 1251 | /Ys-s/ | [(Ys)X)] | [(X)(Ys)] wlrL|wiL:
g 6P| sl | /Yss/ | [(YS)] | [(Y)(Xs)] w L
h. 8P| r2s1 | /Ys-s/ | [(Ys)X)] | [(V)(sX)] \ LI L | W
i. 9P| 13sl | /sY-s/ | [(X)(Ys)] | [(sY)X)] w|L A\ L |w
i. 7P| rlsl | /ssY/ | [COGY)] | [(Xs)(Y)] W WIW|L
(324) {PARSE-G, *LAPSE} >> FT-BIN >> MAXSTRESS >> RMOST >> {IAMB, AFL,
LMosT} >> FNF
(325) A1B2C1 (L69) - final lexicon
rl r2 3 4 | sl s2
/ss/ | IXs/ | /?7Y/ | /Ys/ | /-s/ | /-Y/

In the learned lexicon, r2 and r4 are both set to /Ys/, whereas r3 includes an unset
feature in its first syllable as the ranking neutralizes /YY/ to /sY/. This lexicon and the
ranking in (324) generate the map in (326) below. The shaded cells highlight the fact that
r2s1 and r4s1 are identical, but recall that in the original map of L69, repeated in (327), r2

and r4 behave differently from each other.

(326) A1B2C1 map
rl=/ss/ |12=/Ys/ | 13=/?Y/ | r4=/Ys/
[(X)(sY)] | [(Y)X)] | [(X)(Ys)] | [YS)X)] | sl =/-s/
[X)(sY)] | [X)sY)] | [V | [(X)Y)] | s2=/-Y/




(327) L69 — original map
rl=/ss/ | 12=/Ys/ | r3=/sY/ |t4=/YY/
[X)EY)] [ IY)EO] | [(X)(Ys)] | [(X)(Ys)] | s1=/-s/
[X)EY)] | [X)sY)] | [)EY)] | [(XXsY)] | s2=/-Y/
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What should be made of this result? It must be noted first that morpheme labels
merely denote identity and do not affect how the learner interprets the data. The learner
has no prior belief that different morphemes have different underlying forms, or that

every possible underlying form will be attested in the observed data.

Now observe that L69 has three root behaviors and two suffix behaviors, summarized
in the chart below. This chart says nothing about the particular labels of the root
morphemes, only what their underlying forms must be based on their behaviors in

relation to the suffixes.

(328) L69 morpheme behaviors — compressed
/sY/
/ss/ /Ys/ NY/
[GOEY] | [Y)X)] | [KX)(Ys)] | s =/-s/
[GOEY] | [V | [KD(Y)] | 82 =/-Y/

Following the chart, a root which surfaces as [(Ys)(X)] in the context of the suffix s1
but surfaces as [(X)(sY)] in the context of s2 must have the underlying form /Ys/. The
map in (326) includes two roots which behave this way. Observe that in the learning data,
(321), 12 and r4 do in fact behave alike. Thus, this map simply reflects the fact that the
learner observed this particular behavior for two different roots, whose labels happened

to be 12 and r4 in the data set. In the original map of L69 in (327), this behavior appears



236

only once, for the root labeled r2. On the other hand, the map of L69 in (327) shows that
two other root morphemes, labeled r3 and r4, shared a different behavior, surfacing as
[(X)(Ys)] in the context of s1 and [(X)(sY)] in the context of s2. The map of A1B2C1 in
(326) includes just one root with this behavior, labeled r3. Again, the map is reflecting
the fact that the learner observed this behavior only one time in the data set. Finally,
there is a third root behavior that appears exactly once in both L69 and A1B2C1, in
which the output is [(X)(sY)] regardless of suffix environment; the root with this
behavior is labeled rl in both maps. In short, there is no substantive difference between
(326) and (327), only a difference in how many root morphemes evince each behavior

and what label these morphemes are given.

This kind of result has been seen before, in 4.1.2, where the learner commits to a
consistent mismatch candidate to learn L75 or L76. Depending on which candidate is
chosen, the learner derives a different ranking and winds up with one of the lexica below.
Both reflect data in which morphemes labeled r2 and r4 behave the same, but the

different rankings will allow for these morphemes to have different underlying forms.

(329) AI1BICI1 lexicon corresponding to L75 ranking

rl 12 r3 r4 sl s2
/ss/ | /XY /IsY/ | /XYY | /-s/ | /-Y/

(330) AI1BICI1 lexicon corresponding to L76 ranking

rl 2 3 r4 sl s2
/ss/ | /Ys/ | /?Y/ | /Ys/ | /-s/ | /-Y/
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To complete the discussion of learning from the data in (321), by committing to one
consistent mismatch candidate in language hypothesis A1B1C1, the learner will derive a
ranking corresponding to L75 or L76 — see (307) and (309) — and consequently derive the
appropriate lexicon from (329) and (330) above. Regardless, the map produced is the
same, (331); observe that it is globally surface-ambiguous with the map produced by

A1B2CI (corresponding to L69) in (326).

(331) A1B1C1 map
rl=/ss/ |12=/Ys/ | 13=/?Y/ | rd=/Ys/
[(X)(sY)] | [(N)(EX)] | [(X)(Ys)] [ [ESX)] | sl =/-s/
[X)(sY)] | [X)sY)] | [V | [XNY)] | s2=/-Y/

The data in (321) are derived from the overt forms of the map of L75 in (306). In
L75, r2 and r4 behave alike, and therefore the overt form YsX occurs twice in the data. If
the data instead consisted of the overt forms from the map of L76 in (308), XYs would
occur twice in the data set, for r3sl and r4sl. The outcomes of learning would be only
superficially different, in that the lexica would be adjusted to account for a different pair

of words matching and reflecting the fact that a different pair of morphemes behave alike.

4.4.3 CONCLUSION

The learning data in (321) evince a dual ambiguity: they derive from languages which
are globally lexically-ambiguous — L75 and L76 — and they derive from languages which
are globally surface-ambiguous — L69 and L76. In total, the data can derive language
hypotheses with three different rankings. The CBL does not have any further difficulty in
learning languages which are both paradigmatic equals and globally surface-ambiguous,

like L76, as it does learning languages which are globally ambiguous in only one way;
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whatever challenges one kind of ambiguity creates are neither increased nor lessened by

the addition of a second kind.

The interesting consequence of this dual ambiguity is the relationship it creates
between languages like L75 and L69, which do not at first appear to be globally
ambiguous with each other, and yet which can be learned by the same data that yields
L76. As the paradigmatic equal of L75, L76 acts as a kind of gateway to learning L69.
Because the data cannot distinguish L75 and L76, they cannot distinguish L75 and L69,

either.

These ambiguities demonstrate the value of looking at data in terms of its morpheme
behaviors, as in (316) and (317), rather than as catalog of observed forms, as in (321).
Morpheme behaviors matter, in that they can reveal distinctions and similarities between
data that are obscured in a simple list of overt forms, while the frequency of a particular
form’s occurrence in that list may not reveal anything more substantive about the
grammar than the presence of homophones. In this example, language hypothesis
A1B2C1 can derive the target L69 entirely from forms containing rl, r2 and r3; forms
containing r4 contribute nothing about the grammar beyond what those containing r2

contribute.

Arranging the learning data for these languages according to morpheme behavior, as
in (316) and (317), emphasize the value of characterizing global ambiguity with reference
to morpheme behavior. Globally lexically-ambiguous languages like L75 and L76 have
the same morpheme behaviors, including structural interpretations, whereas globally

surface-ambiguous languages like L76 and L69 have the same morpheme behaviors, not
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including structural interpretations. By this definition, L69 and L75 are clearly globally

surface-ambiguous.

From this perspective, it seems quite empirically plausible that there are languages
like L69, L76, and L75. They instantiate a set of morpheme behaviors which could derive
from different rankings and include different structural interpretations, but at heart, the

data is the same.

4.5 CHOOSING BETWEEN BRANCHES

Chapter 3 and the preceding sections of this chapter have described examples in
which the learner derives two or three consistent language hypotheses from one set of
learning data. These examples illustrate that each language in the Stress typology can be
learned from overt forms only, and therefore they offer a clear demonstration of the
CBL'’s success for learning; however, the question remains whether or not it benefits the
learner to continue maintaining multiple consistent language hypotheses once learning
ends. If all the learning data have been processed to completion, as this simulation
assumes, then the learner could safely select just one language hypothesis to keep without
fear that new information will render it inconsistent. In this case, the learner should select
the language hypothesis least likely to overgenerate for a rich base of inputs. This section
considers culling language hypotheses for this reason, using their r-measures (Tesar

2002, Prince and Tesar 2004).

The r-measure provides a means of evaluating the restrictiveness of a ranking. The 1-
measure is calculated by counting, for each faithfulness constraint, the number of

markedness constraints that dominate it, and then adding these separate values. For the
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Stress system, which includes a single faithfulness constraint, the r-measure of a language
hypothesis equals the number of markedness constraints dominating MAXSTRESS. The
more markedness constraints dominate MAXSTRESS, the fewer the surface forms likely to

be found in the language.

The r-measure is especially useful for sifting out language hypotheses whose learned
lexica do not reflect a rich base and therefore whose rankings may have unresolved
conflicts that lead to overgeneration. In these language hypotheses, the learner derives a
lexicon that contains only a subset of the inputs in the rich base, so that multiple

morphemes are assigned the same underlying form.

There are two ways for the learner to derive a lexicon that includes only a subset of
the rich base. The first is by application of the Fewest Set Features procedure, described
in 4.2 for learning LgHyp83. In this language hypothesis, features that cannot be set
using inconsistency detection methods are instead set to match their surface values. As a
result, rl, r2, and r4, which behave alike in the target .83, are set alike in the final

lexicon of LgHyp83, repeated in (332).

(332) LgHyp83 final lexicon

rl r2 13 r4 sl | s2
VY | IsY! | IY2 | /-2 /-2

The underlying form /ss/ is missing from the learned lexicon, and consequently the
learner has not derived the ranking conditions to explicitly ensure that any input
containing /ss/ as the root will map to an output allowed in the target language. It happens

that this language hypothesis will not overgenerate, however, as the ranking derived by
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BCD ensures that these inputs — /ss-s/ and /ss-Y/ — map to the same output as in the
target. This will not always be the case, especially for language hypotheses which assign
a subset of the rich base to their lexica in the second way: by standard application of

inconsistency detection methods for setting features.

The learning data for target L78 produce just such a language hypothesis. L78 has

predictable stress: each word is [(X)(sY)]. The learning data for this language are given

in (333).

(333) Learning data for L78

| XsYrlsl | Xs¥rls2 | XsYr2sl | Xs¥12s2 | XsY13sl | Xs¥13s2 | Xs¥rdsl | Xs¥ r4s2 |

L78 is the only language in the typology that produces this learning data — it has no
globally ambiguous counterparts — yet the learner will pursue language hypotheses for
each of the three interpretations of the overt form XsY in accordance with the standard
response to error detection on an uncommitted overt form. LgHyp78, corresponding to
the target, commits to the interpretation [(X)(sY)]. The learner derives the support in
(334) from phonotactic information, and because stress is predictable, the lexicon, in

(335), leaves all features unset.

(334) LgHyp78 support

= E N Sz =

Vo | I A
ERC# | word | Input | Winner Loser SR = e
2P | rlsl /ss-Y/ | [(X)(sY)] | [(Y)(sX)] W L W
3P| rlsl | /ssY/ | [V ] [sY)s] [ Wi w L:L!L!L|W
1P| risl | /ss-Y/ | [OGY)] | [s(Ys)] LW LW Ll L | w
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(335) LgHyp78 final lexicon

rl 12 r3 4 | sl | s2
(221 1220 1220 122 | 12 ) 1=

In a second language hypothesis, LgHyp78-B, the learner commits to the

interpretation [(Xs)(Y)] for the overt form and derives the support in (336).

(336) LgHyp78-B support

Morph ‘ SIS E
ERC# | word | Input | Winner Loser - - . .
1P | rlsl | /ssY/ | [(Xs)(Y)] | [s(Ys)] W LiL wlLitL
2P | rlsl | /ss-Y/ | [(Xs)(Y)] | [(X)(sY)] L W | L LiL
3P| risl | fss-Y/ | [(Xs)(Y)] | [(XO(YS)] L | wlLitL

Whereas [(X)(sY)] is a potential optimum for any input, [(Xs)(Y)] is not. It is
harmonically bounded by [(X)(Ys)] for all candidates except two: those containing the
inputs /ss-Y/ and /Ys-Y/. Because it is impossible for every input in the rich base of the
typology to map to [(Xs)(Y)], LgHyp78-B does not have a corresponding target language
containing just this single output in its inventory, yet the learner can only rule out this
language hypothesis given proof of its inconsistency. As long as it is possible to set the
features of the morphemes to values that can map to [(Xs)(Y)], the hypothesis will

remain consistent and it will survive. The ODL forces this outcome.

Each root is set to /?s/ using the test candidate /sY-Y/=2>[(Xs)(Y)], which is

harmonically bounded by /sY-Y/[(X)(Ys)]. Then, both suffixes can be set to /-Y/ by test
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candidate /ss-8/=> [(Xs)(Y)], which is harmonically bounded by /ss-s/[(X)(Y's)]. The final

lexicon appears in (337).

(337) LgHyp78-B final lexicon

rl | 2 | 3| r4 sl s2
s/ | /?s/ | [?s/ | /?s/ | /=Y | /=Y

LgHyp78-B survives because its lexicon allows for just the two inputs that can map to
[(Xs)(Y)]. It explains all the observed learning data, and therefore is successful from the
perspective of the learner despite the fact that it would overgenerate for a rich base. The
table in (338) shows that there are five languages in the Stress typology that include the
mappings /ss-Y/[(Xs)(Y)] and /Ys-Y/[(Xs)(Y)]. The ranking learned for LgHyp78-B

corresponds to L95.

(338) Stress system languages containing /ss-Y/[(Xs)(Y)] and /Ys-Y/[(Xs)(Y)]

/ss-s/ /Y's-s/ /sY-s/ YY-s/ /ss-Y/ /Ys-Y/ /sY-Y/ YY-Y/
L35 [s(Ys)] [s(Ys)] [s(Ys)] [s(Ys)] | [Xs)Y)] [Xs)Y)] | [s(Ys)] [s(Ys)]
L4l [s(Ys)] [(Ys)s] [s(Ys)] [s(Ys)] [ [Xs)Y)] [Xs)(Y)]| [s(Ys)] [s(Ys)]
La4  [s(Ys)]  [(Ys)(X)]  [s(Ys)] [s(Ys)] | [Xs)Y)] [Xs)Y)] | [s(Ys)] [s(Ys)]
L89  [(X)(Ys)] [(Ys)X)] [XNYs)] [X)Ys)] | [(Xs)(Y)] [(Xs)(W)] [ [X)(Ys)] [(X)(Ys)]
L95 [(X)(Ys)] [(X)(Ys)] [X)(Ys)] [X)Ys)] [ [(Xs)(Y)] [Xs)(Y)] [ [(X)(Ys)] [(X)(Ys)]

Following Tesar (2002), the r-measure can prove useful for deciding which of the two
language hypotheses learned from the data in (333) to keep. Both language hypotheses
find a way to produce the observed forms, but whereas LgHyp78 uses the ranking to
derive the observed inventory, LgHyp78-B derives the observed inventory only by
severely limiting the underlying forms in the lexicon and learns a less-restrictive ranking

as a result. These different explanatory strategies are reflected in the r-measures of these
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language hypotheses. For the ranking learned in LgHyp78, in (339), the r-measure is 8§,
the highest r-measure possible for this constraint set. The less-restrictive ranking learned
for LgHyp78-B, in (340), has an r-measure of 6. By keeping the language hypothesis
with the greatest r-measure, the learner keeps the one that corresponds to the intended

target of the learning data.

(339) LgHyp78 ranking: r-measure = 8

{RMOST, PARSE-G, [AMB, *LAPSE} >> {LMOST, AFL, FT-BIN, FNF} >>
MAXSTRESS

(340) LgHyp78-B ranking: r-measure = 6

{RMOST, PARSE-c, *LAPSE} >> {FT-BIN, FNF} >>]AMB >> MAXSTRESS >>
{LMosT, AFL}

The learning data of the Stress system produce 14 language hypotheses like
LgHyp78-B from 12 different datasets. Each language hypothesis corresponds to a
superset language in the typology. Each of these language hypotheses has a lower r-
measure than at least one sibling branch that does correspond to a true target of the
learning data. Eliminating all branches but the one with the highest r-measure as a final

learning step would eliminate all 14 of these language hypotheses.

The r-measure is introduced here as a potential criterion for choosing among language
hypotheses; however, it is not ideal, as in many cases it fails to provide a meaningful
justification for the choice. This selection procedure would apply to language hypothesis

branches, which account for the same data and are explicitly not related by restrictiveness
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to each other: no branch can be a subset of another, as their grammars are responsible for
generating the same set of overt forms.. Two language hypothesis branches may differ in
their r-measures, therefore, yet both be as restrictive as necessary to generate all and only

the observed forms of their corresponding target languages.

To illustrate, compare the two language hypotheses corresponding to L76 and L69.
The stratified hierarchy learned for LgHyp76 appears with the structural commitments in
(341). The ranking of LgHyp69 and its structural commitments, which differ from
LgHyp76’s, follow in (342). As these are branch hypotheses derived from the same
learning data, the inventories of both language hypotheses are the same and include only

XsY, YsX, and X7Vs.

(341) LgHyp76: r-measure = 4

a. {PARSE-c, *LAPSE} >> {AFL, FT-BIN} >> MAXSTRESS >> RMOST >>
IaMB >> {FNF, LMOST}

b. [(X)EY)], [(V)(X)], [(X)(Ys)]

(342) LgHyp69: r-measure = 3

a. {PARSE-c, *LAPSE} >>FT-BIN >> MAXSTRESS >> RMOST >>{LMOST,
AFL, IaMB} >>FNF

b. [(X)sY)], [(Ys)X)], [(X)(Ys)]

LgHyp76’s ranking has an r-measure of 4, compared to the r-measure of 3 for
LgHyp69’s ranking, but the values do not reflect a meaningful difference in
restrictiveness. Given the rich base of the Stress system, both rankings yield all and only

the committed structural interpretations of the target languages corresponding to their
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respective language hypotheses. Random selection of a language hypothesis to keep
would be just as valid in this case as selection based on r-measure. The same is true for
the language hypotheses learned in chapter 3, corresponding to L4, L5, and L6. The
rankings for these language hypotheses, repeated below, all have an r-measure of 2.
There would be no harm in randomly keeping just one of these, as each corresponds to a
language in the typology and none will overgenerate, but it is also not clear that there is

anything to be gained.

(343) LgHyp4 (15A1BC2): r-measure = 2

FT-BIN >> PARSE-G >> MAXSTRESS >> [AMB >> {RMOST, FNF}>> {LMOST, AFL,
*LAPSE}

(344) LgHypS5 (15A1BC1): r-measure = 2

FT-BIN >> PARSE-G¢ >> MAXSTRESS >> RMOST >> {LMOST, AFL, IAMB} >>
{FNF, *LAPSE}

(345) LgHyp6 (15A1BC1): r-measure = 2

IAMB >> FNF>> MAXSTRESS >> {RMOST, PARSE-G, FT-BIN} >> {LMOST, AFL,
*LAPSE}

To the extent that it is worthwhile to maintain a single language hypothesis after
learning ends, the r-measure provides a criterion — albeit an imperfect one — to distinguish
between options. At its most useful, it will cull out explanations like LgHyp78-B, which

fit the data by limiting the learned lexicon to a subset of the underlying forms in the rich



247

base. Otherwise, the r-measure provides no better justification than random selection for

keeping one language hypothesis over another.

4.6 CONCLUSION

Evaluating the success of a learner depends in great part on understanding the
languages for which the learner is responsible. Most languages in the Stress system are
like L4, L5, and L6, from Chapter 3, and the Commitment-Based Learner (CBL) readily
derives their corresponding language hypotheses using the standard procedures outlined
in that chapter. However, a learner must be able to derive language hypotheses for all
languages, including those whose complex relationships to one another complicate and
interfere with the standard learning procedures. This chapter thus completes the
illustration of the CBL that was begun in Chapter 3, by introducing the data for these

challenging relationships and demonstrating how the CBL handles them.

Most importantly, this chapter introduces the previously unrecognized paradigmatic
equality relationship. Paradigmatic equals are globally lexically-ambiguous with each
other, with the consequence that the learning data for one can yield a language hypothesis
consistent with the other. This similarity is problematic in particular for a learner that sets
features by inconsistency detection. The language hypotheses for paradigmatic equals
ultimately reach a point of persistent uncertainty that can only be overcome by adding

new information in the absence of certainty.

The solution proposed here is to add a committed mapping, just as the learner does
routinely during phonotactic learning, with the ERC by Consistent Mismatch (ECM)

procedure. The mapping contributes new ranking information and disambiguates the
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languages, enabling the learner to continue setting features. This method works
successfully in all nine pairs of paradigmatic equals in the Stress typology; however,
much further investigation remains about both the phenomenon of paradigmatic equality

and the options for resolving global lexical ambiguity.

The Stress system also contains paradigmatic subsets, which are likewise problematic
for setting features by inconsistency detection. For the languages discussed in this
chapter, the problem is not simply that there is a superset language which interferes with
setting features in the subset language, but that the mappings permitted by the subset
language itself are too broad to permit the necessary feature-setting by inconsistency
detection. Some test candidates in the subset language are actual mappings in the
language, and therefore they can never be inconsistent with the corresponding language
hypothesis. The solution advocated here is Tesar’s Fewest Set Features procedure, which
sets features one at a time to match their surface correspondents. Furthermore, the chapter
has demonstrated that ECM and Fewest Set Features can work in combination to learn

languages that participate in both kinds of paradigmatic relationships.

The illustration of the CBL is not complete without understanding the products of its
learning: namely, the consistent language hypotheses derived from a single dataset. In
particular, this chapter exposes the sensitivity of the CBL to the morpheme behaviors
expressed in the learning data. From one set of data, the learner will derive all languages
that have exactly the same morpheme behaviors, down to the same structural

interpretations — paradigmatic equals, the globally lexically ambiguous languages — and
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all the languages that have the same morpheme behaviors, considering only overt forms —

the globally surface ambiguous languages.

Finally, this chapter has shown how the CBL allows for some final branches to
accommodate learning data by limiting the range of underlying forms in the lexicon,
resulting in a less-restrictive ranking that overgenerates when predicted across the rich
base. The r-measure is considered as a criterion for making a final selection between

branches when learning concludes.
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5 CONCLUSION

This dissertation has introduced the Commitment-Based Learner, or CBL, which
simultaneously learns a ranking and lexicon for a target language from its overt forms by
making incremental commitments to structural information. The CBL commits to
structural interpretations for overt forms, feature values in the lexicon, and input-output
mappings as W-L pairs in a stored support. A commitment allows the learner to advance
a language hypothesis from a position of certainty with respect to the committed
structure, and all information entailed by that commitment becomes incorporated into the
hypothesis for further learning. With these commitments the learner can exploit the
mutual dependency of structural interpretations and underlying forms, using
inconsistency detection to progressively narrow the space of possible languages

consistent with the observed data.

Language hypotheses for the CBL store these committed structures, but they also
form a larger structure among themselves as branches from the initial language
hypothesis Hyp0. This branching structure, a component of the CBL’s incorporation of
the Inconsistency Detection Learner (IDL) is the key to managing structural ambiguity.
Whereas the learner can make piecewise commitments to individual ranking
requirements and single feature values within a morpheme, commitments to structural
interpretations are made in full, not by the foot, because there is no clear way to
determine where a foot in isolation should be placed to ultimately form the most

harmonic interpretation.
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Contrast this with setting features in an output-driven map by inconsistency detection.
The relative similarity lattice for an observed form defines the range of possible
underlying forms. Most importantly, there is a “most similar” underlying form and a
“least similar” underlying form defined in the lattice, and while these forms are
independent of the current ranking, they provide a structure that can be used with the
ranking to determine which particular features must be set. There is no counterpart to the
relative similarity lattice for learning structural interpretations, because what is optimal,

or most harmonic, depends entirely on the ranking.

Since the piecewise commitment approach 1is unavailable for structural
interpretations, the learner must commit to an entire interpretation, but which one?
Extending separate language hypothesis branches for each interpretation settles this
problem. Thus, as a general strategy, the CBL makes piecewise commitments wherever
possible; however, if a hidden structure cannot be decomposed into its component parts,
the CBL branches to evaluate the different grammars resulting from different

commitments for a complete structure.

5.1 SUCCESS AND EFFICIENCY OF COMMITMENT-BASED LEARNING

In computer simulations performed over a typology of the 97 languages in the Stress
system, the Commitment-Based Learner successfully learns each language from its overt
forms, including all globally ambiguous languages. A target is successfully learned if the
learner derives a lexicon and restrictive ranking that generate the target’s outputs,

including correct structural interpretations. More precisely, the learner must set in the
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lexicon the underlying values of all contrastive features in the target and derive a

restrictive ranking consistent with the stratified hierarchy of the target’s skeletal basis.

It is plain that the CBL performs more efficiently than an exhaustive search. The
Stress system contains nine constraints, giving rise to 362,880 different possible rankings.
It contains four disyllabic roots and two monosyllabic suffixes, with each syllable bearing
a binary stress feature, so that 1024 different lexica are possible. In all, there are
371,589,102 different systems possible from these grammars and lexica. By comparison,
for all the simulations performed, the maximum number of language hypothesis branches

created for any one dataset is 13.

Just how efficient the CBL is in relation to other learners remains an open question,
but even without comparing figures, the CBL’s reliance on inconsistency detection with
Multi-Recursive Constraint Demotion (MRCD) suggests that it will fare favorably
against its competitors. Use of inconsistency detection enables the learner to eliminate
large spaces of grammar hypotheses at once and permanently, so that new information is
evaluated against only the grammar hypotheses that include the previously committed
structures. The cost of the CBL using inconsistency detection and MRCD is the required
storage structures: a support for W-L pairs and a separate lexicon; however, as the
number of stored commitments grows, the learner’s ability to detect inconsistencies
generally grows as well. Storing these relatively few commitments is justified by the

work they do to pinpoint the possible grammar hypotheses for the data.

In the learning simulations for the Stress system, the CBL stores an average of 43 W-

L pairs for all the language hypothesis branches created from a single dataset; the
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maximum number of W-L pairs stored for any one dataset is 101. For lexical
commitments, the CBL sets 15 features on average across all the branches created for a
dataset; the maximum number of set features is 34. These are already low numbers
compared to the roughly 370 million systems possible from the constraints and
morphemes used in the Stress system, but recall that the CBL does more than learn a
language consistent with the data: it learns all of the languages consistent with the data,
including the globally ambiguous ones. If the CBL stopped after deriving one restrictive
language hypothesis consistent with the data, these numbers would be reduced somewhat

further.

To compare the CBL with other error-driven learners, such as those based on the
Gradual Learning Algorithm (GLA), one could ask, in the manner of Tesar (1997, 2000),
how many iterations of Recursive Constraint Demotion (RCD) must the learner make to
derive the ranking of the target? Apoussidou’s GLA learner is the most relevant error-
driven example because it shares the CBL’s goal of learning both a ranking and
underlying forms, but without the CBL’s separate support and lexicon structures. In
simulations, this learner is given repeated exposures to data to learn the ranking and the
underlying forms of a handful of morphemes. Unfortunately, the number of updates
required before converging on a ranking is not stated, but extrapolating from the fact that
1 million forms were processed in similar simulations suggests that there were many
thousands of updates. Although this example cannot provide a direct comparison in
efficiency between these learners, it seems unlikely that the maximum 101 applications
of RCD (one for each W-L pair stored) required by the CBL to learn a language in the

Stress system could be matched by the updates required by this GLA learner.
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Another basis for comparison is on the number of forms processed. Jarosz (to appear)
takes this approach in order to create a baseline for efficiency using a random search
learner. The baseline is offered for learning a ranking from structurally ambiguous data
where underlying forms are not at issue. As explained in chapter 1, the random search
learner is surprisingly efficient, especially as compared to exhaustive search, but
simulations of the Inconsistency Detection Learner (IDL) over the same kind of learning
data show that the IDL is extremely efficient, as judged by RCD applications. Again,
extrapolating from the RCD applications given the number of unique words in the data
suggests that the IDL requires far fewer than the 10,000 forms needed for the random
search learner to succeed, as explained in section 1.3.4. While the simulations of the CBL
did not keep track of how many forms were processed, the CBL’s use of inconsistency
detection suggests that it will compare favorably to a random search learner as well,

especially one that must learn a restrictive ranking in order to succeed.

Finally, the CBL’s inconsistency detection strategy compares quite favorably to a
learner that evaluates every grammar and lexicon possibility, as in the early
implementation of the Maximal Likelihood Learning of Lexicons and Grammars, or
MLG (Jarosz 2006). Eliminating many possibilities at the cost of stored commitments is
surely more efficient than updating every possibility after every observed form. The later
sampling versions of the MLG appear to be more efficient, but do not yet achieve 100%

success in simulations (Jarosz, to appear).

In sum, while it is not possible at this time to make a direct comparison between the

CBL and these other learners, the simulations executed over the Stress system typology
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suggest that the CBL is an efficient learner. However, it is true that the small size of the
Stress system has helped to limit the number of hypotheses constructed and the numbers
of stored ERCs and set features. Increasing the size of the system will certainly increase
these numbers, and it will be enlightening to see in larger systems how much
inconsistency detection serves to reduce the number of consistent, simultaneous
hypotheses the learner must process at any given time. The answer is likely to be very
much, as suggested by the performance of the CBL here and by the performance of the

original IDL.

5.2 AREAS FOR FURTHER WORK

5.2.1 GLOBAL AMBIGUITIES AND PARADIGMATIC RELATIONSHIPS

This dissertation has also expanded the understanding of global ambiguity among
languages by introducing paradigmatic equality, a previously unrecognized relationship
exhibited by nine pairs of languages in the Stress system typology. Paradigmatic equality
is a property of global lexical ambiguity, evinced by languages with different rankings
and different input-output mappings, yet with all the same morpheme behaviors,
including structural interpretations. In contrast, globally surface-ambiguous languages
have the same morpheme behaviors as realized by overt forms only. Global ambiguity
can thus be defined as the sharing of identical morpheme behaviors between two
languages, with surface and lexical ambiguity distinguished by whether the structural
interpretations assigned to the overt realizations of the morpheme behaviors are also
identical in the languages. The dissertation additionally has shown that a language that is
globally lexically ambiguous with one language may also be globally surface-ambiguous

with another.



256

Scaling up the system for evaluation should also provide more insight into the
paradigmatic relationships discussed in chapter 4. Do paradigmatic equals multiply or
simply disappear as the Stress system grows? If they disappear, what is the property of
the Stress system as it is defined in this dissertation that enables them to exist within it? If
they increase, and if they appear in other systems as well, then how does the ERC by

Consistent Mismatch procedure advocated in 4.1.2 perform in learning them?

Additionally, within the Stress system seven of the nine paradigmatic equals were
also paradigmatic subsets of other languages. If the system were larger, could a
paradigmatic superset itself be a paradigmatic subset of yet another language? And
naturally, what are the consequences for the learner if paradigmatic subsets could be
nested in this way? It should be noted that although paradigmatic equality could be
unique to the Stress system, paradigmatic subsets were first discovered within the
Stress/Length system by Tesar (to appear), and therefore it would not be unexpected to

find that they exist in other systems and in larger versions of the Stress system as well.

Finally, if paradigmatic equality turns out to exist in other systems, does the
relationship manifest empirically, and if so, how? One possibility is that paradigmatic
equality is the source of intra-speaker variation®’, potentially identifiable through a Wug
test (Gleason 1958). Chapter 4 discusses an implementation of ERC by Consistent
Mismatch that branches when there is more than one informative consistent mismatch
candidate. As a result of branching, the learner derives the two language hypotheses that
correspond to the paradigmatic equals. Speakers who vary between two responses on a

given Wug test could be demonstrating alternating choices between these hypotheses.

397 thank Shigeto Kawahara for suggesting this possibility.
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5.2.2 OTHER LEARNING ISSUES

There are several major issues for learning that this implementation of the CBL does
not address. First, there is the question of how to model learning stages beyond the rough
phonotactic/ non-phonotactic divide presented in this dissertation. The CBL is capable of
adopting learning strategies that can model stages of acquisition as long as they allow for
piecewise, incremental commitments. For example, the Error-Selective Learner (ESL:
Tessier 2007) models intermediate stages of phonological development by waiting for a
critical mass of errors before triggering error-driven learning. The ESL makes use of an
additional structure — the Error Cache, for temporary error storage — but otherwise, its use
of a support and error-driven learning make it compatible for incorporation into the

Commitment-Based Learner.

Similarly, this implementation of the CBL has deferred the work of learning the
morphological decompositions of the observed forms. In these simulations, the learner
has access to morphological information as soon as phonotactic learning ends, but this
information must itself be learned. It is likely, however, that the commitment-based
approach can be extended to manage hidden morphological structure in addition to the
hidden prosodic and lexical structures handled in this dissertation. For example,
knowledge of morphemic alternations and contrasts is not essential for setting features, as
the CBL can use the techniques of the Output-Driven Learner to identify what underlying
feature values must be in some single forms. It is conceivable that features set from single

forms could be used to identify like or unlike morphemes in other forms.
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5.2.3 OUTPUT-DRIVENNESS AND THE CBL

This dissertation has demonstrated the success of the CBL in learning the languages
of a reasonably small system that nonetheless exhibits properties that learners must be
sensitive to, such as restrictiveness relations. Applying the CBL to a scaled-up version of
the Stress system, as well as to other systems with a wider, if not more interesting, array
of constraints will help to support through concrete simulations the assertion here that
this is a successful learner. Lurking behind this assertion, however, is the big question
raised by the CBL’s exploitation of the property of output-drivenness: what does the CBL
do when it confronts the data of a language whose map is not output-driven, such as one

that includes chain shifts?

What is essential to the CBL is its ability to make incremental commitments to
ranking requirements and feature values. Incorporating the methods of the Output-Driven
Learner (ODL) offers the CBL an efficient means of making these lexical commitments,
but the CBL could adopt an alternative approach that achieves the same effect. The
alternative must be able to function using only the information available within the
CBL’s language hypotheses: the structural information provided by overt forms and the
ranking information provided by W-L pairs in the support. For the ODL, an overt form is
used to define the complete space of possible lexical hypotheses for a word and stored
ranking information narrows that space through inconsistency detection, enabling
features to be set independently. Non-output-driven maps will change the space of lexical
hypotheses, but any alternative feature-setting component incorporated into the CBL also
will need to be able to search this space using only partial ranking information. An

efficient alternative to the ODL is likely to find a way to structure the space, or organize
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the search within it, in a way that continues to allow inconsistency detection a significant

role in identifying underlying feature values.

5.3 FINAL SUMMATION

The Commitment-Based Learner introduced in this dissertation has been shown in
simulations to successfully manage structural ambiguity while learning a lexicon and
grammar, an accomplishment that requires the learner to simultaneously address the
hidden structures of surface representations and the lexicon. The computer simulations
provide a rigorous test of the CBL: the linguistic system used in the simulations generates
languages with significant interaction between the hidden structures, and the CBL is
tested for its ability to learn each language in the constructed Stress system typology from

its overt forms alone. The CBL succeeds in every case.

The key feature of the CBL is its commitment to partial information, in particular to
the structural interpretations of overt forms, lexical feature values, and ranking
conditions. The growth of the stores of these commitments is both a sign that a language
hypothesis is developing and the primary means of that development: the CBL can begin
learning without any prior commitments, but as commitments are made, they provide a
foundation for efficiently inferring other information. At any given moment in the
learning process, a language hypothesis can be committed to the structural interpretations
for some overt forms but not others, the underlying values of some features but not
others, and the ranking information that resolves some conflicts, but not others.
Successful language hypotheses need not have commitments associated with all

structures, as long as the stored commitments can generate all of the observed data and
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the structural “gaps” do not allow for errors. Thus, a feature need not have a committed
underlying value if its value always neutralizes, and a hierarchy need not be a total
ranking as long as no conflicts remain and all observed forms can be generated without
error. All successful language hypotheses created in learning simulations for the Stress
system include committed interpretations for each overt form, but even these need not be
necessary as long as the other commitments ensure that only one surface representation

can be generated for a given form.

Finally, the typology used to simulate the CBL has not only offered a test of the
learner, it has exposed the phenomenon of paradigmatic equality. This dissertation has
related paradigmatic equality to the previously-recognized paradigmatic subset
relationship and established differences between the two. Both relationships are identified
within the Stress system typology, in some cases within the same language, and the
CBL’s strategies for learning these languages are analyzed and applied with successful
outcomes. Restrictiveness is traditionally characterized by a subset relation between sets
of outputs, but paradigmatic equals and subsets involve substantially more complex
relationships of restrictiveness between language paradigms which any learner of

paradigmatically structured phonological systems must address.
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APPENDIX A SUPPORTS FOR SKELETAL BASES

The following are the supports for the skeletal bases of consistent mappings for

tirasim and mevugar from section 2.1. The combination labels given refer to chart (42) in

section 2.1.
A-1 COMBINATION (42)F: /TIRAS+IM/[(TIRA)SIM] AND
/MEVUGAR/[(MEVU)(GAR)]
» o S |
= T - . i =)
0 m CE - g 51 @
“l=]l 2] 82 m: a9 O S &
< = : :
Input W-L =|g|&)]2 £ % 3)aiF
/mevugéar/ | [(mévu)(gar)] ~ [me(vigar)] | W | L | W L iL L §
/tiras+im/ [(tira)sim] ~ [(tird)(sim)] WILJL ! WI W, . L
/mevugar/ | [(mévu)(gar)] ~ [me(vugar)] WIJL:!L:!L.:!L P W
/tiras+im/ [(tira)sim] ~ [ti(rdsim)] l Wi WI]L L
A-2 COMBINATION (42)1: /TiRAS+IM/[(TIRA)SIM] AND
/MEVUGAR/[(ME) (VUGAR)]
N : B rooa Loz
%) 0 : Cw g0 [
<1l & 20| 2% | =/
< = - : ©o< [
[tiras+im/ [(tira)sim] ~ [ti(rasim)] WlL[L W!W g W
/tiras+im/ [(tira)sim] ~ [(ti)rasim] W]L.: W W W
/mevugar/ | [(mé)(vugar)] ~ [(mevii)gar] W L LW L L
/mevugar/ | [(mé)(vugar)] ~ [(mé)(vugar)] \ ' : L |
/mevugar/ | [(mé)(vugar)] ~ [me(viigar)] W W L L
/tiras+im/ [(tira)sim] ~ [(tird)(sim)] W L LW W
/mevugar/ | [(me&)(vugér)] ~ [me(vugar)] : : W:!W|L L
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A-3 COMBINATION (42)K: /TIRAS+IM/[(T{)RASIM] AND
/MEVUGAR/[(ME)(VUGAR)]
ARFIEEIEEIRE
x2Sl 2182 %@
<2 3| 25120 &
Input W~L = ! st 5-4 < ! — [ ! * I ! <3
/tiras+im/ [(ti)rasim] ~ [ti(rasim)] W LW : W]|L: L
/tiras+im/ [(ti)rasim] ~ [(tira)sim] ' WL L : L | L. L
/mevugar/ | [(mé)(vugar)] ~ [(mevi)gar] ' WI|lL ! L|W! L L
/tiras+im/ [(tD)rasim] ~ [(ti)(rasim)] \ L L |W.
/mevugar/ | [(mé)(vugar)] ~ [me(vugar)] : Wi iW]L L
A-4 COMBINATION (42)M: /TiRAS+IM/[(TIRA)SIM] AND
/MEVUGAR/[(ME) (VUGAR)]
3‘) & B - 2 ;;% Lz
l=: 22 SRR R
S| = 3 z:2: 31z &
Input WL s[5 2[2 £ Fgi«
/tiras+im/ [(tira)sim] ~ [ti(rasim)] Wl W Y L] L W
/mevugar/ | [(me)(vugar)] ~[(mevi)gar] | W | L | L | W P W L L
/tiras+im/ [(tira)sim] ~ [(tira)(sim)] W | : LU LW W
/tiras+im/ [(tira)sim] ~ [(ti)rasim] l WL LW Wi W
/mevugar/ | [(mé)(vugar)] ~ [me(vugar)] : W W] L L
A-5 COMBINATION (42)N: /TiRAS+IM/[(TIRA)SIM] AND
/MEVUGAR/[(MEVU)(GAR)]
2| o | S
A LB LR L Z D E
Flei8l2 Slgiaipit
Input W~L = E E ~ é E 971 S U[_-: <: A4
ftiras+im/ | [(tira)sim] ~ [ti(rasim)] wlw:iL i L [WiW
/mevugar/ | [(mévu)(gar)] ~ [me(vagar)] | W | L ! \ v LV L1 L
/tiras+im/ [(tira)sim] ~ [(tira)(sim)] W . L L PW oW
/mevugar/ | [(mévu)(gar)] ~ [me(vugar)] l Wi WL ! L:!L . L
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A-6 COMBINATION (42)0: /TIRAS+IM/[(T{)RASIM] AND
/MEVUGAR/[(ME) (VUGAR)]
o o E E
= : : P om !
12l a0 Sl 2 S| oM
<2 : : 2109 e
/tiras+im/ [(tD)rasim] ~ [ti(rasim)] \Y W w:L|L: L L
/mevugar/ | [(me)(vugar)] ~ [(mevi)gar] | W | L:L:w]|w: L L
/tiras+im/ [(t))rasim] ~ [(tira)sim] P W : v L | L | L L
/tiras+im/ [(tD)rasim] ~ [(ti)(rasim)] : W : L LW
/mevugar/ | [(mé)(vugar)] ~ [me(vugar)] : Wi iW]L L
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APPENDIX B RUBY CODE FOR THE CBL

B-1 STRESS_FEAT.RB

# Author: Crystal Akers, based on Bruce Tesar's sl/stress feat

require 'feature’

module SF

# A stress feature is a Feature of type STRESS.

# It has two possible feature values, represented

# by the constants UNSTRESSED, MAIN STRESS.
class Stress feat < Feature

#-- Symbols are used as lightweight, readable constants ++

# Feature type stress

STRESS = :stress

# Feature value unstressed syllable
UNSTRESSED = :unstressed

# Feature value main stress syllable

MAIN STRESS = :main_stress
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# Returns a new stress feature, with the feature value unset.
def initialize
super(STRESS) # Pass the feature type to Feature#initialize.

end

# Returns true if the feature instance is unstressed; false otherwise.
def unstressed?
self.value == UNSTRESSED

end

# Returns true if the feature instance is main_stress; false otherwise.
def main_stress?
self.value == MAIN_ STRESS

end

# Sets the feature to the value UNSTRESSED.
def set_unstressed

self.value = UNSTRESSED

self

end



# Sets the feature to the value MAIN STRESS.

def set_main_stress
self.value = MAIN_STRESS

self

end

# Returns a string representation of the feature:

# "stress=<value>"

defto_s
return "stress=unset" if unset?
return "stress=unstressed" if unstressed?
return "stress=main_stress" if main_stress?

end
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#-- Generic interface ++

# Passes each possible value for this feature to the given code block,
# one at a time (iterator style). This generic interface should be
# used by all feature types.
def each_value
yield UNSTRESSED
yield MAIN STRESS

end

end # class Stress_feat

end # module SF



B-2 SYLLABLE.RB

# encoding: UTF-8
#

# Author: Crystal Akers, based on Bruce Tesar's sl/syllable

#

require 'sf/stress_feat'

module SF

# A syllable for the SF system has one feature, stress. It also can have an

# affiliated morpheme.

#

# Learning algorithms are expected to use the "generic" interface, consisting

# of the methods #each_feature() and #get feature(). The method #each feature()
# is an iterator that yields each feature of the syllable in turn,

# allowing other routines to work with syllables without knowing in advance

# how many or what types of features they have.

class Syllable
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# Returns a syllable, initialized to the parameters if provided. Otherwise,
# returns a syllable with unset features, and an empty string for the
# morpheme.
def initialize(stress=Stress_feat.new, morph="")
(@stress = stress
@morpheme = morph # label of the morpheme this syllable is affiliated with.

end

# A duplicate makes copies of the features, so that they may be altered
# independently of the original's features.
def dup

self.class.new(@stress.dup, (@morpheme)

end
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# Protected accessors, only used for #==()
attr_reader :stress # :nodoc:

protected :stress # :nodoc:

# Returns true if this syllable matches other , a syllable, in the value of
# the stress feature and morpheme identity.
def ==(other)

return false unless other.class == self.class

return false unless @stress==other.stress

return false unless @morpheme==other.morpheme

return true

end

# The same as ==(other).

def eql?(other)
self==other
end

# Returns true if the syllable's stress feature has the value main_stress.
def main_stress?
(@stress.main_stress?

end
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# Returns true if the syllable's stress feature has the value unstressed.
def unstressed?
(@stress.unstressed?

end

# Returns true is the stress feature is unset.
def stress_unset?
(@stress.unset?

end

# Returns the morpheme that this syllable is affiliated with.
def morpheme
@morpheme

end

# Sets the syllable's stress feature to the value main_stress.
def set_main_stress
(@stress.set_main_stress

self

end
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# Sets the syllable's stress feature to the value unstressed.
def set_unstressed
(@stress.set_unstressed

self

end

# Set the morpheme that this syllable is affiliated with to m .
def set_morpheme(m)

@morpheme = m

self

end

# Returns the number of syllables in this "word element".
# A syllable always contains 1 syllable. This allows us to
# easily add up the number of syllables in a word, without
# having to worry about whether each element of the word is
# an unfooted syllable or a foot: each element knows how
# to answer the question "how many syllables do you have?"
def syllable count
return 1

end
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# Iterates over the single syllable.
def each_syllable

yield self

end

# Returns a string representation of the syllable, consisting of one
# character, denoting the stress feature:
#
# unstressed:: [s]
# main stress:: [Y]
# unset:: [?]
defto_s
stress_s = case
when main_stress? then "Y"
when unstressed? then "s"
when stress_unset? then "?"
end
return stress_s

end
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def to_gv

base = "morpheme type not defined"

if morpheme.root? then
base ="p"

elsif morpheme.suffix? then
base = "k"

elsif morpheme.prefix? then
base = "t"

end

stress_s = case

when main_stress? then "4"

when unstressed? then "a"

when stress_unset? then "?"

end

return base + stress_s

end

# Iterator over the features of the syllable.
def each_feature() # :yields: feature
yield @stress

end
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# Returns the syllable's type feature. Raises an exception if the
# syllable does not have a feature of type type .
def get feature(type)
each feature{|f] return f if f.type==type}
raise "SF::Syllable#get feature(): parameter #{type.to_s} is not a valid feature type."

end

# Sets the syllable's feat type to value .
def set_feature(feat_type,val)
f=get feature(feat type)
f.value = val

end

end # class Syllable

end # module SF
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B-3 OUTPUT_SYLLABLE.RB

# encoding: UTF-8
#
# Author: Crystal Akers, based on Bruce Tesar's sl/syllable

#

require 'sf/syllable’

module SF

# An output syllable for the SF system has one feature, stress. The stress feature
# can have the value primary stress or unstressed. Secondary stress is assigned
# with a T/F parameter. The combinations of stress feature and secondary stress
# create the following output syllables:

# Primary stress and false for sec stress = primary stress syllable

# Unstressed and false for sec stress = unstressed syllable

# Unstressed and true for sec stress = secondary stress syllable

# (Primary stress and true for sec stress is not allowed)

# Output syllable also can have an affiliated morpheme.

class Output_Syllable < Syllable
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# Returns a syllable, initialized to the parameters if provided. Otherwise,
# returns a syllable with unset features, an empty string for the
# morpheme, and does not have secondary stress.
def initialize(stress=Stress feat.new,sec_stress =false, morph=""")
(@stress = stress
(@sec_stress = sec_stress
@morpheme = morph # label of the morpheme this syllable is affiliated with
if @stress.main_stress? and @sec_stress==true then
raise "Cannot have both primary and secondary stress"
end

end

# A duplicate makes copies of the features, so that they may be altered
# independently of the original's features.
def dup

self.class.new(@stress.dup, @sec_stress, (@morpheme)

end



278

# Protected accessors, only used for #==()
attr_reader :stress # :nodoc:

protected :stress # :nodoc:

# Returns true if this syllable matches other , a syllable, in the values
# the stress feature, and morpheme identity.
def ==(other)

return false unless other.class == self.class

return false unless @stress==other.stress

return false unless @sec_stress == other.sec_stress?

return false unless @morpheme==other.morpheme

return true

end

# The same as ==(other).

def eql?(other)
self==other
end

# Returns true if the syllable's stress feature has the value
# main_stress.
def main_stress?

(@stress.main_stress?

end
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# Returns true if the syllable's stress feature has the value
# unstressed and the sec_stress parameter is true.
def sec_stress?

l@stress.main_stress? and @sec_stress == true

end

# Returns true if the syllable's stress feature has the value
# main_stress or the sec_stress is true.
def stressed?

(@stress.main_stress? or (@sec_stress == true

end

# Returns true if the syllable's stress feature has the value
# unstressed.
def unstressed?

@sec_stress == false and super

end

# Returns true is the stress feature is unset.
def stress_unset?
@stress.unset? and @sec_stress == false

end
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# Returns the morpheme that this syllable is affiliated with.
def morpheme
@morpheme

end

# Sets the syllable's stress feature to the value main_stress.
def set_main_stress
(@stress.set_main_stress

self

end

# Sets the syllable's sec_stress parameter to true and the stress feature value
# to unstressed.
def set_sec_stress

@stress.set_unstressed

@sec_stress = true

self

end
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# Sets the syllable's stress feature to the value unstressed and sets
# the sec_stress parameter to false.
def set_unstressed
(@stress.set_unstressed
@sec_stress = false
self

end

# Set the morpheme that this syllable is affiliated with to m .
def set_morpheme(m)

(@morpheme = m

self

end

# Returns the number of syllables in this "word element".
# A syllable always contains 1 syllable. This allows us to
# easily add up the number of syllables in a word, without
# having to worry about whether each element of the word is
# an unfooted syllable or a foot: each element knows how
# to answer the question "how many syllables do you have?"
def syllable count
return 1

end
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# Iterates over the single syllable.
def each_syllable
yield self

end

# Returns a string representation of the syllable, consisting of one
# character, denoting the stress feature:
#
# unstressed:: [s]
# main stress:: [Y]
# sec_stress:: [X]
# unset:: [?]
defto_s
stress s = case
when main_stress? then "Y"
when sec_stress? then "X"
when unstressed? then "s"
when stress_unset? then "?"
end
return stress_s

end
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def to_gv
base = "morpheme type not defined"
if morpheme.root? then
base ="p"
elsif morpheme.suffix? then
base = "k"
elsif morpheme.prefix? then
base = "t"
end
stress_s = case
when main_stress? then "4"
when sec_stress? then "a"
when unstressed? then "a"
when stress_unset? then "?"
end

return base + stress_s

end

# Iterator over the features of the syllable.
def each_feature()
yield @stress

end
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# Returns the syllable's type feature. Raises an exception if the
# syllable does not have a feature of type type .
def get feature(type)
each feature{|f] return f if f.type==type}
raise "SF::Syllable#get feature(): parameter #{type.to_s} is not a valid feature type."

end

end # class Output_Syllable

end # module SF
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B-4 FOOT.RB

# Author: Crystal Akers, based on Bruce Tesar's Ruby on RORG foot.rb

require 'sf/syllable’

module SF

# A foot consists of one or two syllables.

class Foot
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# A complete foot must be created at once, with the
# syllables being provided as arguments to #new().
# The "*' operator in front of the parameter args
# stores the parameters passed into the method in
# an array, referenced by args. This allows the method
# to accommodate a variable number of passed
# parameters; in this case, one or two syllables.
def initialize(*args)
raise "No empty feet!" if args.empty?
raise "No suprabinary feet!" if args.size > 2
raise "One syllable must be stressed" if args.all? {|syl| syl.unstressed?}
raise "Only one syllable may be stressed" if args.size == 2 and !args.any? {|syl|
syl.unstressed?}
@syllables = args

end

# Returns the number of syllables in the foot.
def syllable count
return @syllables.size

end
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# Returns the first syllable in the foot.
def first_syl
return @syllables[0]

end

# Returns the second syllable in the foot. Returns nil if the
# foot only has one syllable.
def second_syl

return @syllables[1]

end

# Returns the last syllable in the foot, whether it is the first syllable
# or the second.
def last_syl
if @syllables.size ==
return @syllables[0]
else return @syllables[1]
end

end
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# Iterator over each syllable in a foot
def each_syllable
yield self .first syl
yield self.second syl if @syllables.size ==

end

# Returns true if the stress feature of any syllable in the foot has the value
# main_stress.
def main_stress?

@syllables.any? { |syl| syl.main_stress? }

end



289

# Returns true if this foot and _other foot have the same number of syllables and the
# syllables themselves are equivalent.
def ==(other)
val = false
if self.class == other.class then
if self.syllable count == other.syllable count then
val = true if self first syl == other.first syl && self.second syl == other.second syl
end
end
return val

end

# Equivalent to ==().
def eql?(other)
self==other

end



# A duplicate makes copies of the syllables, so that their features may be altered
# independently of the original syllables' features.
def dup
if self.syllable count == 2 then
return Foot.new(self.first_syl.dup, self.second syl.dup)
else return Foot.new(self.first syl.dup)
end

end

# Represents a foot as a pair of parentheses containing
# the to_s representation of each syllable in the foot,
# without separators.
defto_s
outstr ="("
@syllables.each {|syl| outstr += syl.to_s}
return outstr +=")"

end

end # class Foot

end # module SF
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B-5 SF_OUTPUT.RB

# Author: Crystal Akers

#

require 'output'
require 'sf/foot'

require 'sf/output_syllable'

module SF

class SF::Sf output < Output

# A newly created output is empty, with no morphological word, so that
# it can be built up piece by piece.
def initialize

@morphword = nil

end
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# Returns the number of syllables in the output, by adding up the number of
# syllables in each element of the word.
def syllable count
return inject(0) {|total,element| total + element.syllable count}

end

# Iterator over the elements of the output (unparsed syllables or feet)
def each_element()
self.each { |el| yield el }

end

# Iterator over each syllable in an output element
# (unparsed syllable or foot)
def each_syllable()
self.each do |el|
el.each syllable { |syl| yield syl }
end

end



# Creates an array containing each syllable in the output in order.
def syl list
list = Sf output.new
self.each_syllable { [syl| list <<syl }
return list

end

# Returns a copy of the output as an overt form, containing a duplicate
# of each syllable and a duplicate of the morphological word.
def overt
overt_copy = Sf output.new
self.each_syllable {|syl| overt copy <<syl }
overt_copy.morphword = @morphword.dup unless @morphword.nil?
return overt_copy

end
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# Returns a copy of the output, containing a duplicate of each

# correspondence element and a duplicate of the morphological word.

def dup
# Call Array#map to get an array of dups of the elements, and add
# them to a new Output.
copy = St _output.new.concat(super.map { |el| el.dup })
copy.morphword = @morphword.dup unless @morphword.nil?
return copy

end

end # class SF::Sf output

end # module SF



295

B-6 SF_WORD.RB

# Author: Crystal Akers

#

require 'rubot'

require 'candidate’

require 'input'

require 'output’

require 'io_correspondence’
require 'word'

require 'sf/sf output'

module SF

# An Sf word is a Word with an Sf output.

class SF::Sf word < Word
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# A word starts out with an empty input and empty sf output by default,

# but input and output can be optionally passed as parameters.

# The linguistic system is a mandatory parameter, and

# the correspondence relation is initially empty;

# correspondences must be added after the word is created.

def initialize(system, input=Input.new, output=Sf output.new)
super(system, input, output)

end



# Returns a deep copy of the word, with distinct input syllables and features,

# distinct output elements and features, and appropriately revises Ul and
# 10 correspondences.
def dup
copy = Sf word.new(@system)
copy.label = self.label
copy.opt=self.opt?
# Make local references to reduce number of method calls
c_input = copy.input
c_output = copy.output
c_io_corr = copy.io_corr
# dup the morphological word for the copy's input and output
unless input.morphword.nil?
¢_morphword = input.morphword.dup
c_input.morphword = ¢_morphword
c_output.morphword = ¢_morphword
end
# Make a copy of the input, constructing updated versions of the Ul
# and IO correspondences using the new copies of the input syllables.
input.each do |old in_sy]|
new_in_syl =old_in_syl.dup # duplicate the old input syllable

c_input <<new_in_syl # add the dup to the copy

# Get the corresponding underlying syllable in the original's Ul correspondence.
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# If it exists, add a correspondence to the copy between this underlying
# syllable and the duplicated input syllable in the copy.
under syl = input.ui_corr.under corr(old in_syl)
¢ _input.ui_corr << [under_syl,new_in_syl] unless under syl.nil?
# get the corresponding output syllable in the original word's IO corresp.
out syl = @io_corr.out_corr(old in_syl)
c_io_corr << [new_in_syl,out syl] unless out syl.nil?
end
# Make a copy of the output, adjusting the O part of IO correspondence.
output.each do |old out el
new_out el =old out el.dup # duplicate the old output element (foot or unparsed
syllable)
c_output << new_out el # add the dup to the copy
# find the 10 pair.
new_out =[]; old out =]
new_out_el.each_syllable {|syl| new out << syl}
old out el.each syllable {|syl| old out << syl}
gen = SyncEnumerator.new(new_out,old out)
gen.each do jnew_out_syl,old out syl|
corr_pair =c_io_corr.find{|p| p[1].equal?(old_out syl)}
corr_pair[1] =new_out syl unless corr_pair.nil? # replace old with new output syl.
end

end



copy.eval # set the constraint violations
return copy

end

# Returns the overt form of the word.

def overt()

return self.output.overt

end

end # class Sf word

end # module SF
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B-7 DATA.RB

# Author: Crystal Akers, based on Bruce Tesar's sl/data
#
# This adds, to the module SF, routines for generating data of various types

# within the SF (stress-feet) linguistic system.

require 'sf/system'
require 'sf/grammar’
require 'sf/syllable’
require 'morpheme’
require 'morph_word'
require 'underlying'
require 'lexical entry’
require 'most_harmonic'
require 'rubot'

require 'competition’
require 'competition_list'
require 'hypothesis'
require 'otlearn/data_manip'

require 'facets/array/product' # Adds cartesian product to class Array.

module SF
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# Returns a list of lexical entries for the possible morphemes
# of morphological type type with underlying form length
# uf length (measured in syllables). Each morpheme is assigned
# a label with a distinct number, with _id number providing
# the base (the first generated morpheme gets number id number +1,
# the next generated gets number id number + 2, etc.).
# If a code block is given, each generated lexical entry is passed to it.
def SF.generate_morphemes(uf_length, type, id number)
if type==Morpheme::ROOT then label pref="r1"
elsif type==Morpheme::PREFIX then label pref="p"
elsif type==Morpheme::SUFFIX then label pref="s"
else raise "Unrecognized morpheme type."
end
lexical entry list =[]
SF.generate_underlying forms(uf length) do |uf]
id_number += 1
morph = Morpheme.new("#{label pref}#{id number.to _s}", type)
uf.each {|s| s.set morpheme(morph)}
lexical entry list << Lexical Entry.new(morph,uf)
end
# If a code block was given, run it on each lexical entry.

lexical entry list.each {|le| yield le} if block given?
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return lexical entry list

end



# Generates all possible underlying forms with _uf length syllables.

#1f uf length == 0, a list with a single empty UF is returned.
# If a code block is given, each UF is passed to it. Note: Syllables in
# underlying forms can only be unstressed or have main stress.
def SF.generate underlying forms(uf length)
raise "UF length cannot be <0!" if uf length<0
uf list = [Underlying.new]
uf length.times do
new_uf list =[]
SF.generate_syllables do |s|
uf list.each do |uf]
new_uf = (uf.dup << s.dup)
new_uf list <<new uf
end
end
uf list =new uf list
end
# If a code block was given, run it on each underlying form.
uf list.each {|uf] yield uf} if block given?
return uf list

end
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# Generate all possible syllables (possible combinations of feature values).
# Note that the sf system include secondary stress as a property of output syllables,
# not as a feature; therefore, none of the syllables generated will have secondary stress.
# If a code block is given, each syllable is passed to the code block.

# Returns a list of the possible syllables.
def SF.generate syllables
syl _list =[] << Syllable.new
base syl = Syllable.new
base syl.each feature do |f]
fresh syl list =[]
f.each value do |v|
syl list.each do |s]
syl =s.dup
syl.get feature(f.type).value =v
fresh syl list << syl
end
end
syl list = fresh syl list
end
# If a code block was given, run it on each syllable.
syl list.each {|s| yield s} if block given?
return syl _list

end
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# Generates the optimal candidates with respect to constraint

# hierarchy hier for each input in _inputs_, using the lexicon

# in grammar _gram_. The hierarchy in gram_is set to _hier .

# gram needs to already contain a lexicon with entries for all

# of the morphemes appearing in the inputs.

# Returns a list of the optimal candidates of the language.

def SF.generate language(hier, inputs, gram)
competitions = inputs.map{|i| SYSTEM.gen(i)}
comp_list = Competition_list.new.concat(competitions)
gram.hierarchy = hier
comp_mh = comp_list.map {|comp| MostHarmonic.new(comp,gram.hierarchy)}
# each competition returns a list of winners; collapse to one-level list.
lang = comp_mbh.inject([]) {|winners, mh_list| winners.concat(mh_list) }
lang.each {|winner| winner.opt=true}
return lang

end
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def SF.competitions from_morphwords(words, gram)
# Generate the corresponding input for each morphological word
inputs = words.map {|{mw| SYSTEM.input_from morphword(mw,gram)}
# Generate the corresponding competition for each input
competitions = inputs.map{|i| SYSTEM.gen(i)}
# Convert the array of competitions into a proper Competition_list.
comp_list = Competition_list.new.concat(competitions)
comp_list.label ="SF"
return comp_list

end
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def SF.generate_competitions_2rls

# Generate the morphemes

roots = SF.generate morphemes(2, Morpheme::ROOT, 0)

suffixes = SF.generate_morphemes(1, Morpheme::SUFFIX, 0)

# Create a new grammar, and add all of the morphemes to the lexicon.

gram = Grammar.new

roots.each {|root_le| gram.lexicon.add(root le)}

suffixes.each{|suf le| gram.lexicon.add(suf le)}

# Morphology: create all combinations of one root and one suffix

word_parts = roots.product(suffixes)

words = word_parts.map do |parts|
# Add the morphemes of the combination to a new morphological word.
parts.inject(MorphWord.new){|w,le| w.add(le.morpheme); w}

end

# Generate the competition for each morphword

comp_list = competitions_from morphwords(words, gram)

return comp_list, gram

end
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def SF.generate default inputs

gram = Grammar.new

# Generate the possible monosyllabic roots and suffixes

roots = SF.generate_ morphemes(1, Morpheme::ROOT, 0)

suffixes = SF.generate_morphemes(1, Morpheme::SUFFIX, 0)

# Create all combinations of root-suffix

# Make sure the roots are first in the cartesian product, because they

# must be added first when constructing MorphWords.

word_parts = roots.product(suffixes)

#

# Next line: how to include free roots as (monomorphemic) words

# word_parts += roots.product()

#

# Convert each morpheme-tuple into a MorphWord

words = word_parts.map {|t| t.inject(MorphWord.new) {|w,le| w.add(le.morpheme);
Wi}

# Add the morphemes to the lexicon

roots.each{|root_le| gram.lexicon.add(root le)}

suffixes.each{|suf le| gram.lexicon.add(suf le)}

# Generate the input for each morph_word.

inputs = words.map {|{mw| SYSTEM.input_from morphword(mw,gram)}

return inputs, gram

end
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Ho
# Data for testing purposes.

#HH+

def SF.generate words lang a
inputs, gram = SF.generate default inputs
competitions = inputs.map{|i| SYSTEM.gen(i)}
comp_list = Competition list.new.concat(competitions)
winner list, hyp = OTLearn::generate learning data from competitions(comp_list,
SF.hier 3,Grammar)
return winner_list, hyp

end

def SF.generate outputs lang a
inputs, gram = SF.generate default inputs
lang = SF.generate language(SF.hier 2a, inputs, gram)
outputs = lang.map {|w| w.output}
return outputs

end
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Ho_
# Hierarchies

#HH+

# Constraints: Lmost Rmost AFL ParSyl FtBin FNF Iamb Lapse MaxStress

# This is the hierarchy for language 2 in the 2rls typology
def SF.hier 2
hier = Hierarchy.new
hier << [SYSTEM.iamb] << [SYSTEM.ftbin] << [SYSTEM.fnf] <<
[SYSTEM.parsyl] << [SYSTEM.maxstress] << [SYSTEM.rmost] << [SYSTEM.afl] <<
[SYSTEM.Imost] << [SYSTEM.lapse]
return hier

end

# This is the hierarchy for language 3 in the 2rls typology
def SF.hier_3
hier = Hierarchy.new
hier << [SYSTEM.rmost] << [SYSTEM.ftbin] << [SYSTEM.afl] << [SYSTEM.Imost]
<< [SYSTEM.parsyl] << [SYSTEM.maxstress] << [SYSTEM.iamb] << [SYSTEM.fnf]
<< [SYSTEM.lapse]

return hier

end



# This is the hierarchy for language 6 in the 2rls typology
def SF.hier 6
hier = Hierarchy.new
hier << [SYSTEM.iamb] << [SYSTEM.fnf] << [SYSTEM.maxstress] <<
[SYSTEM.ftbin] << [SYSTEM.rmost] << [SYSTEM.parsyl] << [SYSTEM.afl] <<
[SYSTEM.Imost] << [SYSTEM.lapse]
return hier

end

# This is the hierarchy for language 13 in the 2rls typology
def SF.hier_13
hier = Hierarchy.new
hier <<[SYSTEM.maxstress] << [SYSTEM.Imost] << [SYSTEM.afl] <<
[SYSTEM.ftbin] << [SYSTEM.rmost] << [SYSTEM.parsyl] << [SYSTEM.lapse] <<
[SYSTEM.fnf] << [SYSTEM.iamb]
return hier

end
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# This is the hierarchy for language 37 in the 2rls typology
def SF.hier_37
hier = Hierarchy.new
hier <<[SYSTEM.maxstress] << [SYSTEM.ftbin] << [SYSTEM.parsyl] <<
[SYSTEM.lapse] << [SYSTEM.rmost] << [SYSTEM.fnf] << [SYSTEM.iamb] <<
[SYSTEM.afl] << [SYSTEM.Imost]
return hier

end

# This is the hierarchy for language 39 in the 2rls typology (2A1B1)
def SF.hier_39
hier = Hierarchy.new
hier <<[SYSTEM.nf] << [SYSTEM.ftbin] << [SYSTEM.maxstress] <<
[SYSTEM.iamb] << [SYSTEM.parsyl] << [SYSTEM.rmost] << [SYSTEM.lapse] <<
[SYSTEM.afl] << [SYSTEM.Imost]
return hier

end
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# This is the hierarchy for language 55 in the 2rls typology
def SF.hier_55
hier = Hierarchy.new
hier << [SYSTEM.lapse] << [SYSTEM.maxstress] << [SYSTEM.Imost] <<
[SYSTEM.fnf] << [SYSTEM.rmost] << [SYSTEM.parsyl] << [SYSTEM.iamb] <<
[SYSTEM.ftbin] << [SYSTEM.afl]
return hier

end

# This is the hierarchy for language 58 in the 2rls typology
def SF.hier_58
hier = Hierarchy.new
hier << [SYSTEM.lapse] << [SYSTEM.parsyl] << [SYSTEM.Imost] <<
[SYSTEM.ftbin] << [SYSTEM.fnf] << [SYSTEM.rmost] << [SYSTEM.maxstress] <<
[SYSTEM.iamb] << [SYSTEM.afl]
return hier

end
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# This is the hierarchy for language 66 in the 2rls typology
def SF.hier_66
hier = Hierarchy.new
hier << [SYSTEM.maxstress] << [SYSTEM.iamb] << [SYSTEM.rmost] <<
[SYSTEM.Imost] << [SYSTEM.afl] << [SYSTEM.parsyl] << [SYSTEM.lapse] <<
[SYSTEM.fnf] << [SYSTEM.ftbin]
return hier

end

# This is the hierarchy for language 69 in the 2rls typology (37A1B2C1)
def SF.hier_69
hier = Hierarchy.new
hier <<[SYSTEM.maxstress] << [SYSTEM.parsyl] << [SYSTEM.lapse] <<
[SYSTEM.ftbin] << [SYSTEM.rmost] << [SYSTEM.iamb] << [SYSTEM.afl] <<
[SYSTEM.Imost] << [SYSTEM.nf]
return hier

end



# This is the hierarchy for language 75 in the 2rls typology
def SF.hier_75
hier = Hierarchy.new
hier << [SYSTEM.maxstress] << [SYSTEM.parsyl] << [SYSTEM.lapse] <<
[SYSTEM.ftbin] << [SYSTEM.afl] << [SYSTEM.iamb] << [SYSTEM.nf] <<[
SYSTEM.rmost] << [SYSTEM.Imost]
return hier

end

# This is the hierarchy for language 80 in the 2r1s typology
def SF.hier_80
hier = Hierarchy.new

hier <<[SYSTEM.maxstress] << [SYSTEM.lapse] << [SYSTEM.Imost] <<

[SYSTEM.fnf] << [SYSTEM.parsyl] << [SYSTEM.iamb] << [SYSTEM.ftbin] <<

[SYSTEM.afl] << [SYSTEM.rmost]
return hier

end
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# This is the hierarchy for language 87 in the 2rls typology. Corresponds to
# Set 17, Lang A1B1.
def SF.hier_87
hier = Hierarchy.new
hier <<[SYSTEM.parsyl] << [SYSTEM.lapse] << [SYSTEM.fnf] <<
[SYSTEM.ftbin] << [SYSTEM.afl] << [SYSTEM.maxstress] << [SYSTEM.iamb]
<< [SYSTEM.Imost] << [SYSTEM.rmost]
return hier

end

# This is the hierarchy for language 88 in the 2rls typology
def SF.hier_88
hier = Hierarchy.new
hier <<[SYSTEM.maxstress] << [SYSTEM.rmost] << [SYSTEM.Imost] <<
[SYSTEM.afl] << [SYSTEM.lapse] << [SYSTEM.parsyl] << [SYSTEM.ftbin] <<
[SYSTEM.fnf] << [SYSTEM.iamb]
return hier

end
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# This is the hierarchy for language 94 in the 2rls typology
def SF.hier_94
hier = Hierarchy.new
hier << [SYSTEM.parsyl] << [SYSTEM.lapse] << [SYSTEM.fnf] <<
[SYSTEM.ftbin] << [SYSTEM.afl] << [SYSTEM.maxstress] << [SYSTEM.iamb] <<
[SYSTEM.rmost] << [SYSTEM.lmost]
return hier

end

end # module SF
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B-8 GRAMMAR.RB

# Author: Crystal Akers, based on Bruce Tesar's sl/grammar

#

require 'rubot'

require 'rcd’

require 'comparative tableau'
require 'sf/system’

require 'lexicon'

module SF

# A grammar for the SF linguistic system consists of a reference to
# the SF::System linguistic system, a constraint hierarchy, and a lexicon.
class Grammar

attr_accessor :hierarchy, :lexicon

# Stores the linguistic system associated with this grammar.
# In this case, the SF (stress-feet) linguistic system.

@@system = System.instance
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# Returns a new grammar. If a hierarchy or a lexicon are not provided

# as parameters, default initial values are used:

# * the default initial lexicon is empty

# * the default initial hierarchy results from applying RCD to an empty

# comparative tableau.

def initialize(hier=default_initial hierarchy, lex=default_initial lexicon)
@hierarchy = hier
@lexicon = lex

end

# Returns a reference to the linguistic system associated with this grammar.

def system

@@system

end



# Returns a copy of the grammar, with duplicates of the hierarchy and
# the lexicon.
# The duplicate of the hierarchy contains references to the same constraint
# objects, but duplicated strata.
# The duplicate of the lexicon contains duplicates of the lexical entries,
# and the duplicate lexical entries contain duplicates of the underlying
# forms but references to the very same morpheme objects.
def dup
return self.class.new(@hierarchy.dup, @lexicon.dup)

end

# Returns a copy of the grammar, with a duplicate of the hierarchy, but
# a reference to the very same lexicon object.
# The duplicate of the hierarchy contains references to the same constraint
# objects, but duplicated strata.
def dup_hier_only
return self.class.new(@hierarchy.dup, @lexicon)

end
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# Returns the underlying form for the given morpheme, as stored in
# the grammar's lexicon. Returns nil if the morpheme does not appear
# in the lexicon.
def get_uf(morph)
lex_entry = @lexicon.find {|entry| entry.morpheme==morph} # get the lexical entry
return nil if lex _entry.nil?
return lex_entry.uf # return the underlying form

end

private

# The default initial hierarchy is the one resulting from applying RCD
# to an empty comparative tableau.
def default_initial hierarchy
Red.new(Comparative tableau.new('empty',system.constraints)).hierarchy

end



# The default lexicon is simply a new (empty) lexicon.

def default_initial lexicon

Lexicon.new

end

end # class Grammar

end # module SF
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B-9 SYSTEM.RB

# Author: Crystal Akers, from Bruce Tesar's sl/system

#

require 'singleton’

require 'constraint_eval'
require 'ui_correspondence’
require 'rubot'

require 'competition’
require 'st/sf word'

require 'sf/foot'

require 'sf/output_syllable'

require 'sf/sf output'

# For SyncEnumerator
if RUBY VERSION =~ /*1\.9/ then

require 'generator19' # Tesar's ruby 1.9 version
else

require 'generator'  # the ruby 1.8 version

end

module SF
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# Contains the core elements of the SF (stress-feet) linguistic system.

# It defines the constraints of the system, provides the #gen(_input ) method
# generating the candidates for _input , provides a method for

# constructing the phonological input corresponding to a morphological

# word with respect to a given grammar, and provides a method for parsing
# a phonological output for a morphological word into a full structural

# description with respect to a given grammar.

#

# This is a singleton class.

class System

include Singleton

# Create local references to the constraint type constants.
# This is strictly for convenience, so that the "Constraint_eval::"
# prefix doesn't have to appear in the constraint definitions below.

# Note: done this way because constants cannot be aliased.

# Indicates that a constraint is a markedness constraint.
MARK = Constraint_eval::MARK
# Indicates that a constraint is a faithfulness constraint.

FAITH = Constraint_eval::FAITH
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# Creates the constraint list and freezes it, as well as freezing

# each of the constraints. Creation of <em>constraint_list</em>

# also initializes the constraint attributes (nolong(), etc.).

def initialize
initialize eval procs
(@constraints = constraint_list # private method creating the list
(@constraints.each {|con| con.freeze} # freeze the constraints
@constraints.freeze # freeze the constraint list

end

# Returns the list of constraints (each constraint is a Constraint object).
# Note that the returned list is frozen, as are the constraints that
# it contains.

def constraints() return (@constraints end

# Returns the markedness constraint Imost.

def Imost() return @lmost end

# Returns the markedness constraint rmost.

def rmost() return @rmost end

# Returns the markedness constraint afl.

def afl() return @afl end
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# Returns the markedness constraint parsyl.

def parsyl() return @parsyl end

# Returns the markedness constraint ftbin.

def ftbin() return @ftbin end

# Returns the markedness constraint fnf.

def fnf() return @fnf end

# Returns the markedness constraint iamb.

def iamb() return @iamb end

# Returns the markedness constraint lapse.

def lapse() return @lapse end

# Returns the faithfulness constraint maxstress.

def maxstress() return (@maxstress end



# Accepts parameters of a morph_word and a grammar. It builds an input form
# by concatenating the syllables of the underlying forms of each of the
# morphemes in the morph_word, in order. It also constructs the correspondence
# relation for the input, with an entry for each corresponding pair of
# underlying/input syllables.
def input_from_morphword(mw, gram)
input = Input.new
input.morphword = mw
mw.each do |m| # for each morpheme in the morph_word, in order
uf = gram.get uf(m)
raise "Morpheme #{m.label} has no entry in the lexicon." if uf.nil?
uf.each do |syl| # for each syllable of the underlying form
in_syl = syl.dup
input.push(in_syl) # add a duplicate of the underlying syllable to input.
input.ui_corr << [syLin_syl] # create a correspondence between underlying and
input syllables.
end
end
return input

end
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# gen takes an input, generates all candidate words for that input, and returns
# them in the form of a Competition. All candidates are marked
# as not optimal.
# All candidates in the competition share the same input object. The outputs
# for candidates may also share some of their syllable objects.
def gen(input)
#Creates all of the outputs equal in length to the input, then creates new
#words with each of these outputs.
start_rep = SF::Sf output.new
# create a list of partial outputs
not long enough = [start_rep]

final output list = [] #List of complete outputs, each containing main stress

# Create the list of all syllables and feet that can appear in a word.
element list =[]

element list << Output Syllable.new.set unstressed #unstressed element
# degenerate feet

element list << Foot.new(Output Syllable.new.set main_stress)

element list << Foot.new(Output_Syllable.new.set sec stress)

# trochaic and iambic primary feet

element list <<

Foot.new(Output Syllable.new.set main_stress,Output Syllable.new.set unstressed)
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element list <<
Foot.new(Output_Syllable.new.set unstressed,Output Syllable.new.set main_stress)

# trochaic and iambic secondary feet

element list <<
Foot.new(Output_Syllable.new.set sec_stress,Output Syllable.new.set unstressed)

element list <<

Foot.new(Output_Syllable.new.set unstressed,Output Syllable.new.set sec_stress)

# Set the word length in syllables

word_length = input.length

# Keep processing not_long_enough until no structures remain that need adding
# on to (that is, have fewer than the required number of syllables).
until not_long_enough.empty?
base =not_long_enough.shift # take the first output in the queue
# Separately extend copies of the base output with each possible word element.
element list.each do |el|
next output = base # Copy the partial output
# Extends next _output with the word element el unless both already include
# main stress.
# If the newly extended output is long enough and contains main stress,
# it is moved to the final output list. Otherwise, if it is not yet long enough,

# then it is added to the back of not_long_enough to be extended further.
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unless (next_output.any? {|element| element.main_stress?}) and el.main_stress?
then
extended out = extend output(next output, el)
if extended out.syllable count == word length and (extended out.any?
{|element| element.main_stress?}) then
final output list << extended out
elsif extended out.syllable count < word length then
not_long_enough << extended out
end
end
end

end

# Create a new word for each of the completed outputs
final word list =[]
final output list.each do |output]|
#Creates a new word with full input, but empty output, io_corr
new_word = Sf word.new(SYSTEM,input,output)
new_word.output.morphword = input.morphword
# Sets the morpheme of the output syllable equal to the morpheme of the input
syllable
# Also sets the i0_corr pairs for the input and output syllables

g = SyncEnumerator.new(input,output.syl list)
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g.each do |in_syl,out syl|
out syl.set morpheme(in_syl.morpheme)
new_word.io_corr << [in_syl,out syl]
end
final word list <<new_ word

end

# Put actual candidates into competition, calling eval on each to set
# the constraint violations.

competition = Competition.new

final word list.each{|c| c.eval; competition.push(c)}

return competition

end



# Constructs a full structural description for the given output using the
# lexicon of the given grammar. The constructed input will stand in
# 1-to-1 10 correspondence with the output; an exception is thrown if
# the number of syllables in the lexical entry of each morpheme doesn't
# match the number of syllables for that morpheme in the output.
def parse_output(output, gram)
mw = output.morphword
# If any morphemes aren't currently in the lexicon, create new entries, with
# the same number of syllables as in the output, and all features unset.
mw.each do |m|
unless gram.lexicon.any? {|entry| entry.morpheme==m} then
under = Underlying.new
output.each_syllable do |syl|
if syl.morpheme == m then
under << SF::Syllable.new.set morpheme(m)
end
end
gram.lexicon << Lexical Entry.new(m,under)
end
end
# Construct the input form
input = input_from_morphword(mw, gram)

word = Sf word.new(SYSTEM, input,output)
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# create 1-to-1 1O correspondence
if input.size != output.syllable count then

raise "Input size #{input.size} not equal to output size #{output.syllable count}."
end
gen = SyncEnumerator.new(input, output.syl list)
gen.each do |in_syl,out sy]|

word.io_corr << [in_syl,out syl]

if in_syl.morpheme != out_syl.morpheme then

raise "Input syllable morph #{in_syl.morpheme.label} !=" +
"output syllable morph #{out_syl.morpheme.label}"

end
end
word.eval
return word

end
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# Constructs a list containing all the outputs that correspond to the given overt form.
def parse_overt(overt, gram)
# Construct the structural interpretations by creating two lists of partial
# interpretations. Interpretations in openft are incomplete: each ends with
# a syllable that could be parsed into a foot. Interpretations in closedft
# are complete: they end with either a foot or an unparsed syllable that will remain
# unparsed.
closedft =[]; openft =[]
overt.each do [sy]|
# copy the partial interpretation lists to old_*, and reset the lists to empty.
old clft = closedft; old opft = openft
closedft =[]; openft =[]
# If old_opft is empty and syl is unstressed, add an interpretation with
# syl as the first syllable of an incomplete foot
if old_opft.empty? and syl.unstressed? then
interp = Sf output.new
interp << syl
openft << interp.dup
else
# Otherwise, for each interpretation, check that the last syllable of the
# interpretation and syl are not both stressed or unstressed. If they have different
# stress feature values, extended the interpretation with a binary foot

# using last_syllable and syl. If they have the same stress values, do nothing
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# (eliminate this partial interpretation, because it will be a duplicate
# of a partial interpretation in the closedft list).
until old_opft.empty?
interp = Sf_output.new
i=old_opft.shift
last syllable = i.pop
unless syl.stressed? == last_syllable.stressed? then
# Copy each remaining element in i1 and add to interp. Also complete the binary
# foot by extending the last syllable with syl.
unless i.empty?
i.each { |el| interp <<el }
end
interp << Foot.new(last_syllable, syl)
# With the completed foot, the interpretation is added to the closedft list
closedft << interp.dup
end
end
end
# If old_clft is empty, add an interpretation with syl as the first closed element --
# either an unparsed syllable or a unary foot.
if old_clft.empty? then
interp = Sf output.new

if syl.stressed? then
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open_interp = Sf output.new
open_interp << syl
openft << open_interp.dup
interp << Foot.new(syl)
closedft << interp.dup
else
interp << syl
closedft << interp.dup
end
else
# Extend each old closed interpretation with another closed element (either an
# unparsed syllable or a binary foot. Also extend with an open element (either
# the beginning of an iamb or a trochee, depending on syl.
until old_clft.empty?
i=old clft.shift
interp = Sf output.new
# copy each element in i and add to interp. Also copy and add syl to begin the
# potential binary foot.
i.each do |el|
interp <<el
end
open_interp = Sf output.new

open_interp = interp.dup << syl
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openft << open_interp.dup
if syl.stressed? then
interp << Foot.new(syl)
else
interp << syl
end
closedft << interp.dup
end
end
end
# Closedft will contain all completely parsed interpretations. Each of these
# must have the same morphword as the overt form.
closedft.each do [i
i.morphword = overt.morphword
end
# If a code block was given, run it on each interpretation given.
closedft.each {|interp| yield interp} if block given?
return closedft

end
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# Returns a list of the words whose outputs are structural interpretations
# of the given overt form.
def get_interpretations(overt,gram)
output_list = parse_overt(overt,gram)
list =[]
output list.each do |output|
list << parse_output(output,gram)
end
return list

end

# The constraint evaluation procedure declarations.
#

def Imost_eval() return @lmost_eval end

def rmost_eval() return @rmost_eval end

def afl_eval() return @afl eval end

def parsyl_eval() return @parsyl eval end

def ftbin_eval() return @ftbin_eval end

def fnf eval() return @fnf eval end

def iamb_eval() return @iamb_eval end

def lapse_eval() return @lapse_eval end

def maxstress_eval() return (@maxstress_eval end
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private

def initialize eval procs
# Lmost
@lmost_eval = lambda do |cand|
viol_count =0
cand.output.each_element do |el|
break if el.main_stress?
viol count += el.syllable count
end
viol count
end
# RMost
@rmost_eval = lambda do |cand]
viol_count =0
stress_found = false
cand.output.each_element do |el|
viol_count +=el.syllable count if stress_found
stress_found = true if el.main_stress?
end
viol _count

end
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# AFL
@afl_eval = lambda do |cand|
viol _count =0
cand.output.each_index do |ind|
# For each foot, add up the number of syllables in the slice of output
# to the left of the foot
if ind > 0 and cand.output[ind].class == Foot then
output_slice = cand.output.slice(0..ind-1)
output_slice.each { |el| viol count += el.syllable count }
end
end
viol count
end
# ParSyl
@parsyl eval = lambda do |cand|
viol_count =0
cand.output.each_element do |el|
viol_count +=1 if el.class != Foot
end
viol count
end
# FtBin

@ftbin_eval = lambda do |cand|
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viol _count =0
cand.output.each_element do |el|
viol count += 1 if el.class == Foot and el.syllable count ==
end
viol count
end
# FNF
@fnf eval = lambda do |cand|
viol _count =0
cand.output.each_element do |el|
viol _count +=1 if el.class == Foot and el.last_syl.stressed?
end
viol count
end
# lamb
@iamb_eval = lambda do |cand]
viol_count =0
cand.output.each_element do |el|
viol_count +=1 if el.class == Foot and !el.last_syl.stressed?
end
viol count
end

# Lapse
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@lapse_eval = lambda do |cand|
viol _count =0
cand.output.syl list.each_index do |ind|
unless cand.output.syl list[ind].equal?cand.output.syl list[-1]
viol _count += 1 if cand.output.syl list[ind].unstressed? and
Icand.output.syl list[ind+1].stressed?
end
end
viol count
end
# MaxStress
(@maxstress_eval = lambda do |cand|
cand.io_corr.inject(0) do |sum, pair|
if pair[0].stress_unset? then sum
elsif pair[0].main_stress? & !pair[1].main_stress? then sum+1
else sum
end
end
end

end
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# Takes a partial output, along with
# a reference to the next word element (syllable or foot) to be added
# to the output. A copy of the new output, containing the new output syllable(s)
#is returned.
def extend_output(output, el)
new_output = output.dup
new_output << el.dup
return new_output

end



# Define the constraint list.
# Each constraint has a label, a number, and a string defining the
# violation evaluation procedure. Passing the eval string as an argument
# to #eval will return a reference to a Proc, itself the actual violation
# evaluation procedure. Calling that Proc with a candidate will
# return the number of violations of that constraint in the candidate.
def constraint _list
list =[]
list << @lmost = Constraint_eval.new("Lmost", 1, MARK,
"SF::System.instance.lmost_eval")
list << @rmost = Constraint_eval.new("RMost", 2, MARK,
"SF::System.instance.rmost_eval")
list << @afl = Constraint_eval.new("AFL", 3, MARK,
"SF::System.instance.afl eval")
list << @parsyl = Constraint_eval.new("ParSyl", 4, MARK,
"SF::System.instance.parsyl eval")
list << @ftbin = Constraint_eval.new("FtBin", 5, MARK,
"SF::System.instance.ftbin_eval")
list << @fnf = Constraint_eval.new("FNF", 6, MARK,
"SF::System.instance.fnf eval")
list << @iamb = Constraint_eval.new("lamb", 7, MARK,

"SF::System.instance.iamb_eval")
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list << @lapse = Constraint_eval.new("Lapse", 8§, MARK,
"SF::System.instance.lapse eval")

list << @maxstress = Constraint_eval.new("MaxStress", 9, FAITH,
"SF::System.instance.maxstress_eval")

return list

end

end # class SF::System

# The system object for the linguistic system SF (stress-feet).

SYSTEM = System.instance

end # module SF



B-10 OVERT_LANGUAGE_LEARNING.RB

# Author: Crystal Akers

#

# For Generator
if RUBY_ VERSION =~ /~1\.9/ then

require 'generator19' # Tesar's home-cooked ruby 1.9 version
else

require 'generator’  # the ruby 1.8 version

end

require 'otlearn/contrast_pair'

require 'otlearn/ranking_learning'

require 'otlearn/grammar_test'

require 'otlearn/rcd bias low'

require 'otlearn/uf learning'

require 'overt_otlearn/overt grammar test'
require 'overt_otlearn/label set'

require 'overt_otlearn/language hypothesis'

require 'facets/array/product' # Adds cartesian product to class Array.

require 'set'
require 'morph_word'

require 'otlearn/mred’
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module Overt OTLearn

# A OvertLanguageLearning object instantiates a particular instance of
# language learning. An instance is created with a set of overt forms

# (the data to be learned from), and a starting language hypothesis (which
# will likely be altered and branched during the course of learning).

#

# The learning proceeds in the following stages, in order:

# * Phonotactic learning.

# * Single form learning (one word at a time until no more can be learned).
# * Repeat until the language is learned or no more progress is made.

# * Try a contrast pair.

# * If no contrast pair succeeds, look for an error on a consistent,

# mismatch candidate.

# * If no consistent mismatch candidate is informative, t

#  try minimum uf setting.

# * If any of these is successful, and the language is not yet learned,

#  run another round of single form learning.

# After each stage in which hypothesis change occurs, the state of

# the learner is stored and evaluated in an OvertGrammarTest object. These
# objects are stored in a list, obtainable via #results_list().

#

# Learning is initiated upon construction of the object.

class OvertLanguagelLearning

attr_reader :labels, :letter, :lang_hyp list, :discards, :results_list



# Executes learning on _overt forms_ with respect to _language hypothesis_, and
# stores the results in the returned OvertLanguagelLearning object.
def initialize(overt_forms, language hypothesis)

# List of overt forms provided as data to the learner

@overt_forms = overt _forms

# List of consistent language hypotheses

@lang_hyp list =]

@lang_hyp list << language hypothesis

# List of discarded, inconsistent language hypotheses

@discards = []

# Stores the results for learning across all language hypotheses.

@results_list =[]

# Stores the label hashes associated with the overt forms.

@labels = Label set.new

# Stores the letter to be associated with the next new label hash

@letter ="A"

@learning_successful = execute learning

end

# Returns the overt forms that were the data for learning.

def data_overt_forms() return @overt_forms end

# Returns the list of language hypotheses that are the result of learning.

def lang_hyp_list() return @lang_hyp_list end

348
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# Returns the list of grammar test objects generated at various stages
# of learning.

def results_list() @results_list end

# Returns a boolean indicating if learning was successful.

def learning_successful?() return @learning_successful end

#Returns the list of discarded language hypotheses.

def discards() @discards end

# The main, top-level method for executing learning. This method is
# protected, and called by the constructor #initialize, so learning
# is automatically executed whenever an OvertLanguagel.earning object is
# created.
# Returns true if learning was successful, false otherwise.
def execute learning
# Phonotactic learning
puts "Phonotactic learning"
phonotactic learning(@overt_forms, @lang_hyp list)
@results_list << ["Phonotactic Learning - #{lang_sim_results(@lang_hyp list)}",
learning_completed?]
return true if learning_completed? == true
# Single form UF learning
puts "single form learning"

run_single forms_until no change(@lang_hyp_list)
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@results_list << ["Single Form Learning - #{lang_sim_results(@lang_hyp list)}",
learning_completed?]

return true if learning_completed? == true

# Pursue further learning until the language is learned, or no

# further improvement is made.

puts "Further learning"

further learning()

@results_list << ["Further Learning - #{lang_sim_results(@lang_hyp list)}",
learning_completed?]

return true if learning_completed? == true

# Consider learning successful if at least one consistent hypothesis

# has learned the language. This partial success will allow for

# comparing the expected simulation outcome with the actual outcome, in

# case more than one language hypothesis was expected to succeed.

return true if @lang_hyp list.any? {|lang_hyp| lang_hyp.results_list.last.all correct?}

# Return boolean indicating if learning was successful.

# This should be false, because a "true" would have triggered an earlier

# return from this method.

fail if learning_completed? == true

return learning_completed?

end
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# This method returns true if learning is complete; that is, if the
# last grammar test for each language hypothesis is all correct.
def learning_completed?()

@lang_hyp list.each do [lang_hyp|
# Return false unless the last grammar test for the language
# hypothesis is all correct.
return false unless lang hyp.results_list.last.all _correct?
end
return true

end

# Reports on the number of successful and discarded hypotheses, along with
# their labels. Used in the Typ Summary Excel worksheet.
def lang_sim_results(successful_hyps)
results = String.new
results += "#{successful_hyps.size} consistent hyps: "
successful hyps.each {|hyp]| results += hyp.lang hyp label.to s+"-"}
results +=" #{(@discards.size} inconsistent hyps: "
(@discards.each {|hyp| results += hyp.lang hyp label.to s+"-"}
return results

end
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# Tests each overt form against each language hypothesis until all

# language hypotheses cycle through all overt forms without making

# any learning changes.

def phonotactic_learning(overt forms, lang hyp_list)
ranking_bias =nil # FaithLow ranking bias

1 hyp_list=1ang_hyp list

while | hyp_list.any? {|l hyp| 1 hyp.learning change == true}
# changed hyps : hyps that changed in the last pass are re-tested
# @lang hyp list : hyps that did not change in the last pass are stored
changed hyps, @lang_hyp list=1 hyp list.partition do
[l hyp|1 hyp.learning_change
end
overt forms.each do |overt|
1 hyp_list = changed_hyps
changed hyps =[]
until I_hyp_list.empty? do
lang_hyp =1 hyp_list.shift
# Add the complete list of overt forms to lang hyp . The overt
# forms are used by OvertGrammarTest to determine whether anything
# can be learned from overt forms without committed outputs.
@overt_forms.each { |o| lang_hyp.overt forms <<o } if lang hyp.overt forms.empty?
# Reset lang hyp to unchanged during learning
lang hyp.hyp change(false)
input = OTLearn::input_from_overt(overt)

competition = lang_hyp.system.gen(input)
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# Find the most harmonic candidates
mh = MostHarmonic.new(competition, lang_hyp.grammar.hierarchy)

commitment = lang_hyp.commitments.existing_commitment_pair(overt)

if commitment then
# If any optimum has an *output* distinct from the
# committed output, perform ranking learning.
if mh.any? {|cand| !lang_hyp.commitments.forms_match?(cand.output, commitment)}
then
OTLearn::ranking_learning(lang_hyp.winner_list, lang_hyp, ranking_bias)
lang hyp.hyp change(true)
end
# Add lang hyp to changed hyps list to be tested against
# the next overt form if it's consistent; otherwise, discard.
if lang_hyp.consistent? then
changed hyps << lang_hyp
else
@discards << lang_hyp
end
else # No existing commitment
# If there is only one optimum and its overt form matches
# overt form,add the language hypothesis to changed hyps
# to be tested against the next overt form.
# Otherwise, extend new language hypothesis branches and
# add the returned, consistent branches to changed hyps

# (inconsistent branches go directly to @discards).



# Otherwise,
# to be tested against the next overt form.
if mh.size ==1 && mh[0].overt.to_s==overt.to_s then
changed hyps << lang hyp
else
branch_list = extend branches(lang_hyp, overt)
branch_list.each {|branch| changed hyps << branch}
add_branch_info to sim_results(changed hyps, | hyp list, lang_hyp, overt)
end

end

end #until

end #

1 hyp_list << changed hyps.shift until changed hyps.empty?
end #while
# Phonotactic learning has ended.
# For each lang hyp, store the number of ERCs created during phonotactic
# learning. For the consistent lang hyps only, populate the lexicon with
# all the morphemes before beginning single form learning.
1 hyp_list.each do |I_hyp|

1 hyp.store phonotactic erc size(l hyp.erc list.size)

overt_forms.each { |overt| add morphemes to lexicon(l hyp, overt) }

1 _hyp.results_list << Overt OTLearn::OvertGrammarTest.new(l_hyp, "Phonotactic

Learning")
@lang_hyp list <<1 hyp

end
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@discards.each do |discard hyp|
# Store the number of ERCs created during phonotactic learning
discard hyp.store phonotactic erc size(discard hyp.erc list.size)
end
return

end
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# Calls the branch method for language hypotheses to extend
# branches from lang hyp for overt form. Updates branch labels
# to indicate the overt form (by letter) and structural
# interpretation (by number).
# Example:
# A1BI1 = This hypothesis has branched from Al and committed to
# interpretation 1 for overt form B.
def extend_branches(lang_hyp, overt)
br_list, discards = lang_hyp.branch(overt, ranking bias=nil)
hyp list =]
br_list.each {|hyp| hyp list <<hyp}
discards.each {|hyp| hyp list << hyp}
# Update label for each hyp
hyp_list.each do |hyp|
@letter = @labels.update lang_hyp label(overt, hyp, @letter)
end
# Add all inconsistent branches to _(@discards_
discards.each {|hyp| @discards << hyp}
# Return the list of consistent branches
return br_list

end
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# This method processes all of the overt forms in _overt forms_, one
# at a time in order, with respect to each language hypothesis

#in _untested hyps_. Each overt form is processed as follows:

# * Attempt to find new ranking info

# - If there's an existing commitment but no winner,

#  create a new winner.

# - Check if the winner is optimal when unset input features

#  are matched to the output, and if not, find more ranking info.

# - If there's no existing commitment, check if any optimum differs
#  from overt form in string representation. Branch as required.
# * If a winner exists, attempt to set any of its unset underlying features.
# * For each newly set feature, check for new ranking information.

# The method passes repeatedly through the list of overt forms until

# a pass is made with no learning changes to the language hypothesis.
# The language hypothesis's constraint hierarchy is updated with the
# Faith-Low version of RCD. If the language hypothesis is consistent,
# it is ultimately added back to @lang_hyp_list; otherwise, it is added
# to (@discards.

def run_single forms until no_change(untested hyps)

tested _hyps =[]

until untested hyps.empty? do
lang_hyp = untested_hyps.shift
lang_hyp.hyp change(true)

skip _lang hyp = false
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while lang_hyp.learning_change == true do
# Skip single-form learning if lang hyp is already complete
if lang_hyp.results_list.last.all correct? then
tested hyps << lang_hyp
skip lang_hyp = true
end
break if skip_lang hyp
lang_hyp.hyp change(false)
set_feature list =[]
# Tests lang hyp with each overt form. First checks for
# errors, then tries to set unset features in the form.
@overt_forms.each do |overt|
break if skip_lang hyp

commitment = lang_hyp.commitments.existing commitment_ pair(overt)

if commitment then

# Check for a winner (full structural description, though the
# input may include unset features) associated with the overt
# form, and create a new winner if one does not already exist.
winner = lang_hyp.existing_winner(overt)
if winner.nil? then

# Add a new winner to lang_hyp

winner = lang_hyp.add winner(overt, commitment)
end

# Check for new ranking information
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lang_hyp.hyp change(true) if
OTLearn::ranking learning_faith low(lang_hyp.winner list, lang_hyp)
# If lang_hyp is consistent, attempt to set the unset features
# winner . Otherwise, add lang_hyp to @discards.
if lang_hyp.consistent? then
new_set_features = OTLearn.set uf values([winner], lang_hyp)
set feature list.concat(new_set features)
unless new_set_features.empty? then
lang hyp.hyp change(true)
set_f string = String.new
new_set features.each do |f]
set f string <<" -" << f.morpheme.to s <<"" << f.element.to_s
end
lang hyp.results list << Overt OTLearn::OvertGrammarTest.new(lang_hyp, "Single
Form Learning: #{overt.morphword.to_s}. Set #{set f string}")
# Add the number features just set to the lang hyp's
# current number of set Fs
lang hyp.store num_set features(new_set features.size)
end
else
lang hyp.results list << Overt OTLearn::OvertGrammarTest.new(lang_hyp, "Single
Form Learning")
@discards << lang_hyp
skip lang_hyp = true
break

end
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else # No existing commitment
input = OTLearn::input_from_lexicon_and_overt(overt, lang_hyp.grammar)
competition = lang_hyp.system.gen(input)
# Check for an error on _overt _.
skip lang hyp = error_test overt form(overt, competition, lang_hyp, tested hyps,
untested _hyps)
break if skip_lang hyp
# Check for an error on the maximimal mismatch of overt .
# An error indicates that the features have the potential
# to be set; lang_hyp branches for interpretations of overt
OTLearn::mismatches_input_to_overt(lang_hyp.grammar, overt) do jmismatched input]
competition = lang_hyp.system.gen(mismatched input)
skip _lang hyp = error_test overt form(overt, competition, lang hyp, tested hyps,
untested hyps)
break if skip lang hyp
end

end # if commitment then

# For each newly set feature, check winners in _lang_hyp_ that unfaithfully
# map that feature for new ranking information.
set_feature list.each do [set f]

# Skips features set to -stress, as they do not violate MaxStress

unless set_f.feature.unstressed? then

if OTLearn::new_rank info from_feature(lang hyp, lang_hyp.winner _list, set_f) then



361

lang_hyp.results_list << Overt OTLearn::OvertGrammarTest.new(lang_hyp, "New
ranking info from set feature (Single Form #{set f.morpheme})")
lang_hyp.hyp change(true)
end
end
end
set_feature list =]
end # overt_forms.each
break if skip _lang hyp

end # while

# If there are no learning changes in _lang hyp , add it to tested hyps
# if it is still consistent; otherwise, discard it.
unless skip lang hyp
lang_hyp.update_grammar {|ercs| OTLearn::RcdFaithLow.new(ercs)}
lang hyp.results_list << Overt OTLearn::OvertGrammarTest.new(lang_hyp, "End of
Single Form Learning")
tested hyps <<lang hyp if lang_hyp.consistent?
@discards << lang_hyp unless lang_hyp.consistent?
end
end #until
@lang_hyp list << tested hyps.shift until tested hyps.empty?

end
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# If there is a tie or any optimum has an *overt* form distinct
# from overt , extend new language hypothesis branches.
# Returns true if lang hyp branches; false otherwise.
def error_test_overt form(overt, competition, lang_hyp, tested_hyps, untested_hyps)
mh = MostHarmonic.new(competition, lang_hyp.grammar.hierarchy)
if mh.any? {|cand| cand.overt.to_s != overt.to_s} then
branch_list = extend branches(lang_hyp, overt)
branch_list.each {|branch| @lang_hyp list << branch}
add branch info to sim results(tested hyps, untested hyps, lang_hyp, overt)
return true
end
return false

end
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# For any morphemes not currently in the lexicon, create new entries,
# with the same number of syllables as in the output,
# and all features unset.
def add_morphemes_to_lexicon(lang_hyp, overt)
mw = overt.morphword
mw.each do |m|
unless lang_hyp.grammar.lexicon.any? {|entry| entry.morpheme==m} then
under = Underlying.new
overt.each_syllable do |sy]|
under << SF::Syllable.new.set morpheme(m)if syl.morpheme == m
end
lang hyp.grammar.lexicon << Lexical Entry.new(m,under)
end
end

end

# Adds to the simulation's results list an entry recording the
# creation of a new branch.
def add_branch_info_to_sim_results(hyp_listl, hyp list2, lang_hyp, overt)
simultaneous_hyps =[]
hyp listl.each {|h| simultaneous hyps << h}
hyp_list2.each {|h| simultaneous_hyps << h}
label = lang_hyp.lang_hyp label
@results_list << ["#{label.to_s} branches for #{overt.to_s}:
#{lang_sim_results(simultaneous_hyps)}"]

end
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# Pursues further learning until each language hypothesis
# has learned the language or until no further improvements
# can be made in any language hypothesis.
def further_learning()
hyp list =]
until @lang_hyp_list.empty? do
lang_hyp = @lang_hyp_list.shift
# Only pursue further learning on incomplete language hypotheses
if lang_hyp.results_list.last.all correct? then
hyp_list <<lang_hyp if lang_hyp.consistent?
else
fw_list =]
lang hyp.results_list.last.failed winners.each { |fw| fw_list << fw.morphword.to s }
learning_change = true
while learning_change==true
learning_change=false
# First, try to learn from a contrast pair
contrast_pair = run_contrast_pair(lang_hyp.winner_list, lang_hyp,
lang hyp.results_list.last, strict=true)
# These lines will enable a wider range of contrast pairs to
# be considered. Useful for some languages in the 2rls Stress system
# typology.
if contrast_pair.nil? then
contrast_pair = run_contrast_pair(lang_hyp.winner_list, lang_hyp,
lang_hyp.results_list.last, strict=false)

end
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unless contrast_pair.nil?
cp0 = contrast_pair[0].morphword.to_s
cpl = contrast_pair[1].morphword.to_s
lang_hyp.results_list << Overt OTLearn::OvertGrammarTest.new(lang_hyp, "Contrast
Pair Learning - #{cp0}-#{cpl}")
learning_change = true
else
# No suitable contrast pair, so pursure learning by minimal mismatch
mismatch_winners = failed winner mismatch_consistency check(lang hyp)
if mismatch_winners then
until mismatch winners.empty? do
mismatch_winner = mismatch winners.shift
# Check for new ranking info from mismatch winner.
# Break for first error found.
mrecd_result = OTLearn::MrcdFaithLow.new([mismatch _winner], lang_hyp)
if mrcd_result.any change? == true then
learning_change = true
lang_hyp.results_list << Overt OTLearn::OvertGrammarTest.new(lang_hyp, "New
ranking info from failed winner mismatch")
break
end
end
end
# No ranking information from consistent mismatches, so pursue

# minimal UF learning
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if learning_change == false
set feature = run_minimal uf for failed winner(lang hyp.winner list, lang_hyp,
lang_hyp.results_list.last)
unless set_feature.nil?
# Increment num_set features to add this newly
# set feature - used in Excel performance summary
lang_hyp.store num_set features(1)
lang_hyp.results_list << Overt OTLearn::OvertGrammarTest.new(lang_hyp,
"Minimal UF Learning: #{set feature.to s}")
learning_change = true
end
end
end #unless
# If a learning change occured, check to see if the change
# completed learning. If not,follow up with another round of
# single form learning. (Any consistent language hypotheses
# remaining after single form learning will be added to
# @lang hyp list .
# If no change resulted, no further learning is currently possible;
# cease learning attempts on this language hypothesis.
if learning_change == true then
if lang_hyp.results_list.last.all_correct?
hyp list << lang_hyp
else
run_single forms_until no change([lang_hyp])

end
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break
else
hyp_list <<lang_hyp if lang_hyp.consistent?
@discards << lang_hyp unless lang_hyp.consistent?
end
end #while
end #if
end #until
@lang_hyp list << hyp_list.shift until hyp list.empty?
return

end
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# Returns the list of consistent minimal mismatch words
def failed_winner_mismatch_consistency_check(main_lang_hyp)
consistent mismatch_list =[]
prior results = main_lang hyp.results_list.last
return nil if prior_results.failed winners.empty?
prior_results.failed winners.each do |fw_orig]
# Check if there is a failed winner whose minimal mismatch is consistent
# Dup hypothesis and words, so originals aren't modified.
hyp = main_lang_hyp.dup
fw = fw_orig.dup.sync_with_hypothesis!(main_lang_hyp)
# Set fw's input so that features unset in the hypothesis lexicon
# mismatch their output correspondents.
mismatch_list = OTLearn::minimal_mismatches input to output(fw)
mismatch_list.each do [mismatch|
# Run MRCD to see if the mismatched FW is consistent.
mrcd_result = OTLearn::Mrcd.new([mismatch], hyp)
# Add each consistent mismatched failed winner
consistent mismatch_list << mismatch if mred result.hypothesis.consistent?
end
end
return consistent mismatch_list

end
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# Select a contrast pair, and process it, attempting to set underlying
# features. If any features are set, check for any newly available
# ranking information.
#
# This method returns the first contrast pair that was able to set
# at least one underlying feature. If none of the constructed
# contrast pairs is able to set any features, nil is returned.
#
# *Note* This method is adapted with few changes from Tesar's method
# of the same name. The key difference is the "strict" parameter, which
# determines whether to search for strict contrast pairs -- in which
# the pair members have alternating values for unset features
# (using Tesar's generate contrast pair method) -- or to search for all contrast
# pairs, including those with non-alternating values of unset features.
def run_contrast_pair(winner_list, hyp, prior_result, strict)
# Create an external iterator which calls generate_contrast pair()
# to generate contrast pairs.
cp_gen = Generator.new do |result|
if strict then
OTLearn::generate_contrast_pair(result, winner_list, hyp, prior_result)
else
generate_all contrast pairs(result, winner list, hyp, prior_result)
end
end
# Process contrast pairs until one is found that sets an underlying

# feature, or until all contrast pairs have been processed.
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while cp_gen.next? do
contrast_pair = cp_gen.next
# Process the contrast pair, and return a list of any features
# that were newly set during the processing.
set feature list = OTLearn::set uf values(contrast pair, hyp)
# Increment num_set features to add these newly set features
hyp.store num_set features(set feature list.size)
# For each newly set feature, see if any new ranking information
# is now available.
set_feature list.each do [set_f]
# Does not check for new rank info from features set to -stress,
# as they do not violate MaxStress.
unless set_f.feature.unstressed? then
if OTLearn::new rank info from feature(hyp, winner list, set f) then
hyp.results_list << Overt OTLearn::OvertGrammarTest.new(hyp, "New rank info from
set feature (CP #{set_f.morpheme})")
end
end
end
# If an underlying feature was set, return the contrast pair.
# Otherwise, keep processing contrast pairs.
return contrast_pair unless set_feature list.empty?
end
# No contrast pairs were able to set any features; return nil.
return nil

end
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# *Note* This method is adapted with few changes from Tesar's method
# of the same name. The key difference is that this method generates all
# contrast pairs, and not just those that have a conflicting value
# for an unset feature in the lexicon.
def generate _all contrast pairs(cp_return, winners, hyp, test_result=nil)
test_result ||= GrammarTest.new(winners, hyp)
# The failed winners of the test are connected to a different
# lexicon. Make duplicates of the failed winners, and synchronize
# them with _hyp .
f winners = test_result.failed winners.map do |winner
winner.dup.sync_with_hypothesis!(hyp)
end
# For each failed winner, look for all contrast pairs
f winners.each do |failed_winner]|
OTLearn::match_input to ufl(failed winner)
failed winner.morphword.each do [morph]|
if OTLearn::find unset features([morph], hyp)then
all _containing words =[]
¢ _words = OTLearn::find morphemes_in words(winners)[morph]
¢_words = ¢_words.delete if do |cword|
cword.morphword == failed winner.morphword
cword.output == failed winner.output
end
¢ _words.each {|cw]| all containing words << cw}

all containing words.each do [word|
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cp = OTLearn::ContrastSet.new([failed winner,word])
cp_return.yield cp
end
end
end
end

end
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# *Note* This method is adapted with few changes from Tesar's method
# of the same name.

#

# Given the result of error-testing, find a previously unset feature

# for one of the failed winners such that setting it to match its

# surface correspondent in the failed winner results in the winner

# succeeding (consistent with all of the winners that passed

# error-testing). This method is expected to be invoked only when

# single-word and contrast-pair inconsistency detection has failed

# to completely learn the language, suggesting that a paradigmatic

# subset relation is present. The goal is to find the smallest set

# of feature values that will allow learning to continue (fewer set

# features corresponds to greater restrictiveness).

# Each failed winner is checked in turn until one is found that can

# succeed on the basis of one newly set feature, returning that instance
# without checking to see if there are other possibilities.

#

# Returns the feature instance of the newly set feature, or nil if no feature was set.
#

# At present, #select most restrictive_uf checks each unset feature of
# a failed winner in isolation, and returns a feature value allowing

# that winner to succeed if there is exactly one.

# In principle, if there is no single feature leading to success for

# a previously failed winner, this method should try combinations

# of two unset features (and larger, if necessary) to find the minimum

# set of additional feature value commitments resulting in the success
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# of a failed winner. Future work will be needed to determine if
# the learner should evaluate each failed winner, and then select
# the failed winner requiring the minimal number of set features.
def run_minimal uf for failed winner(winner_list, hyp, prior_result)
fw_list = prior_result.failed winners
set_feature = nil
fw_list.each do |failed winner|
# Get the FeatureValuePair of the feature and its succeeding value.
fv_pair = select most_restrictive uf(failed winner, hyp, prior result)
unless fv_pair.nil?
fv_pair.set to alt value # Set the feature permanently in the lexicon.
set_feature = fv_pair.feature instance
# Check for any new ranking information based on the newly set feature.
# Does not check for new rank info from features set to -stress,
# as they will not incur MaxStress violations
unless set_feature.feature.unstressed? then
if OTLearn::new_rank info from_feature(hyp, winner list, set feature) then
hyp.results list << Overt OTLearn::OvertGrammarTest.new(hyp, "New ranking info
from set feature (Min UF #{set feature.morpheme})")
end
end
break # Stop looking once the first successful feature is found.
end
end
return set_feature

end
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# *Note* This method is adapted with few changes from Tesar's method

# of the same name.

#

#

# Finds the unset underlying form feature of failed winner that,

# when assigned a value matching its output correspondent,

# makes failed winner consistent with the success winners. Consistency

# is evaluated with respect to the parameter main_hypothesis_ with its

# lexicon augmented to include the tested underlying feature value, and with

# the other unset features given input values opposite of their output values).

#

# Returns nil if none of the features succeeds.

# If more than one underlying feature succeeds, returns the first found.

# Returns the successful underlying feature (and value) if exactly one of them succeeds.

# The return value is a _FeatureValuePair : the underlying feature instance and

# its successful value (the one matching its output correspondent in the

# previously failed winner).

def select_most_restrictive_uf(failed_winner_orig, main_hypothesis, prior_result)
failed winner = failed winner orig.dup.sync with hypothesis!(main_hypothesis)
# Find the unset underlying feature instances
unset_uf features =

OTLearn::find unset features in words([failed winner],main_hypothesis)

# Set, in turn, each unset feature to match its output correspondent.
# For each case, test the success winners and the current failed winner

# for collective consistency with the hypothesis.
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consistent feature val list =]
unset_uf features.each do |ufeat]
# set the tested underlying feature to the output value
out feat inst = failed winner.out feat corr of uf(ufeat)
ufeat.value = out_feat inst.value
# Add the failed winner to (a dup of) the list of success winners.
word _list = prior_result.success_winners.dup
word_list << failed winner
# Check the list of words for consistency, using the main hypothesis,
# with each word's unset features mismatching their output correspondents.
mrcd_result = mismatch _consistency check(main hypothesis, word_list)
# If result is consistent, add the UF value to the list.
if mred result.hypothesis.consistent? then
ufeat val pair = FeatureValuePair.new(ufeat, ufeat.value)
consistent_feature val list <<ufeat val pair
end
# Unset the tested feature in any event.
ufeat.value = nil
end
# Return the first consistent tested feature found.
return nil if consistent feature val list.empty?
return consistent_feature val list[0]

end
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# Given a list of words and a hypothesis, check the word list for
# consistency with the hypothesis using MRCD. Any features unset
# in the lexicon of the hypothesis are set in the input of a word
# to the value opposite its output correspondent in the word.
# The mismatching is done separately for each word (the same unset feature
# for a morpheme might be assigned different values in the inputs of
# different words containing that morpheme, depending on what the outputs
# of those words are).
# Returns the Mrcd object containing the results.
# To find out if the word list is consistent with the hypothesis, call
# result.hypothesis.consistent? (where result is the Mrcd object returned
# by #mismatch_consistency check).
def mismatch_consistency check(hypothesis, word_list)
# Dup hypothesis and words, so originals aren't modified.
hyp = hypothesis.dup
w_list = word_list.map { |winner| winner.dup.sync_with_hypothesis!(hyp) }
# Set each word's input so that features unset in the hypothesis lexicon
# mismatch their output correspondents. A given output could appear
# more than once in the mismatch list ONLY if there are suprabinary
# features (a suprabinary feature can mismatch in more than one way).
mismatch_list =[]
w_list.map do |word|
OTLearn::mismatches_input to output(word) { jmismatched word| mismatch_list <<
mismatched word }
end

# Run MRCD to see if the mismatched candidates are consistent.
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return OTLearn::Mrcd.new(mismatch_list, hyp)

end

protected :execute learning, :run_single forms until no change,

:run_contrast_pair, :run_minimal_uf for failed winner,

:select_most_restrictive uf

end # class OvertLanguageLearning

end # module Overt OTLearn



B-11 OVERT_GRAMMAR_TEST.RB

# Author: Crystal Akers

#

require 'otlearn/grammar_test'

require 'otlearn/uf learning'

require 'otlearn/data_manip'

require 'overt otlearn/commitment_list'
require 'sf/sf output'

require 'morph_word'

module Overt OTLearn

# An OvertGrammarTest object holds the results of the evaluation of a set

# of winners with respect to a hypothesis. The tests are initiated by

# creating an OvertGrammarTest; the constructor takes a list of winners and
# a hypothesis as parameters.

#

# Each winner is a Word, possibly with unset features in the input.

class OvertGrammarTest < OTLearn::GrammarTest
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# Returns a new OvertGrammarTest, for the provided winners_, and with
# respect to the provided lang hyp .
def initialize(lang_hyp, label="NoLabel")
super(lang_hyp.winner list, lang hyp, label)
# Dup the commitments
@commitments = lang_hyp.commitments.dup
#  # Dup the set of overt forms
@overt_forms = lang_hyp.overt forms.dup
# Freeze the test results, so they cannot be accidentally altered later.
# @] _hyp.freeze
@commitments.each {|c_pair| ¢_pair.freeze}
@commitments.freeze
@overt_forms.each {|overt| overt.freeze}
@overt_forms.freeze

end
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# Returns true if

# - all winners in the winner list are the sole optima for inputs with all

# unset features set to mismatch the surface of the winner.

# - no new ranking or lexical information can be learned from the remaining

# overt forms without committed outputs

def all_correct?
return false unless @failed winner info_list.empty?
return false unless check overt forms for ranking and lexical info(uncommitted overts)
return true

end

# Returns a list of overt forms which do not have committed output interpretations
def uncommitted overts

uncommitted forms = Array.new

@overt_forms.each do |overt]|

uncommitted _forms << overt unless @commitments.any? {|c_pair|
@commitments.forms_match?(overt, ¢_pair)}
end
return uncommitted forms

end
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def check overt forms for ranking and_lexical info(overt forms)
overt_forms.each do |overt form|
input = OTLearn::input_from_lexicon_and_overt(overt form, @hypothesis.grammar)
competition = @hypothesis.system.gen(input)
# Find the most harmonic candidates
mh = MostHarmonic.new(competition, @hypothesis.grammar.hierarchy)
# Return if new ranking info is available (if there is a CTie or if
# the optimum does not have the same overt form)
return false if mh.size > 1
return false if mh.any? {|cand| cand.overt.to_s !=overt form.to s}
ranking_info_test optimum = mh[0].to_s
# Check that no new lexical information is available
OTLearn::mismatches input to overt(@hypothesis.grammar, overt form) do
|mismatched input]|
competition2 = @hypothesis.system.gen(mismatched input)
mh2 = MostHarmonic.new(competition2, @hypothesis.grammar.hierarchy)
# Return false if there is more than one optimum, if the optimum has
# an *overt* form distinct from overt , or if the optimum differs
# from the ranking test optimum.
return false if mh2.size > 1
return false if mh2.any? {|cand| cand.overt.to s != overt form.to s}
return false unless mh2[0].to_s ==ranking_info_test optimum
end
end
return true

end
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end # class OvertGrammarTest

end # module Overt OTLearn



B-12 DATA_MANIP.RB

# Author: Crystal Akers
#
# This file contains a collection of methods for generating and

# manipulating data.

require 'hypothesis'
require 'otlearn’
require 'morph_word'
require 'input'
require 'sf/syllable’

'

require 'io_correspondence

module OTLearn
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# Creates and returns an input given an overt form, useful in

# identity maps. This input has an empty Ul correspondence.

def OTLearn::input from_overt(overt form)
input = Input.new
overt_form.each do |syl|
in_syl = SF::Syllable.new
in_syl.set morpheme(syl.morpheme)
syl.each feature do |f]
val = f.value
in_syl.set_feature(f.type,val)
end
input.push(in_syl)
input.morphword = overt_form.morphword
end
return input

end

# Performs ranking learning using the given ranking bias.

def OTLearn::ranking learning(winner_list, lang_hyp, ranking bias flag)

if ranking_bias_flag == nil then

OTLearn::ranking_learning_ faith low(winner list,Jang hyp)

else

OTLearn::ranking_learning_mark low(winner_list,lang_hyp)

end

end
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# Creates and returns an input. The input contains all features set
#in gram ; any features unset in the lexicon are set in the input
# to match those in the _overt form. This input has an empty
# UI correspondence.
def OTLearn::input from_lexicon _and_overt(overt, gram)
input = Input.new
input.morphword = overt.morphword
mw = input.morphword
mw.each do |m| # for each morpheme in the morph word, in order
uf = gram.get uf(m)
# If the morpheme is in the lexicon, add a duplicate of each
# underlying syllable to input. Otherwise, for each syllable
# of the morpheme, add a new syllable to the input.
if uf then
uf.each { |syl| input.push(syl.dup) }
else
m_syls = overt.find_all {|syl| syl.morpheme == m}
m_syls.each { |syl| input.push(SF::Syllable.new.set morpheme(m)) }
end
end
# Match any unset features of the input syllables to the values
# of the corresponding overt syllables.
gen_syl = SyncEnumerator.new(input, overt)
gen_syl.each do |in_syl, o_syl|
in_syl.each feature do |[f]

if f.unset? then
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o feat=o0 syl.get feature(f.type)
in_syl.set feature(f.type, o_feat.value)
end
end
end
return input

end
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# For the given overt form, test the *unset™ features by examining
# each combination of values such that each unset feature does *not*
# match its output correspondent.
# For each combination, the code block is run.
#
# If all features are strictly binary, then there is only one input that
# maximally mismatches the output with respect to the unset features.
# If one or more features is suprabinary, then the
# different possible combinations of non-surface-matching values are
# all tried.
def OTLearn::mismatches_input to overt(gram, overt form, &block)
input = Input.new
input.morphword = overt_form.morphword
mw = input.morphword
mw.each do |m| # for each morpheme in the morph_word, in order
uf = gram.get uf(m)
# If the morpheme is in the lexicon, add a duplicate of each underlying
# syllable to input. Otherwise, for each syllable of the morpheme, add a
# new syllable to the input.
if uf then
uf.each { |syl| input.push(syl.dup) }
else
m_syls = overt_form.find_all {|syl| syl. morpheme == m}
m_syls.each { |syl| input.push(SF::Syllable.new.set morpheme(m)) }
end

end



# Create an 10 correspondence between the input and the overt form.

io_corr = [OCorrespondence.new
gen = SyncEnumerator.new(input, overt_form)
gen.each do |[in_syl,overt syl|
io_corr << [in_syl,overt syl]
if in_syl.morpheme != overt_syl.morpheme then
raise "Input syllable morph #{in_syl.morpheme.label} !=" +
"overt syllable morph #{overt_syl.morpheme.label}"
end
end
# Construct a list of the unset features in _input
unset_features = []
input.each do |in_el|
in_el.each_feature do [f]
unset_features << Featurelnstance.new(in_el,f) if f.unset?
end
end
# Invoke the block on each combination of mismatched values, by

# passing the block as a procedure object.

OTLearn::test_each overt mismatch_value(input, io_corr, unset_features, block)

end
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# Used for creating minimal mismatch candidates for failed winners.
# For the given word, create each minimal mismatch candidate by setting one
# *unset* feature at a time to a value that does *not* match its output
# correspondent.
#
# If all features are strictly binary, then there is only one input that
# maximally mismatches the output with respect to the unset features.
# If one or more features is suprabinary, then the
# different possible combinations of non-surface-matching values are
# all tried.
def OTLearn::minimal_mismatches_input_to_output(word_param)
word = word_param.dup
OTLearn::match_input_to uf!(word)
# Construct a list of the unset features in the word
unset_features = []
input = word.input
input.each do |in_el|
in_el.each_feature do |[f]
unset features << Featurelnstance.new(in_el,f) if f.unset?
end
end
mismatch words =[]
unset_features.each do |unset f inst]|
# Obtain the value of the unset feature's corresponding instance
# in the output.

out f inst=word.out feat corr of in(unset f inst)
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out f val=out f inst.value
# Obtain the unset feature itself.
unset f=unset f inst.feature
# For each value of the unset feature type that does not match the
# value in the output correspondent, assign that value to the
# unset feature *in the input* (i.e., not in the lexicon).
unset_f.each value do |val|
if val!l=out_f val then
OTLearn::match input to output!(word)
# Set the value of unset f to the value that mismatches the output
unset_f.value = val
mismatch words << word.dup
#reset the value of this unset feature for the next test
unset f.value = out f inst.value
end
end
end
return mismatch words

end
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# Run the provided procedure object block proc on variations of _input .
# The variations are all possible combinations of values for the input
# features in _unset_features  such that all of those input features do
# not match their output correspondent values in a previously given overt form.
#
# Dblock proc is a procedure object version of the code block to be
# called on each combination of output-mismatched feature values.
def OTLearn::test each_overt mismatch_value(input, io_corr, unset_features,
block proc)
# Base case: if no unset features remain, call the block on a duplicate
# of the input, and return.
if unset features.empty? then
block proc.call(input.dup)
return
end
# Get the first unset feature instance on the list, and make a copy list of
# the rest of the unset features (that way, the original list is unchanged
# when referenced by other recursive calls).
unset f inst =unset features[0]
rest_unset features = unset features.slice(1..-1) # list with first element removed
# Obtain the value of the unset feature's corresponding instance in the overt form.
overt f inst=OTLearn::overt feat corr of in(unset f inst, io_corr)
overt f val=overt f inst.value
# Obtain the unset feature itself.
unset f=unset f inst.feature

# For each value of the unset feature type that does not match the
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# value in the overt correspondent, assign that value to the
# unset feature *in the input* (i.e., not in the lexicon).
unset_f.each value do |val
if val!l=overt f val then
unset_f.value = val
OTLearn::test_each overt mismatch value(input,io_corr, rest unset features, block proc)
end
end

end
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# Returns the corresponding overt feature instance for the given in feat inst .
# This method assumes that the corresponding overt feature instance of
# in_feat inst_simply the corresponding output feature instance.
def OTLearn::overt_feat corr_of in(in_feat inst, io_corr)
# Get the corresponding overt element and feature for the input element.
overt_corr_element =1io_corr.out_corr(in_feat inst.element)
return nil if overt _corr_element.nil?
overt_corr_feat = overt_corr_element.get feature(in_feat inst.feature.type)
return Featurelnstance.new(overt corr_element, overt corr feat)

end

end # module OTLearn
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B-13 EXCEL_FOR_OVERT_OTLEARN.RB

# Author: Crystal Akers, based on Tesar’s Excel for OTLearn.rb
#
# This file contains revisions to the Excel interface for RUBOT for use in

# learning multiple simulataneous language hypotheses.

require 'otlearn’
require 'overt_otlearn/language hypothesis'
require 'overt_otlearn/overt language learning'

require 'excel'

module Overt OTLearn

# A session for interacting with Excel, specifically for the

# overt_otlearn simulations.
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class Excel session for overt otlearn < Excel session
# Excel Constants
# Load built-in Excel constants (X1*); for a list, see
# http://msdn.microsoft.com/en-us/library/aa221100(office.11).aspx
# The constants of the variety X1* can be obtained from WIN320OLE.
# const_load(<excel object>, Excel session) obtains the
# defined Excel constaints and makes them constants of the class Excel session.
# That way, they can be used in the methods of this class, which makes it
# much easier to use the MSDN Reference Library for the Excel VBA calls.
# Reference: http://msdn.microsoft.com/en-us/library/aa220733(office.11).aspx
begin
WIN320LE.const_load(WIN32OLE.connect("excel.application"),
Excel session for overt otlearn) # Load excel constants
rescue WIN32OLERuntimeError # error exception thrown if Excel isn't running.
# Create a temporary excel app, so that constants can be loaded from it.
excel temp = WIN320OLE.new("excel.application")
WIN320LE.const_load(excel temp, Excel session_for overt otlearn) # Load excel
constants
excel temp.ole free # Terminate the temporary excel app

end
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# The color index constants aren't defined as colors in Excel, because they
# actually point to positions in the default color palette, which can be
# dynamically changed by the user. The color assignments given below
# as constants reflect the Excel defaults: the colors that by default are
# in the numbered positions in the color palette.
# Color index constant usage: obj.colorindex = CONST
RED = 3 #:nodoc:
BRIGHTGREEN = 4 #:modoc:
BLUE =5 #:nodoc:
PALEYELLOW = 19 #modoc:
LIGHTGREEN = 35 #:nodoc:
MIDYELLOW = 36 #:nodoc:

MAGENTA = 38 #:nodoc:

def initialize
super

end
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def put_learning_results(hyp, success)
@excel.screenUpdating=false # turn off updating while writing to a worksheet
ws = (@excel.sheets.add('After'=>@excel.activesheet)
if success == true then
if hyp.results_list.last.all correct? then
ws.name = name_sheet(hyp.lang hyp label)
else
ws.name = name_sheet("(" + "*" + hyp.lang_hyp label +")")
end
else
ws.name = name_sheet("(" + hyp.lang_hyp label+ ")")
end
range(ws,1,1,1,1).value = hyp.label
row =1;col=1
#
row +=2
range(ws,2,1,2,3).merge
range(ws,2,1,2,1).value = "Commitments"
hyp.commitments.each do |c_pair|
row += 1
range(ws, row, 1, row, 1). value = "#{c pair[0].to_s}"
range(ws, row, 2, row, 2).value = "#{c_pair[1].to_s}"
end
row+=2
range(ws,row, 1, row, 10).merge

hyp dup = hyp.dup
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rcd_result = hyp_dup.update grammar{|ercs| OTLearn::RcdFaithLow.new(ercs)}
range(ws, row, 1, row, 1). value = "#{hyp_dup.grammar.hierarchy.to s}"
hyp.results list.each do |entry|

row +=3

range(ws,row,1,row,14).merge

range(ws,row,1,row,1).value = "#{entry.label}."

row, col = learning_result to_ws(ws, entry, row+1, 1)
end
#

ensure # make sure screen updating is turned back on, even if an exception is raised.

@excel.screenUpdating=true

end
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# Modified from the method in the superclass Excel.rb file to include

# a column in the comparative tableau output that includes, for each ERC,

# the order in which that ERC was added to the CT.

def learning_result_to_ws(ws, gram_test_result, row_first, col first)
# Test result components are frozen, so dup before updating.
hyp = gram_test_result.hypothesis.dup
rcd_result = hyp.update grammar{|ercs| OTLearn::RcdFaithLow.new(ercs)}
# Add the unranked constraints as a "final stratum" to the hierarchy.
hier with unranked = Hierarchy.new
hier with_unranked.concat(rcd_result.hierarchy)
hier with unranked <<rcd_result.unranked unless rcd_result.unranked.empty?
sorted_cons = hier with_unranked.flatten
# sort the ercs with respect to the RCD constraint hierarchy
sorted_ercs, ercs_by stratum, explained ercs = sort_rcd results(rcd result)
# write the main CT to the new worksheet
wl_pairs_to ws(ws,gram_test result.hypothesis.erc list,sorted cons,

sorted ercs,row_first,col first)

# Set some table index values
pre_con_columns =5
col_count =pre con_columns + sorted cons.size
pre_erc_rows = 1
last ex row = pre_erc_rows + explained ercs.size # row of last explained erc

row_count = last ex row + rcd_result.unex_ercs.size

# put vertical lines between the strata

vl col count=pre con columns
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hier_with_unranked.each do |stratum|
vl _col_count += stratum.size
vl row last=row_first-1+row_count
vl col last =col first-1+vl col count
range(ws,row_first,vl col last,vl row last,vl col last).borders(XIEdgeRight).weight =
XIMedium # vertical line between strata
end
# put horizontal lines between the "stratified" clusters of ercs
hl row count = pre erc_rows
ercs_by_stratum.each do |ercs|
hl_row_count += ercs.size
hl row last=row_first-1+hl row count
hl col last = col first-1+vl col count
range(ws,hl _row last,col first,hl row last,hl col last).borders(XIEdgeBottom).weight =
XIMedium
end
# Flag any unexplained ercs with color
range(ws,row_firsttlast ex row,1,row_first-1+row_count,1).interior.colorindex = RED
unless row_count == last ex row
# Extra formatting if the data were inconsistent
range(ws,row_firsttrow count,1,row_first+row count,1).value = "FAIL!" unless

rcd_result.consistent?

# Put the lexicon to the worksheet
first lex row =row_first-1 + row_count + 2

lex = hyp.grammar.lexicon
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r_row = first_lex row-1

r_row, r_col = morphs_to_ws(ws, lex.get prefixes, r row—+1, col_first) unless
lex.get_prefixes.empty?

r row, r_col = morphs to ws(ws, lex.get roots, r row+1, col_first)

r row, r_col = morphs_to ws(ws, lex.get suffixes, r row+1, col first) unless

lex.get_suffixes.empty?

test row =1 _row + 2

range(ws,test_row,col first,test row,col first+2).merge

range(ws,test_row,col_first,test row,col first).value = "Learned:
#{gram_test result.all correct?}"

return test_row, col_first-1+col count

end
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# Format a comparative tableau, and write it to the specified section of the worksheet.

def wl_pairs_to_ws(ws, unsorted_ct, sorted_cons, sorted_ercs, row_first, col_first)
# first row contains the column headers
sheet_image = [] << (row_image = [])
row_image.concat(["#", "ERC\#", "Input", "Winner", "Loser"])
pre_con_columns =5
row_image.concat(sorted cons.map{|con| con.to_s})
# add the erc rows to the sheet image
sorted_ercs.each do |erc|
sheet_image << (row_image = []) # elements of the eventual output row
row_image << unsorted ct.get erc index(erc).to s
row_image << erc.label
if erc.respond to?(:winner) then # pair contains a winner and a loser
row_image << erc.winner.input.to_s << erc.winner.merged outputs to s
row_image << erc.loser.output.to_s
else
3.times{row_image << nil} # base ercs don't have winner or loser
end
add prefs to row(erc, sorted cons, row_image)
end
# write the sheet_image array to the worksheet
row_last =row_first + sheet image.size - 1
col_last=col first + pre_con columns + sorted cons.size - 1
range(ws,row_first,col first,row last,col last).value = sheet image

ct borders(ws,row_first,col first,row last,col last,pre con columns)
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return row_last, col last

end
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def put_learning_results of sim(lang_sim)
@excel.screenUpdating=false # turn off updating while writing to a worksheet
ws = (@excel.activesheet
ws.name = name_sheet("Sim Results")
row=1;col=1
range(ws,1,1,1,1).value = "Results of Language Learning Simulation"
lang_sim.results_list.each do |entry]|
row +=2
range(ws,row,1,row,8).merge
range(ws, row, 1, row, 1).value = entry
end
#
ensure # make sure screen updating is turned back on, even if an exception is raised.
@excel.screenUpdating=true

end



def put_typ results to_ws(overt forms_list, overt forms_set label, learned_lgs,
failed consis_lgs, discards, row_first)
ws = (@excel.activesheet
# first row contains a header for overt forms set
sheet image = [] << (row_image = [])
row_image << overt forms set label
until overt_forms_list.empty? do
sheet_image << (row_image = [])
4.times do
row_image << overt_forms_list.shift
end
end
# second row contains the column headers
sheet image << (row_image = []) # elements of the eventual output row
row_image.concat(["Learned Lgs", "Fail - Consis.", "Fail - Inconsis."])
# Create the entries for the Learned Lgs column
learned col =[]
learned_lgs.each do |hyp|
summary = String.new
summary << hyp.lang_hyp label <<"; " << hyp.erc_list.size.to_s
hyp.commitments.each do |c_pair|
summary <<"" << ¢ pair[1].to_s
end
learned col << summary
end

# Create entries for the Fail-Consist. Igs column
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failed consis_col =[]
failed consis_lgs.each do |hyp|
summary = String.new
summary << hyp.lang hyp label <<"; " << hyp.erc list.size.to s
hyp.commitments.each do |c_pair|
summary << " " <<c_pair[l].to_s
end
failed_consis_col << summary
end
# Create entries for the Discard column
discard col =[]
discards.each do |hyp|
summary = String.new
summary << hyp.lang hyp label <<"; " << hyp.erc list.size.to s
hyp.commitments.each do |c_pair]
summary <<"" << ¢ pair[1].to_s
end
discard_col << summary
end
# Create row images.
max_rows = learned lgs.size
if failed consis_lgs.size > max_rows then
max_rows = failed consis_lgs.size
elsif discards.size > max_rows then
max_rows = discards.size

end



curr_ row =0
until curr_row == max_rows do
sheet_image << (row_image = []) # elements of the eventual output row
coll = learned_col[curr row]
col2 = failed consis_col[curr_row]
col3 = discard_col[curr_row]
row_image << coll << col2 << col3
curr_row +=1
end
# write the sheet image array to the worksheet
row_last =row_first + sheet image.size - 1
range(ws,row_first,1,row_last,4).value = sheet_image
# autosize the columns
range(ws,row_first,1,row_last,4).entirecolumn.autofit
#
return row_last +=2
#

end
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def put_perf results to ws(overt forms_set label, learned_lgs, discards, row_first)
ws = (@excel.activesheet
# first row contains a header for overt forms set
sheet image = [] << (row_image = [])
row_image.concat(["Set #", "LgHyp", "Consistent?", "Phonotactic ERCS", "Total ERCs",
"Set Fs" ])
# Create the entries for the Learned Lgs
learned lgs.each do |hyp|
sheet image << (row_image = [])
row_image.concat([overt forms_set label, hyp.lang hyp label, "Yes",
hyp.num_phonotactic_ercs, hyp.erc list.size, hyp.num_set features])
end
# Create the entries for the inconsistent languages
discards.each do |hyp|
sheet image << (row_image = [])
row_image.concat([overt forms set label, hyp.lang hyp label, "No" ,
hyp.num_phonotactic_ercs, hyp.erc list.size, hyp.num_set features])
end
# write the sheet image array to the worksheet
row_last =row_first + sheet image.size - 1
range(ws,row_first,1,row last,6).value = sheet image
# autosize the columns
range(ws,row_first,1,row_last,6).entirecolumn.autofit
#
return row_last +=2

end
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# Saves the active workbook as the given filename, then closes that workbook. Leaves
# a new output workbook open in the current Excel session.
def close(filename)

wb = @excel.activeworkbook

whb.saveas(filename)

whb.close

add_output workbook('New")

end

end #class Excel for overt otlearn

end #module Overt OTLearn
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B-14 LABEL_SET.RB

# Author: Crystal Akers

require 'sf/sf word'
require 'sf/system'

require 'set'

module Overt OTLearn

class Label set < Set

# Create a new, blank label set. The label set is composed of individual label hashes.
def initialize
super

end
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# Creates a new label and adds it to the label set. Each label consists of a hash.
# The first hash key is the string representation of overt form_and is given the
# value of _letter_. The following keys are for structural interpretations,

# with one key for each string representation of a structural interpretation of
# overt form , and number values for each key. Returns the label.
# Label: [overt form => letter, outputl => 1, output2 => 2, ...]
def create_new_label_hash(overt_form, lang_hyp, letter)
label= Hash.new
overt = overt form.dup
# Add the string rep. of the overt form and letter value to the hash
label[overt.to_s] = letter.dup
# Create keys and values for string reps. of structural interpretations
num = "Q"
interpretations = lang_hyp.system.get interpretations(overt form, lang_hyp.grammar)
interpretations.each do [word|
output = word.output.dup
num = num.succ
label[output.to_s] = num
end
# Add the new label to the label set
self << label
return label

end



# Updates the label of lang hyp with the label associated with overt form .

# Unless some label hash already contains overt form , a new one is created.
def update lang hyp label(overt, lang hyp, letter)
overt hash = find label hash(overt)
if overt_hash == nil then
overt_hash = create_new_label hash(overt, lang_hyp, letter)
letter = letter.succ
end
# Break if the lang hyp label already includes the label for this overt form
unless lang_hyp.lang_hyp label.empty? then
return letter if lang_hyp.lang hyp label.include?(overt hash[overt.to s])
end
# Get the output commitment for this overt form in _lang_hyp
output = lang_hyp.commitments.existing_commitment pair(overt)[1]

raise "Cannot create new label without a committed output" if output == nil

# Append the values of the keys matching overt and output in string representation.

lang_hyp.lang_hyp label << overt hash[overt.to_s] << overt_hash[output.to_s]

# Return the letter to be used for the next new label hash

return letter

end
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# Searches through the label set to find the label containing the given form f .
# Returns that label.
def find_label hash(f)
form =fto s
matching hashes = self.find all {[label| label.any? {Jel| el.include?(form)} }
if matching_hashes.size >1 then
raise "Error - more than one label hash exists for the form #{f.to_s}"
else
return matching_hashes[0]
end
return nil

end

end # class Label set

end #module Overt OTLearn



B-15 LANGUAGE_HYPOTHESIS.RB

# Author: Crystal Akers

#

require 'hypothesis'

require 'otlearn’

require 'overt otlearn/data_manip'

require 'overt_otlearn/commitment _list'
require 'overt_otlearn/label set'

require 'overt_otlearn/overt grammar _test'
require 'sf/sf word'

require 'sf/system'

module Overt OTLearn
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# A language hypothesis is a grammar hypothesis plus a list of paired
# overt forms and outputs comprising the committed structural

# interpretations for the language.

# Each hypothesis also contains a list of winners, a list of

# OvertGrammarTest results, and a boolean record of whether the

# hypothesis has been changed during learning.

class Language Hypothesis < Hypothesis

attr_reader :commitments, :overt forms, :results_list, :winner _list, :learning_change
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# Creates a new language hypothesis. If they are not provided as
# parameters, the lists of commitment pairs, winners, and results
# are created as empty initial lists.
# (@commitments stores commitment pairs: [overt form, output].
# (@winner_list stores full structural descriptions whose outputs
# areincluded in _(@commitments
# (wresults_list stores a history of the language hypothesis'
# results on Grammar Tests. The results list is duplicated and
# extended if the hypothesis branches.
# (@learning change stores a boolean for indicating whether the
# hypothesis has changed during (some period of) learning.
#
# The following store measures for evaluating efficiency.
# num_phonotactic ercs stores the number of ERCs created during
# phonotactic learning
# num_set features stores the number of features set
def initialize(gram, erc_list=nil, commitments=nil, overt forms = nil,
winner_list=nil, results_list = nil, learning_change = nil,
lang hyp label = nil, num_phonotactic_ercs = nil, num_set features=nil)
super(gram, erc_list)
if commitments.nil? then
@commitments = Commitment_List.new
else
@commitments = commitments
end

if overt forms.nil? then



418

@overt_forms = Array.new
else
@overt_forms = overt forms
end
if winner_list.nil? then
@winner_list =[]
else @winner_list = winner_list
end
if results_list.nil? then
@results_list =[]
else
@results_list = results_list
end
if learning_change.nil? then
@learning_change = true
end
if lang_hyp label.nil? then
@lang_hyp label = String.new
end
if num_phonotactic_ercs.nil? then
@num_phonotactic _ercs =0
else
@num_phonotactic_ercs = num_phonotactic_ercs
end
if num_set_features.nil? then

@num_set features = 0
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else
@num_set features = num_set_features
end

end

# Returns the commitments for the language hypothesis.

def commitments() @commitments end

# Returns the list of winners for the language hypothesis.

def winner_list() @winner_list end

# Returns the results list for the language hypothesis.

def results_list() @results list end

# Returns a boolean representing the learning change for the language hypothesis.

def learning_change() @learning_change end

# These values are output in the Excel learning summary spreadsheets
# Returns the number of ERCs created during phonotactic learning

def num_phonotactic_ercs() @num_phonotactic ercs end

# Returns the number of features set in the language hypothesis

def num_set features() @num_set features end



# Sets the value of @learning_change to a boolean
def hyp change(boolean)
@learning_change = boolean

end

# Returns the set of overt forms used in commitment pairs
# in the language hypothesis.

def overt_forms() @overt forms end

# Return the label of the language hypothesis

def lang_hyp label() @lang hyp label end
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# Returns a copy of the language hypothesis, with a duplicated
# grammar, erc_list,commitment_pair list, overt forms list,
# winner list, and results list, num phonotactic ercs,
# num set features, and label.
def dup
hyp dup = super
winners = []
@winner _list.each do |win|
w = win.dup
w.sync_with hypothesis!(hyp_dup)
winners << w
end
label = String.new
label = @lang_hyp label.dup
lang_hyp = Language Hypothesis.new(hyp_dup.grammar, hyp dup.erc_list,
@commitments.dup,@overt_forms.dup, winners, @results_list.dup)
lang_hyp.lang_hyp label << label
lang_hyp.store phonotactic_erc_size(@num_phonotactic_ercs)
lang hyp.store num_set features(@num_set features)
return lang_hyp

end
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# Given a language hypothesis and an overt form, returns a list of
# all consistent branches from that hypothesis. Each branch begins
# as a copy of the given language hypothesis, to which a new
# commitment_pair and winner are added if necessary.
# The ranking bias flag determines which ranking bias to use:
# if the flag is nil, the FaithLow bias is used, otherwise the MarkLow
# bias is used. The flag should be nil except when the Branch method is
# called after setting a feature.
def branch(overt_form, ranking bias_flag)
branch_list =[]
discards =[]
interpretations = []
interpretations = system.get _interpretations(overt form,grammar)
interpretations.each do [word|
lang_hyp = self.dup
# Add a new commitment pair and winner to the branch
commit_pair = lang_hyp.commitments.add commitment pair(word.output)
lang hyp.add winner(word.overt, commit_pair)
OTLearn::ranking_learning(lang_ hyp.winner list, lang hyp, ranking bias flag)
lang_hyp.results_list <<
Overt OTLearn::OvertGrammarTest.new(lang_hyp, "Branch committed to
#{word.output.to_s} ")
if lang_hyp.consistent? then
lang hyp.hyp change(true)
branch_list <<lang_hyp

else



discards << lang_hyp
end
end
return branch_list, discards

end
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# Updates the constraint hierarchy in the grammar, regardless of whether the
# hypothesis is consistent. This update ensures that inconsistent language
# hypotheses will show which ERCs lead to the inconsistency.

# An optional block provides the code for generating the updated
# grammar (some variation of Rcd). If no block is provided, then
# regular RCD is used (all constraints has high as possible).
def update_grammar
if block given?
rcd _result = yield(@erc_list)
else
rcd_result = Rcd.new(@erc_list)
end
@consistent = rcd_result.consistent?
(@grammar.hierarchy = rcd_result.hierarchy
return red_result

end
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# This method creates a new winner having the same morphword

#as overt form and the output from the given

# commitment pair , then adds the winner to the winner list.

# The method returns the winner.

def add_winner(overt_form, commitment pair)
prior_winner = existing_winner(overt_form)
raise "Prior winner exists: #{prior_winner.to_s}" unless prior winner.nil?
output = commitment_pair[1].dup
# Syllables in _output are set to the same morpheme as the corresponding
# syllables in _overt form
gen = SyncEnumerator.new(overt_form, output.syl list)
gen.each do |overt_syl,output syl

output_syl.set morpheme(overt syl.morpheme)

end
output.morphword = overt_form.morphword
winner = self.system.parse output(output, grammar)
self.winner list << winner
return winner

end
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# This method returns the winner (full structural description,
# though the input may include unset features)whose morphword
# matches _overt form_, if such a winner exists in the language
# hypothesis; it returns nil otherwise.
def existing_winner(overt form)
match = self.winner_list.find {|winner| winner.morphword == overt form.morphword}
if match then
if match.overt != overt form then
raise "Overt form #{overt form.to s} doesn't match existing winner #{match.to s}"
end
end
return match

end

def store_phonotactic_erc_size(num)
@num_phonotactic_ercs=num

end

def store_num_set features(num)
@num_set features +=num

end
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# Returns a string containing string representations of the hierarchy, lexicon,
# ERC list and structural commitment pair_pairs and results list of this language hypothesis.
defto_s
out_str ="HIERARCHY" + "\n"
out_str += (@grammar.hierarchy.to_s + "\n"
out_str +="LEXICON"+ "\n"
out_str += (@grammar.lexicon.to_s + "\n"
out_str += "ERC LIST"+ "\n"
out_str += @erc_list.join("\n")
out_str +="\n"+ "COMMITMENT PAIRS"+ "\n"
out str += @commitments.to_s
out_str +="\n"+"WINNER LIST"+ "\n"
out_str += @winner_list.join("\n")
out_str +="\n"+"RESULTS LIST"+ "\n"
out_str += @results_list.join("\n")
out_str

end

end # class Language Hypothesis

end # module Overt OTLearn
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B-16 COMMITMENT_LIST.RB

# Author: Crystal Akers

#

require 'hypothesis'
require 'otlearn’
require 'overt otlearn/data_manip'

require 'sf/sf output'

module Overt OTLearn

# Commitments are arrays containing pairs of overt form and committed output,

# each pair a size 2 array with the first element an overt form and the second

# element a structural interpretation of the overt form.

class Commitment_List < Array

# Returns an empty Commitment list

def initialize

end
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# Returns true if the string representation of form_matches that of either
# member of the commitment (overt form or structural interpretation);
# it returns false otherwise.
def forms_match?(form, commit_pair)
return true if commit pair.any? {jcommitted form| committed form.to s == form.to s}
return false

end

# Returns the commitment pair whose overt form or committed output interpretation

# matches form_; it returns nil if there's no such pair.

def existing_commitment_pair(form)
self.each { |commit_pair| return commit_pair if self.forms_match?(form, commit_pair) }
return nil

end
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# Adds to a new commitment pair with the structural interpretation provided
# by output . Returns the new pair.
def add_commitment_pair(output)
# output must not match an existing commitment pair
raise "Existing commitment for output: #{output.overt.to_s}, #{output.to s}" if
self.existing_commitment_pair(output)
# The overt form of _output must not match an existing commitment pair
overt = output.overt
raise "Existing commitment for overt form: #{output.overt.to_s}, #{output.to_s}" if
self.existing_commitment pair(overt)
commitment_pair = [overt, output.dup]
self << commitment_pair
return commitment_pair

end

#Returns a copy of the commitment pair
def dup
super

end



def to_s
out str=""

self.each do |commit_pair|
out_str <<"["
out_str << commit_pair[0].join
out_str<<" "
out_str << commit_pair[1].join
out_str <<"]"
out_str << "\n"

end

return out_str

end

end # class Commitment

end # module Overt OTLearn
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