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Learners must simultaneously learn a grammar and a lexicon from observed 

forms, yet some structures that the grammar and lexicon reference are unobservable in 

the acoustic signal. Moreover, these “hidden” structures interact: the grammar maps an 

underlying form to a particular interpretation. Learning one structure depends on learning 

the structures it interacts with, but if the learner commits to one structure, its interactions 

can be exploited to learn others. The Commitment-Based Learner (CBL) employs this 

strategy using error-driven learning (Gold 1967, Wexler and Culicover 1980) and 

inconsistency detection (Tesar 1997) to determine when to make commitments and what 

kinds of commitments to make.  

The CBL overcomes structural ambiguity by extending branches from a 

hypothesis and committing to a separate structural interpretation in each branch, as in the 

Inconsistency Detection Learner (Tesar 2004). It resolves lexical ambiguity by making 

piecewise commitments to feature values, following the Output-Driven Learner (Tesar, to 

appear).  Each branch has its own lexicon whose values reflect the interactions of 

underlying forms with the branch’s structural commitments.  
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In computer simulations, the CBL learns all 97 languages in a constructed 

typology whose linguistic system includes 370 million grammar and lexicon 

combinations. For each language learned, the CBL takes far fewer steps than needed to 

exhaustively search for a consistent and restrictive combination. Employing 

inconsistency detection with Multi-Recursive Constraint Demotion (Tesar 1997) makes 

the CBL highly efficient, and it compares favorably in success and efficiency to its major 

stochastic competitors (Apoussidou 2007, Jarosz 2006, to appear). 

The dissertation also introduces a previously unrecognized global lexical 

ambiguity defined by paradigmatic equality. Paradigmatic equals (PEs) have different 

grammars, but because their morpheme behaviors are identical, their learning data are 

equivalent and foil learning by inconsistency detection. To distinguish PEs, the CBL 

finds consistent mappings derived from words with unset features set to mismatch their 

surface values. A mapping with an error by the current ranking contributes new ranking 

information, allowing the learner to derive the hypothesis consistent with the PE that 

includes the mapping. In the system investigated, there are always two such mappings, 

each corresponding to a different PE.  



	

iv	
	

ACKNOWLEDGEMENTS	

It is a true pleasure to write these acknowledgements, both for the opportunity to 

recognize all of those who have helped me reach this point and for the conclusion 

signified to this long but rewarding process.  I begin at the end of this experience, with 

the faculty who advised this dissertation. Bruce Tesar has been a remarkable chair and 

this dissertation owes much to him, not only for the works that have informed the learner 

presented here, but for his rigorous attention to detail, careful questioning, and 

discussions that have at every stage strengthened my work and writing. I cannot give 

thanks enough for the time and patience he has devoted to this project. I am also grateful 

to Alan Prince for his discussions of this work and for what was, for me, surprising but 

heartening encouragement. More generally, I feel fortunate to have worked with both 

Bruce and Alan on this dissertation and on a qualifying paper at Rutgers, and to have 

witnessed their interactions with me, with other students, and with each other during 

classes and reading group meetings; their intellectual curiousity and pursuit of precision 

and clarity are inspiring. 

Shigeto Kawahara read drafts of this dissertation with the fresh eyes of someone who 

has not been immersed in learnability, and I thank him for providing that outside 

perspective, and especially for helping me to identify those parts of this work that could 

appeal to a broader audience. The dissertation was also improved by Gaja Jarosz’s keen 

and critical draft review, and I thank her too for the discussions of her work that helped 

me to better understand her learner.  



	

v	
	

The faculty and students at Rutgers in my time there helped make this commuter feel 

like part of a community. Jane Grimshaw and Veneeta Dayal served on the committee of 

my first qualifying paper at Rutgers, and their warm yet exacting attention to that work 

made it better and vastly improved the experience of writing it. I was always glad to have 

them in my corner. I learned much from Viviane Déprez and Paul de Lacy and thank 

them for their efforts toward my qualifying papers as well. I must also thank my fellow 

students, for sharing insights, laughs, rides, and their futons, especially Paula, Patrick, 

Jimmy, Carlos, Aaron, Will, Jeremy, Mike, Seunghun and Věra.  

My interest in linguistics began at Swarthmore College, where I took a semantics 

course only because it counted toward the philosophy major, my intended goal. That 

course was all it took to change my path. Kari Swingle, the instructor, was a model of 

careful class preparation and amazing recall, and I eagerly took every seminar I could 

with her. Ted Fernald and Donna Jo Napoli were also valuable influences at Swarthmore, 

but it was my last seminar, an introduction to Optimality Theory with John Alderete, that 

sealed my decision to come to graduate school for more linguistics, and in particular, for 

more OT and phonology. 

Because I have the opportunity to do so, I also want to recognize the public schools of 

Pinellas County, Florida, and particularly the MEGSSS, IMAST, and CAT programs. 

After teaching for several years in middle and high schools myself, I know a small piece 

of the hard work and dedication that individual teachers bring to the classroom, and I 

know how special it is to find a group of talented and dedicated teachers working 

together at the same school with the freedom to design demanding and exciting curricula. 



	

vi	
	

Imagine a bus ride home from school, several sixth graders bouncing in the back rows 

with heads bent over their math homework, proofs in symbolic logic that had them 

reminding each other of the difference between modus ponens and modus tollens: that 

was my experience. The math, science and technology magnet programs I was fortunate 

to attend in middle and high school had a lasting impact on my life, as the learnability 

simulations of this dissertation can attest. I remember with fondness and sincere gratitude 

the teachers I have learned from over the years, but especially Mrs. Chipelo, Mrs. 

Quarterman, Mrs. Ranieri, Mr. Lindsay, Ms. Terry, and Mr. Epstein. 

Many family and friends have supported and encouraged me throughout graduate 

school. My in-laws, Carol and Ted Kneeland, were my cheerleaders in the frozen north. 

Colleen Hazelton was always ready with a sympathetic ear and, just as importantly, a 

fenced yard for our puppy play-dates. Melissa Marvel organized the coffees, dinners, and 

walks that helped keep me and many other friends beyond graduate school sane through 

the long winters. How can I begin to thank my parents, Joe and Judy Akers? They have 

always believed in me and enabled me to pursue every opportunity I could. Though they 

did not attend college themselves, they have never stopped learning. I am thankful that 

they are both able to see this dissertation be completed. And to Teresa, Kevin, and Nate, 

who promised as teenagers when I was born that they would see me through college if 

anything should happen to our parents: you’re officially off the hook. 

Finally, to Doug Kneeland, much love and gratitude for all your support and good-

humor over the years. Thank you for being my partner in adventures past, present, and  

future, now with someone new whose presence is known but only just felt. 



	

vii	
	

TABLE	OF	CONTENTS	
Abstract	of	the	Dissertation	...................................................................................................................	ii 
Acknowledgements	..................................................................................................................................	iv 
Table	of	Contents	......................................................................................................................................	vii 
1  Issues	in	learning	hidden	structure	.........................................................................................	1 
1.1  Errors	and	Inconsistencies	..................................................................................................	7 
1.1.1  Errors	...................................................................................................................................	7 
1.1.2  Inconsistencies	..............................................................................................................	15 

1.2  Learning	rankings	from	errors	........................................................................................	17 
1.2.1  Recursive	Constraint	Demotion	and	variants	..................................................	17 
1.2.2  The	Gradual	Learning	Algorithm	..........................................................................	26 

1.3  Managing	structural	ambiguity	.......................................................................................	28 
1.3.1  Robust	Interpretive	Parsing/	Constraint	Demotion	.....................................	29 
1.3.2  Robust	Interpretive	Parsing/	Gradual	Learning	Algorithm	.......................	30 
1.3.3  The	Naıv̈e	Pairwise	Ranking	Learner	and	random	search	.........................	31 
1.3.4  The	Inconsistency	Detection	Learner	.................................................................	34 

1.4  Learning	the	lexicon	............................................................................................................	40 
1.4.1  Inconsistency	detection	and	the	Output‐Driven	Learner	...........................	40 
1.4.2  Lexical	constraints	and	the	GLA	............................................................................	48 
1.4.3  Maximum	Likelihood	Learning	of	Lexicons	and	Grammars	......................	53 

1.5  Conclusion	................................................................................................................................	55 
2  The	Commitment‐Based	Learner	...........................................................................................	57 
2.1  Mutual	dependency	among	hidden	structures	........................................................	58 
2.2  Learning	from	committed	information	.......................................................................	67 
2.2.1  Making	structural	commitments	...........................................................................	69 
2.2.2  Making	lexical	commitments	..................................................................................	72 
2.2.3  Conclusion	.......................................................................................................................	74 

2.3  The	Stress	System	Typology	and	Simulation	Details	.............................................	76 
2.3.1  The	Stress	system	........................................................................................................	77 
2.3.2  The	learning	data	.........................................................................................................	79 

2.4  Fundamental	issues	and	procedures	for	the	Commitment‐Based	Learner	.	80 
2.4.1  The	target	language	....................................................................................................	80 
2.4.2  Phonotactic	learning	...................................................................................................	81 
2.4.3  Is	learning	complete?	.................................................................................................	94 
2.4.4  Non‐phonotactic	learning.........................................................................................	98 
2.4.5  Putting	the	pieces	together	....................................................................................	114 

2.5  Conclusion	..............................................................................................................................	116 
3  A	complete	learning	simulation	............................................................................................	117 
3.1  Phonotactic	learning	..........................................................................................................	120 
3.1.1  Is	learning	complete?	...............................................................................................	129 

3.2  Learning	underlying	forms	.............................................................................................	132 
3.2.1  Branches	from	A1B1	.................................................................................................	133 
3.2.2  Branches	from	A1B2	.................................................................................................	147 

3.3  Conclusion	..............................................................................................................................	160 
4  Paradigmatic	relationships	and	global	ambiguities	.....................................................	163 



	

viii	
	

4.1  Paradigmatic	equals	and	global	lexical	ambiguity	................................................	165 
4.1.1  Learning	L75	................................................................................................................	173 
4.1.2  ERC	by	Consistent	Mismatch	.................................................................................	178 
4.1.3  Assessing	ECM	.............................................................................................................	183 

4.2  Paradigmatic	subsets	.........................................................................................................	193 
4.2.1  Fewest	Set	Features	and	paradigmatic	equals	...............................................	205 
4.2.2  Conclusion	.....................................................................................................................	206 

4.3  When	the	paradigmatic	subset	is	a	paradigmatic	equal	....................................	207 
4.3.1  The	paradigmatic	relationships	of	L39	.............................................................	208 
4.3.2  Combining	ECM	and	Fewest	Set	Features	.......................................................	210 
4.3.3  Learning	L39	................................................................................................................	215 
4.3.4  Conclusion	.....................................................................................................................	223 

4.4  Global	surface	ambiguity	and	the	paradigmatic	equal	.......................................	226 
4.4.1  Globally	ambiguous	languages	and	the	learning	data	................................	226 
4.4.2  Learning	globally	ambiguous	languages	..........................................................	231 
4.4.3  Conclusion	.....................................................................................................................	237 

4.5  Choosing	between	branches	..........................................................................................	239 
4.6  Conclusion	..............................................................................................................................	247 

5  Conclusion	......................................................................................................................................	250 
5.1  Success	and	efficiency	of	Commitment‐Based	Learning	....................................	251 
5.2  Areas	for	further	work	......................................................................................................	255 
5.2.1  Global	ambiguities	and	paradigmatic	relationships	...................................	255 
5.2.2  Other	learning	issues	................................................................................................	257 
5.2.3  Output‐drivenness	and	the	CBL	...........................................................................	258 

5.3  Final	summation	..................................................................................................................	259 
APPENDIX	A  Supports	for	skeletal	bases	................................................................................	261 
A‐1  Combination	(42)f:	/tiras+im/[(tı́ra)sim]	and	/mevugár/[(mèvu)(gár)]	.	261 
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A‐5  Combination	(42)n:	/tı́ras+im/[(tıŕa)sim]	and	/mevugár/[(mèvu)(gár)]	262 
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1 ISSUES	IN	LEARNING	HIDDEN	STRUCTURE	

Linguistic theories posit a variety of structures taken to be part of the adult speaker's 

knowledge of the language. Some of these structures are revealed in the physical 

linguistic signal itself, while others must be inferred from the speaker’s knowledge of the 

grammar. For the language learner, unobservable structure poses a significant challenge 

because of its relationship to the grammar. Knowing the grammar would help the learner 

identify this “hidden” structure, but the learner does not yet know the grammar. In turn, 

knowing the hidden structure would help the learner infer the grammar, but of course the 

learner cannot yet identify the correct structure. This dissertation presents the 

Commitment-Based Learner (CBL) for overcoming these challenges to learn a grammar 

and two kinds of hidden structure simultaneously. Learning simulations of the CBL 

demonstrate that this learner can successfully and efficiently learn a language, including 

its grammar and lexicon, from its overt forms. 

While what counts as hidden or unobservable structure is itself a topic for 

investigation, the intent of the concept can be illustrated by a sentence such as “The dogs 

want to fetch sticks.” Each word has a morphological composition that cannot be 

determined simply by its sound. For example, both dogs and sticks contain the plural 

morpheme, but its pronunciation varies depending on its context: [z] in dogs and [s] in 

sticks; relatedly, each morpheme has an associated underlying phonological 

representation that may differ from what the learner actually hears.  Syntactic structure is 

also hidden in this sentence: the dogs is the subject of the verb want, and it is also the 

implicit subject of the verb fetch.  
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In fact, hidden structure is quite common, occurring across linguistic components and 

at both the input and output levels of representation. Within semantics and syntax, 

quantifier raising, wh-movement, raising, control, and anaphoric binding are all types of 

hidden structure. These examples show that the general problem of learning hidden 

structures and the grammar at once is not limited to any one aspect of the language, and 

therefore must be central to any theory of language learning.  

This dissertation focuses on learning two kinds of hidden phonological structure: foot 

structure and underlying forms. While the learner may discern stress by attention to its 

phonetic correlates, like loudness or vowel duration, laboratory experiments suggest that 

similar phonetic correlates for a foot boundary may not be available to the learner. For 

example, in a production experiment, Ota, Ladd and Tsuchiya (2003) find that foot-final 

moras in Japanese are no longer than other moras in the same foot. On the perception 

side, tendencies to group tones as trochees based on intensity contrasts and iambs on 

durational contrasts, as formulated in the Iambic/Trochaic Law (Hayes 1995), turn out to 

depend on the listener’s native language. In particular, Kusumoto and Moreton (1997) 

find that while both English and Japanese speakers parse non-speech sounds differing in 

intensity as trochees, Japanese speakers also have a tendency to parse durational contrasts 

as trochees. Iversen, Patel, and Ohgushi (2008) replicate the study with a larger sample of 

native Japanese speakers in Japan with similar results: almost half grouped durational 

contrasts into long-short sequences. These results suggest that language learners do not 

have an acoustic reference for foot boundaries and must learn the structure instead. 
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Based on physical observation alone, then, a three-syllable word with primary stress 

(Y) between two unstressed syllables (s) is ambiguous between the interpretations 

[(sY)s], [s(Ys)], and [s(Y)s]. Determining the correct interpretation matters for the learner 

because different interpretations correspond to different languages. Yet, simply 

identifying the correct interpretation will not suffice to determine the language, because 

different constraint rankings can yield the same interpretation.  

Determining underlying forms poses a similar challenge for the learner. Each 

observed form is the output of some input to the grammar, but the input itself cannot be 

directly observed. When the learner hears sYs, nothing about this form alone tells the 

learner the underlying stress feature value of any syllable. Again, learning the grammar 

goes hand-in-hand with identifying this hidden structure: the grammar contains 

constraints on input-output correspondence that must be ranked, but the learner must 

somehow do so knowing neither the input nor the actual structure of the output.  

As the preceding paragraphs have hinted, the problem of inferring grammar is 

intertwined with the problem of discerning hidden structure. The grammar itself is not 

observable except by its effects as represented in the observed forms. The overarching 

problem therefore involves the interrelatedness of hidden structure and the grammar: the 

learner cannot fully know any one aspect of the language without knowing something 

about at least one of the others.  

Further complicating the issue of learning hidden structure and the grammar together 

is the requirement that the learning method be computationally tractable. Executing an 

exhaustive search over the full range of possibilities is impossible, and the search space 
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remains enormous even when limits are imposed such as disallowing unbounded 

insertion and deletion. For example, an exhaustive search over a set of 20 constraints will 

include 2.4 × 1018 total rankings.  Though an exhaustive search of this space might 

appear manageable, the set of constraints needed to account for the full range of human 

language phenomena must be far greater than twenty. Now consider an exhaustive search 

over all possible underlying forms. Suppose all segments have five binary features. If 

inputs and outputs can differ only by the settings of features on corresponding segments 

in the same order, then a ten-segment monomorphemic output like [CV.CV.CV.CV.CV] 

would have (25)10, or over 1015, possible underlying forms. To look at the problem 

another way, suppose that a language has ten morphemes, each of which contains three 

segments with five binary features. In total, there are (25)3, or 32768, different ways to set 

the feature values of each morpheme, and (215)10 or 1045 different possible lexica. These 

numbers, already quite large, do not take into account numerous other ways that inputs 

and outputs can vary, such as by having different numbers or orders of segments. 

Finally, the learner also has to determine the correct structure of the outputs. For an 

Optimality-theoretic grammar, the number of possible structural descriptions for an input 

depends on the assumptions about the candidate generator GEN   (Prince and Smolensky 

1993); for the assumptions given in section 2.3.1, a five-syllable input will have 300 

candidate structural descriptions, each one way of parsing the five syllables. After the 

preceding numbers, this seems trivial, but learning the language means determining, for 

each observed form, the correct underlying form, the correct structural interpretation, and 

the constraint ranking that will map the underlying form to the structural interpretation. 
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For more complex systems, exhaustively searching the range of possibilities for each 

kind of hidden structure and the grammar is simply not feasible. 

Significant progress has already been made toward learning hidden structure and 

grammar together, including by using error-driven learning (Gold 1967, Wexler and 

Culicover 1908) and inconsistency detection (Tesar 2000), which tests if combinations of 

hypothetical structures are consistent with each other and whatever the learner knows 

about the grammar. Inconsistency detection has proven to be an efficient means of 

successfully learning a grammar and one kind of hidden structure at a time, whether 

structural interpretations (Tesar 2000) or underlying forms (Tesar 2009).  

The natural development from these preceding learning algorithms is to apply them to 

the problem of how to simultaneously learn the hidden structures of both inputs and 

outputs with the grammar. The Commitment-Based Learner banks on the power of error-

driven learning and inconsistency detection to learn successfully and efficiently. The key 

feature of this learner is its use of committed information, which enables the learner to 

interleave inconsistency detection across both types of hidden structure. The learner 

maintains multiple language hypotheses, each containing commitments to different 

lexical information and structural representations and to ranking conditions consistent 

with those commitments. The interdependence of hidden structures and the ranking 

becomes an asset with this approach, enabling the learner to narrow the space of the 

grammar hypotheses until one or more is found that is consistent with everything the 

learner observes in the data.  
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For example, each commitment to a structural interpretation has implications for the 

ranking through the conditions required to make the hypothesized interpretation optimal. 

Inconsistency detection allows the learner to determine which combinations of 

interpretations cannot be correct for the language, excluding hypotheses whose 

interpretations require contradictory ranking conditions. In turn, each combination of 

consistent structural interpretations provides the learner with a ranking and a set of output 

forms that can be used to make commitments about underlying forms.  

This chapter reviews prior work done on the topic of learning hidden structures and 

grammar, focusing on the learners that inform the CBL and some of their key stochastic 

competitors, including those based on the Gradual Learning Algorithm (GLA) (Boersma 

1997) and Maximum Likelihood Learning of Lexicons and Grammars (MLG) (Jarosz 

2006). The use of error-driven learning (section 1.1.1) will be a common thread among 

some works, while the potential for and use of inconsistency detection (1.1.2) will 

emerge as a key difference between learning approaches, arising from different 

assumptions about what kind of information the learner can retain. The role of these 

concepts in learning algorithms will be emphasized in the sections on deriving rankings 

(1.2.), managing structural ambiguity (1.3) and learning the lexicon (1.4).  

Chapter 2 introduces the Commitment-Based Learner with a discussion of the 

informative potential of mutual dependency among structures, followed by illustrations 

of the CBL’s component procedures at critical learning points. Chapter 3 expands the 

view of the CBL to cover a complete simulation, following along as the learner 

successfully processes a data set from start to finish. Chapter 4 presents some of the 
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relationships found between languages in the typology used to test the CBL and discusses 

the implications of those relationships for learning. Finally, chapter 5 concludes the 

dissertation.  

1.1 ERRORS	AND	INCONSISTENCIES	

This section provides a review of error- and inconsistency detection, along with some 

examples of how both can be useful for learning.  More specific examples will occur in 

the remainder of this chapter and indeed, throughout the dissertation, as the CBL is an 

error-driven learner that also relies on inconsistency detection. 

1.1.1 ERRORS	
	

In error-driven learning (Gold 1967, Wexler and Culicover 1980), an “error” refers 

to the mismatch that occurs when the learner’s grammar parses an input to an output 

different from the observed form produced by adult speakers. Errors detected by the 

learner motivate changes to the learner’s current grammar hypothesis, but whether the 

learner detects the error depends on the hypothesis used in the parsing attempt, including 

any knowledge the learner has about inputs, outputs, and rules for mapping inputs to 

outputs. Detecting an error alerts the learner that some aspect of the hypothesis must 

change, something new must be learned. Ideally, the learner should have a mechanism for 

using a detected error to identify the particular aspect of the grammar that should change 

and to change it in a way that prevents the error.  

Tesar and Smolensky (1994, 2000) capture the information relayed by detected errors 

in the form of mark-data, or winner-loser (W-L) pairs, which record the violation profiles 

of the desired winner – W, the observed form – and a loser – L, any other candidate. The 
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W-L pair can be written in the form of a comparative tableau (Prince 2000) as in (1), 

where the winner is the trochaic candidate /ss/[(Ys)], and the loser is /ss/[(sY)].1 An “L” 

indicates that a constraint prefers the loser by assessing fewer violations for the loser than 

for the winner; similarly, a “W” indicates that the winner is preferred. The cells 

associated with constraints which do not prefer either candidate are blank here, although 

the standard notation of the comparative tableau would assign each of these cells an “e,” 

indicating that the constraint in question assigns equal violations to the desired winner 

and the desired loser. 

(1) A winner-loser pair2 

/ss/ PARSE-σ FT-BIN IAMB FNF 

[(Ys)] ~ [(sY)]   L W 
 

Tesar (1998a) puts W-L pairs to use in error-driven learning, recognizing that the 

pairs can provide the learner with critical information about how the ranking must change 

in order to render the desired winner optimal in comparison to the loser. Specifically, at 

least one winner-preferring constraint must dominate every loser-preferring constraint. 

Based on (1), PARSE-σ and FT-BIN do not prefer either candidate and can be ranked 

anywhere, but FNF must dominate IAMB. This ranking restriction is the Elementary 

Ranking Condition, or ERC, associated with the W-L pair (Prince 2000, 2002a, 

Brasoveanu and Prince 2011); an ERC is conveyed by the “W” and “L” notations in a 

comparative tableau row.  

																																																													
1 Input-output mappings included within the text of this dissertation are written in the shorthand form 

/input/[output], without an arrow between the two, following Tesar (to appear). Mappings included in 
examples may have the traditional form /input/  [output]. 

2 The constraints used in this tableau are defined as follows. PARSE-σ: syllables must be parsed into feet. 
FT-BIN: feet must be disyllabic. IAMB: feet must be right-headed. FOOT-NONFINALITY (FNF): a foot 
must not be right-headed. Definitions and references for all constraints can be found in section 2.3.1. 
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While not every combination of desired winner and losing candidate will reveal new 

ranking information, error-driven learning can allow the learner to focus just on 

informative W-L pairs. If the learner’s current ranking hypothesis generates an optimum 

different from the observed form or desired winner, then this competitor must be beaten 

by the desired winner – it is an informative loser (Tesar 1998a). The ERC for the W-L 

pair that includes this candidate as loser allows the learner to alter the ranking so that the 

desired winner is optimal. The W-L pair thus not only identifies what must change, it 

identifies what the change must be. 

1.1.1.1 Error	detection	for	stratified	hierarchies	
	

 Grammars in Optimality Theory require that constraints be organized into a strict 

dominance hierarchy (Prince and Smolensky 1993), or total ranking. However, the 

methods to presented in section 1.2.1 for interpreting a list of W-L pairs can produce 

hierarchies that are not total rankings, but instead allow for one or more constraints to 

occupy the same stratum; these are stratified hierarchies (Tesar and Smolensky 1998, 

2000). This section explains how stratified hierarchies can be used for error-driven 

learning. Unless otherwise specified, in the remainder of this dissertation the terms 

“hierarchy” and “stratified hierarchy” will refer to a hierarchy that is not a total ranking.  

Continuing the example from above, a stratified hierarchy can be generated from the 

ranking restriction conveyed by the W-L pair in (1) – that PARSE-σ and FT-BIN can be 

ranked anywhere, but FNF must dominate IAMB.  This restriction is satisfied by the 

hierarchy in (2).  

(2) {PARSE-σ, FT-BIN, FNF} >> IAMB 
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 According to this hierarchy, PARSE-σ, FT-BIN and FNF each dominate IAMB,  but 

otherwise have no specified order with respect to each other as they all occupy the first 

stratum. Total rankings, or refinements (Tesar and Smolensky 2000), of a stratified 

hierarchy can be derived by freely re-ordering constraints within the same stratum while 

respecting the overall ordering of the original strata. The stratified hierarchy in (2) 

produces the six refinements in (3) below. The ordering of PARSE-σ, FT-BIN and FNF 

varies across these refinements, yet in each refinement all three constraints dominate 

IAMB, just as they do in (2). 

(3) Refinements of stratified hierarchy {PARSE-σ, FT-BIN, FNF} >> IAMB 

a. PARSE-σ >> FT-BIN >> FNF  >> IAMB  
b. PARSE-σ >> FNF >> FT-BIN  >> IAMB  
c. FT-BIN  >> PARSE-σ >> FNF  >> IAMB  
d. FT-BIN  >> FNF  >> PARSE-σ >> IAMB  
e. FNF  >> PARSE-σ >> FT-BIN >> IAMB 
f. FNF >> FT-BIN >> PARSE-σ >> IAMB  

The ranking commitments of stratified hierarchies and of their refinements differ in 

several important ways from the ranking commitments of the W-L pairs from which they 

derive. For one, these hierarchies can suffer a loss of ranking information from the W-L 

pairs that generate them (Tesar 1997, Brasoveanu and Prince 2011). For  example, while 

(2) is sufficient to express the ranking restriction of the W-L pair in (1), the necessary 

restriction that FNF dominate IAMB is obscured because this same stratified hierarchy can 

satisfy other ranking restrictions derived from different data.  One of the many alternative 

sources for this hierarchy could be a W-L pair that requires PARSE-σ to dominate IAMB 

but allows FNF and FT-BIN to be ranked anywhere. Loss of information is a motivation 

for storing a list of the W-L pairs created during learning and allowing their ranking 
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commitments to be continually reflected in revised stratified hierarchies, as will be 

described in section 1.2.1.2. 

Stratified hierarchies also impose ranking commitments beyond those entailed by the 

original W-L pairs, with the consequence that it is generally not possible to express the 

total rankings of a set of W-L pairs as all and only the refinements of a single stratified 

hierarchy.  For example, W-L pair (1) only requires that FNF dominate IAMB, and 

therefore it is consistent with rankings in which IAMB dominates both PARSE-σ and FT-

BIN, such as FNF >> IAMB >> PARSE-σ >> FT-BIN. The stratified hierarchy in (2) does 

not allow such a ranking because it requires both PARSE-σ and FT-BIN to dominate IAMB. 

As total rankings, the refinements of (2) each impose ranking relations in addition to 

those of the stratified hierarchy. Thus, refinement (3)a further requires that PARSE-σ 

dominate both FT-BIN and FNF and that FT-BIN also dominate FNF.  

Although a stratified hierarchy typically cannot duplicate the exact ranking 

information of the set of W-L pairs, it sufficiently represents that information while 

imposing fewer additional ranking relations than any one of the total rankings consistent 

with the W-L pairs. Using a stratified hierarchy for error-driven learning offers a 

compromise that is more computationally tractable than evaluating all total rankings 

consistent with the set of W-L pairs without arbitrarily selecting any one total ranking 

and committing to the particular relations of that ranking. However, error detection 

requires some special considerations for stratified hierarchies.  

For a total ranking of constraints, identifying errors and informative losers is a 

straightforward process: an error is detected if the ranking selects an optimum other than 
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the desired winner, and the informative loser is that optimum. In Optimality Theory, the 

optimum for a total ranking is that candidate which, in pairwise competitions with each 

of the other candidates, receives fewer violations of the highest-ranked constraint that 

distinguishes the pair; the optimum is the most harmonic candidate (Prince and 

Smolensky 1993) with respect to the ranking. Determining the optimum for a total 

ranking therefore amounts to filtering out less harmonic candidates – that is, all those 

which do not tie for fewest violations of the sole constraint in the stratum – beginning 

with the highest-ranked constraint and working downward until only one candidate 

remains or until all remaining candidates receive the same number of violations for each 

constraint, producing a tie.  

Because a stratified hierarchy represents a range of possible total orderings of 

constraints, what counts as an error in a stratified hierarchy can depend on how the 

learner interprets violations within a stratum. For example, the tableau in (4) includes 

violation profiles for two candidates for the input /sYs/. The candidates tie for the first 

three strata, but receive nearly complementary violations for constraints in the lowest 

stratum. If (4)a is the desired winner, does the learner detect an error given the stratified 

hierarchy in (5)? 
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(4) Violation profiles of two competitors for /sYs/3 
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a. [(sY)s] 0 1 0 0 1 0 1 0 0 
b. [s(Ys)] 0 1 0 1 0 1 0 1 0 

 

(5) FT-BIN >> PARSE-σ >> MAXSTRESS >> {LMOST, RMOST, AFL, FNF, IAMB, 
*LAPSE}  

 
The answer to this question depends on how the learner interprets the information of 

the violations in the lowest stratum. One option is to detect errors based on total quantity 

of violations within a stratum, in a technique called “mark pooling” (Tesar 1995). By the 

mark pooling technique, there is no error if candidate (4)a is the desired winner. That 

candidate receives only two violations of constraints in that stratum, whereas its 

competitor receives three.  

However, pooling the violation marks obscures an unresolved conflict between 

constraints in the bottom stratum. While candidate (4)a receives fewer violations than 

(4)b, not all constraints prefer (4)a. Under some total rankings consistent with the 

stratified hierarchy, (4)b would be optimal. In particular, RMOST and FNF prefer (4)b to 

(4)a, and if either of these constraints dominates each of the constraints that prefers (4)a, 

then (4)b will win the competition. Selecting (4)b as a loser would provide the ranking 

information to resolve this conflict.  
																																																													
3	MAXSTRESS: for each stressed syllable in the input, assign a violation if the corresponding output syllable 

does not bear primary stress. LEFTMOST/RIGHTMOST: ALIGN (PRWD, L/R, HEAD-FT, L/R). ALL FEET 

LEFT (AFL): foot  prosodic word such that the left edge of the prosodic word and the left edge of the 
foot coincide. *LAPSE: rhythm is alternating; no two adjacent unstressed syllables. See section 2.3.1 for 
all definitions and references.	
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The resulting W-L pair is shown (6). In (7) is given a total ranking of the constraints 

that meets the conditions imposed by this W-L pair by subordinating the two loser-

preferring constraints to all other constraints; section 1.2 will discuss specific strategies 

for deriving rankings from ERCs. 

(6) W-L pair  /sYs/[(sY)s] ~ [s(Ys)]   
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[(sY)s] ~ [s(Ys)]    W L W L W  
 

(7) FT-BIN >> PARSE-σ >> MAXSTRESS >> LMOST >> AFL >> IAMB >>  *LAPSE >> 

RMOST >> FNF 

 
The Conflicts Tie (CTie) technique identifies informative losers like (4)b which can 

reveal ranking information about unresolved conflicts (Tesar 2000). CTie judges the 

competition in (4) as a tie. Two candidates tie by the CTie criterion if, in the highest 

stratum in which they do not have identical violations, neither candidate harmonically 

bounds the other; that is, one candidate does not receive fewer violations than the other 

for all constraints on which they accrue different numbers of violations  (Prince & 

Smolensky 1993, Samek-Lodovici & Prince 1999, 2005).4 

For (4), the candidates receive the same violations through the first three strata, but in 

the bottom stratum, they receive different violations and, crucially, the winner (4)a does 

not harmonically bound (4)b. Because CTie judges that (4)a is not the sole optimum, the 

																																																													
4 Harmonic bounding is easily identified in a comparative tableau. If one row includes only “W” and “e” 

notations, the desired winner in that row’s W-L pair harmonically bounds the loser; if the row includes 
only “L” and “e” notations, the loser of the W-L pair harmonically bounds the desired winner. 
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learner can construct the W-L pair with (4)b and produce a new ranking, such as (7). 

Note that this conflict does not get resolved from this competition if the learner uses the 

mark pooling technique instead. Identifying and resolving the conflict at this point 

enables the learner to use the ranking information for subsequent learning, and for this 

reason the CBL will use the CTie technique to identify informative losers. 

1.1.2 INCONSISTENCIES	

Detecting an error enables the learner to rule out a single incorrect grammar and, by 

using the information provided by the W-L pairs, to pick a new one instead. However, if 

the learner retains a list of all W-L pairs generated in the course of learning, as proposed 

by Tesar (1997), then it becomes possible for the learner to rule out a space of grammars 

through inconsistency detection (Tesar 2000, 2004a). Whereas an error identifies a 

mismatch between the winning output of a hypothesis and the observed form of adult 

production, inconsistency detection identifies conflict between hypothesized structures. 

Two structures are inconsistent with each other if no grammar can include both. Within 

OT, a structure is inconsistent with a grammar hypothesis if there is no way to honor the 

ranking commitments imposed by the W-L pairs of that hypothesis while including the 

structure.  

Error and inconsistency detection differ in their consequences. An error arises 

because a single desired winner cannot win under a specific ranking, but it might still win 

under another. The learner who detects an error may be able to construct a new ranking 

using the information the error provides from the resulting W-L pair. An inconsistency 

arises because a set of desired winners cannot simultaneously win under any ranking. The 
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learner who detects an inconsistency cannot productively construct a new ranking, 

because no ranking can honor the conditions imposed by each separate winner.  

For example, the comparative tableau in (8) includes the W-L pair from (6) and a new 

pair whose winner is /ssY/[(Xs)(Y)], with an initial secondary stress (X). The ranking 

conditions of these pairs are inconsistent: each constraint that prefers the winner for one 

of the W-L pairs prefers the loser in the other pair, so that no constraint prefers only 

winners. Therefore, no language can include both /sYs/[(sY)s] and /ssY/[(Xs)(Y)].  

(8) /sYs/[(sY)s] and /ssY/[(Xs)(Y)] are inconsistent 
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a. /sYs/ [(sY)s] ~ [s(Ys)]     W L W L W  
b. /ssY/ [(Xs)(Y)] ~ [(X)(sY)]    L  L W L  

 

Inconsistencies provide the learner with valuable information about the set of 

structures in the current language hypothesis. If the learner has observed the overt forms 

sYs and XsY, the inconsistency in (8) reveals that either one or both of the hypothesized 

structural interpretations is incorrect. A language hypothesis that includes /sYs/[(sY)s] 

and /ssY/[(Xs)(Y)] can therefore be rejected on the basis of this inconsistency. The 

Inconsistency Detection Learner (IDL) is an algorithm for learning the correct 

interpretations of structurally ambiguous overt forms, using inconsistency detection to 

rule out incorrect combinations of structures (Tesar 2004a). The IDL, which is employed 

by the CBL for phonotactic learning, is discussed further in 1.3.4. In addition to 
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eliminating some combinations of structural interpretations, inconsistency detection can 

also be used to learn underlying forms, as section 1.4.1 describes.  

In sum, error and inconsistency detection are distinguished by the type of problem 

the learner detects and by the hypothetical component causing the problem. An incorrect 

ranking hypothesis causes the traditional error of error-driven learning: a mismatch 

between a calculated optimum and an observed form. Incorrect structural hypotheses 

trigger inconsistency: a conflict between a set of desired winners and the ranking 

conditions separately imposed by each winner.  

 

1.2 LEARNING	RANKINGS	FROM	ERRORS	

This section reviews two major alternatives for using errors to learn a constraint 

ranking. Section 1.2.1 covers Recursive Constraint Demotion (Tesar and Smolensky 

1994, 2000) and several of its variants. Section 1.2.2 reviews the stochastic Gradual 

Learning Algorithm (Boersma 1997). Two non-error-driven approaches to learning a 

grammar are covered in later sections, which discuss learning the ranking as part of the 

broader goals of managing structurally ambiguous data (1.3.3) and learning the lexicon 

(1.4.3). 

1.2.1 RECURSIVE	CONSTRAINT	DEMOTION	AND	VARIANTS	

	
1.2.1.1 Recursive	Constraint	Demotion	(RCD)		

Recursive Constraint Demotion (RCD) is an algorithm for converting the ranking 

information from W-L pairs to a stratified constraint hierarchy (Tesar and Smolensky 

1994, 2000). As explained in section 1.1.1, a ranking that selects the desired winner as 
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optimal will have all L-preferring constraints dominated by at least one W-preferring 

constraint. RCD applies this reasoning to construct a ranking from a list of W-L pairs. 

Beginning with the highest stratum, RCD makes passes through the W-L pair list, in each 

pass demoting any L-preferring constraints to the next lowest stratum and repeating until 

all constraints have been ranked, if possible. 

Two key properties of RCD make it very effective for successfully deriving a 

constraint ranking. First, if there exists a ranking that will make the desired winners 

optimal, RCD will find one such ranking. Second, if there is no ranking that will make 

the desired winners optimal, RCD terminates. Application of RCD to the W-L pair list in 

(9) will illustrate the first property. 

(9) Consistent W-L pair list – before the first pass 

/ss/ PARSE-σ FT-BIN IAMB FNF AFL *LAPSE

a. [s(Y)] ~ [(Ys)] L L W L L  
b. [s(Y)] ~ [(X)(Y)] L W  W   

 

The constraints PARSE-σ, FT-BIN, FNF, and AFL all prefer a losing candidate at least 

once and therefore must be demoted below the stratum containing IAMB, which only 

prefers a winner. Although *LAPSE does not prefer a winner, it does not prefer any losers 

either, and it can be ranked in the first stratum as well. The tableau in (10) shows the 

results of RCD’s first pass through the W-L pair list. 

(10) Consistent W-L pair list – after one pass 

/ss/ *LAPSE IAMB PARSE-σ FT-BIN FNF AFL
(9)a [s(Y)] ~ [(Ys)]  W L L L L 
(9)b [s(Y)] ~ [(X)(Y)]   L W W  
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After this pass, W-L pair (9)a is ignored because demoting all the L-preferring 

constraints below IAMB is enough to make its desired winner optimal. However, the 

ranking restriction of W-L pair (9)b, below the bolded line, remains to be satisfied after 

the first pass through the list, as the optimality of this pair’s winner is not yet ensured by 

the current ranking. In order for (9)b to be optimal, PARSE-σ, the sole L-preferring 

constraint in the row, must be demoted to the stratum below FT-BIN and FNF, the W-

preferring constraints. The ordering of constraints in the tableau in (11) reflects the new 

stratified hierarchy, (12). 

(11) Consistent W-L pair list – after two passes 

/ss/ *LAPSE IAMB FT-BIN FNF AFL PARSE-σ
(9)a [s(Y)] ~ [(Ys)]  W L L L L 
(9)b [s(Y)] ~ [(X)(Y)]   W W  L 
 

(12) {*LAPSE , IAMB} >> {FT-BIN, FNF, AFL} >> PARSE-σ 

 

1.2.1.2 Multi‐Recursive	Constraint	Demotion	(MRCD)		

Applying RCD to a list of W-L pairs can result in information loss. The problem, as 

described in section 1.1.1.1, is that stratified hierarchies obscure the necessary ranking 

restrictions, or ERCs, entailed by a set of W-L pairs. This problem is solved by a later 

development of RCD, Multi-Recursive Constraint Demotion (MRCD) (Tesar 1997), 

which preserves each W-L pair in a permanent list called the support (Tesar & Prince 

2003). Whenever error-driven learning generates a new W-L pair, the pair is added to the 

permanent list, and then RCD applies to the whole list to construct a new ranking. 
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Importantly, retaining the W-L pairs and their ERCs allows the learner to detect when 

desired winners are inconsistent with each other. 

The following example shows how MRCD uses the second property of RCD – its 

ability to terminate when necessary – to reveal that a set of desired winners cannot all be 

optimal. Consider the support below. For the two-syllable input, the desired winner is an 

iambic foot, but for the three-syllable input the desired winner is the right-aligned 

trochaic foot. 

(13) Inconsistent support – before the first pass 

Input W~L PARSE-σ FT-BIN *LAPSE AFL IAMB FNF
a. /ss/ [(sY)]~ [(Ys)]     W L 
b. /sss/ [s(Ys)]~ [s(sY)]    L L W 
c. /sss/ [s(Ys)]~ [(Ys)s]   W L   

 

Demoting the L-prefering constraints AFL, IAMB and FNF to the stratum below 

PARSE-σ, FT-BIN and *LAPSE takes care of W-L pair (13)c, shown above the bolded line 

in tableau (14) below. Here RCD terminates, detecting a problem: in the second stratum, 

every constraint is L-preferring. No ranking can make the two desired winners of these 

remaining pairs optimal. 

(14) Inconsistent support - after the first pass  

Input W~L PARSE-σ FT-BIN *LAPSE AFL IAMB FNF
(13)c /sss/ [s(Ys)]~ [(Ys)s]   W L   
(13)a /ss/ [(sY)]~ [(Ys)]     W L 
(13)b /sss/ [s(Ys)]~ [s(sY)]    L L W 

 

As (14) demonstrates, maintaining a support that stores W-L pairs makes 

inconsistency detection possible. A learner that maintains a support is able to determine 
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what kinds of structures can coexist in the language hypothesis and can use this 

information both to resolve structurally ambiguous data (1.3.4) and to learn the lexicon 

(1.4.1). 

1.2.1.3 Biased	Constraint	Demotion	(BCD)		

As explained above, one of the essential properties of RCD is that if there is at least 

one ranking that will satisfy all of the given W-L pairs, RCD will find one such ranking. 

In particular, RCD finds the stratified hierarchy in which each constraint is ranked as 

high as possible. Two later modifications to RCD, Biased Constraint Demotion (BCD) 

(Prince and Tesar 2004) and Low-Faithfulness Constraint Demotion (LFCD) (Hayes 

2004), bias the learner toward the construction of more restrictive grammars and are 

intended to address the “subset problem” (Angluin 1980 and Baker 1979). The subset 

problem refers to the situation of a learner who wrongly adopts a grammar that allows 

more structures than the language actually permits. Because the correct grammar is a 

subset of this grammar, the learner will never encounter the evidence needed to reject the 

wrong assumption: the only evidence is positive evidence, and everything permitted by 

the correct grammar is also permitted by the incorrect, superset grammar.  

Within Optimality Theory, relative rankings of markedness and faithfulness 

constraints determine the range of linguistic structures permitted by a language. A 

grammar that permits the broadest range of structures will rank all faithfulness constraints 

above all markedness constraints, allowing any structure that appears in inputs to appear 

in outputs, within the bounds permitted by GEN.  At the other extreme, the grammar with 

the narrowest range of structures will have all markedness constraints dominating the 
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faithfulness constraints. Thus, the basic insight of Biased Constraint Demotion: the 

learner who waits for positive evidence of a marked structure to rank a faithfulness 

constraint above the pertinent markedness constraints will derive the more restrictive 

grammar, admitting the observed marked structures that motivate the ranking and as few 

others as possible. 

Prince and Tesar illustrate the use of BCD for learning phonotactic ranking 

information from the distributional data of observed forms. Any observed form has been 

selected as optimal by the adult grammar, and therefore the learner knows that any 

structures present in that form are perfectly permissible in the language.5 Consequently, if 

the observed form is used as an input, the optimal output should be the observed form 

itself. This mapping from observed form as input to observed form as output is the 

identity map (Prince and Tesar 2004). Because the identity map of an observed form will 

best satisfy all faithfulness constraints, it can fail to be optimal only due to its satisfaction 

of markedness constraints. Error-driven learning in this case will produce a W-L pair in 

which W is the identity map and L includes a less marked output than the identity map. 

As a result, the W-L pair reveals conflicts between markedness constraints alone or 

between both markedness and faithfulness constraints.  

The learner derives a new ranking by applying BCD to the support generated by 

error-driven learning – that is, new rankings are derived by MRCD, using BCD in place 

of RCD. At the outset of learning, there will be no W-L pairs in the support; applying 

BCD to this empty list derives the learner's initial constraint ranking in which all 

																																																													
5	Error-driven learning treats all observed data as evidence of grammatical forms. Thus, speech errors are 

also processed as though they are grammatical.  
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markedness constraints dominate all faithfulness constraints: {M} >> {F}. Deriving each 

new ranking through the application of BCD to the support ensures that the ranking bias 

toward markedness constraints persists throughout the learning process.  

The constraint set in the example below includes all nine constraints used in the 

simulations of the CBL, including the faithfulness constraint MAXSTRESS, which assigns 

a violation if an underlyingly +stress syllable does not correspond to an output syllable 

bearing primary stress. The initial ranking after applying BCD to the empty support 

appears in (15). Suppose the learner has constructed the support in (16) for the winners 

/sYs/[(sY)s] and /Yss/[(Ys)(X)]. 

(15) Initial ranking by BCD 

{PARSE-σ, FT-BIN, IAMB, FNF, AFL, *LAPSE, LMOST, RMOST} >> MAXSTRESS 

(16) Support for /Yss/[(sY)s] and /Yss/[(Ys)(X)] 
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a. /sYs/ [(sY)s] ~ [s(Ys)]     W L W   W L   
b. /sYs/ [(sY)s] ~ [(Y)(sX)] L W   W W     W W 
c. /sYs/ [(sY)s] ~ [(Ys)(X)] L W W   W       W 
d. /Yss/ [(Ys)(X)] ~ [(sY)s] W L L   L       W 

 

*LAPSE, LMOST, and MAXSTRESS do not prefer losers in any of the W-L pairs. RCD 

would rank all of these in the first stratum, but BCD ranks only the markedness 

constraints and waits for at least another pass through the support to rank MAXSTRESS. 

The updated support appears in (17), followed by the ranking after this first pass.  
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Ranking *LAPSE and LMOST in the first stratum satisfies W-L pair (16)a, shown above 

the bolded line. 

(17) Support after first pass of BCD  
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(16)a /sYs/ [(sY)s] ~ [s(Ys)]   W     W L W L   
(16)b /sYs/ [(sY)s] ~ [(Y)(sX)]     L W   W W W W 
(16)c /sYs/ [(sY)s] ~ [(Ys)(X)]     L W W   W   W 
(16)d /Yss/ [(Ys)(X)] ~ [(sY)s]     W L L   L   W 

 

(18) {*LAPSE, LMOST} >> {PARSE-σ, FT-BIN, IAMB, FNF, AFL, RMOST,  
MAXSTRESS} 

 
Of the remaining unranked constraints, FNF, RMOST and MAXSTRESS prefer only 

winners in the rows below the bolded line. BCD again ranks just the markedness 

constraints, producing the ranking for the updated tableau in (19). This ranking, in (20), 

now satisfies (16)b also. 

(19) Support after second pass of BCD  
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(16)a /sYs/ [(sY)s] ~ [s(Ys)]   W L L     W W   
(16)b /sYs/ [(sY)s] ~ [(Y)(sX)]     W W L W   W W 
(16)c /sYs/ [(sY)s] ~ [(Ys)(X)]         L W W W W 
(16)d /Yss/ [(Ys)(X)] ~ [(sY)s]         W L L L W 

 

(20) {*LAPSE, LMOST} >> {FNF, RMOST} >> {PARSE-σ, FT-BIN, IAMB, AFL, 
MAXSTRESS} 
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Five unranked constraints remain. Because the markedness constraints are all L-

preferring, now the W-preferring MAXSTRESS must finally be ranked. The updated 

support appears in (21). All of the W-L pairs are satisfied by the resulting ranking, (22). 

By comparison, applying MRCD to the support in (16) would yield the ranking in (23). 

This ranking has just two strata because all the W-L pairs are satisfied if *LAPSE, LMOST, 

and MAXSTRESS are ranked highest. 

(21) Support after third pass of BCD  
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(16)a /sYs/ [(sY)s] ~ [s(Ys)]   W L L       W W 
(16)b /sYs/ [(sY)s] ~ [(Y)(sX)]     W W W L W   W 
(16)c /sYs/ [(sY)s] ~ [(Ys)(X)]         W L W W W 
(16)d /Yss/ [(Ys)(X)] ~ [(sY)s]         W W L L L 

 

(22) Final ranking by BCD 

{*LAPSE, LMOST} >> {FNF, RMOST} >> MAXSTRESS >> {PARSE-σ, FT-BIN,IAMB, 
AFL}  

 
(23) Final ranking by MRCD 

{*LAPSE, LMOST, MAXSTRESS } >> {PARSE-σ, FT-BIN, IAMB, FNF, AFL, RMOST}  

 
The more restrictive ranking in (22) is consistent with language L14 in the typology 

of the Stress system, the system used to illustrate the CBL (see section 2.3.1).  In this 

language, all inputs map to either [(sY)s] or [(Ys)(X)]. L14 contains a subset of the forms 

of language L15, which includes a third form, [(X)(sY)]. L15 is consistent with the less 

restrictive ranking in (23). 
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BCD includes other criteria for ranking faithfulness constraints when the constraint 

set includes more than one, such as by ranking a set of faithfulness constraints (an F-

Gang) that enables a markedness constraint to be ranked next. Because the Stress system 

used to illustrate the CBL includes just one faithfulness constraint, this example provides 

a sufficient look at how BCD will operate in the discussions to follow. 

1.2.2 THE	GRADUAL	LEARNING	ALGORITHM	

The Gradual Learning Algorithm, or GLA, (Boersma 1997) is a primary alternative 

to the RCD-inspired learning algorithms described in	 1.2.1. Designed to handle 

optionality in a language, the GLA presupposes a variant of Optimality Theory called 

stochastic OT (Boersma 1997, Boersma and Hayes 2001). Whereas constraints are 

strictly ranked in classic OT, in stochastic OT constraints are ranked along a continuous 

number line. For example, while constraints A and C both dominate B below, C is much 

closer to B. 

(24) GLA number line 

 
       101                                 82 80 
        A             C   B 
 

The numbers marked on the line represent the means of normal (Gaussian) 

distributions of values for the constraints listed and are called ranking values (Boersma 

and Hayes 2001). When a candidate set is evaluated, each constraint’s ranking value is 

temporarily perturbed by a small random noise value that shifts the value of the constraint 

slightly higher or lower to derive the selection point (Boersma and Hayes 2001) for that 

constraint, which is the value used for the evaluation; this is stochastic evaluation 
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(Boersma 1997). Because stochastic evaluation randomly selects values from the normal 

distributions of individual constraints, it amounts to the selection of a complete ranking 

from a probability distribution over the possible rankings. 

Optionality derives from the overlap between the normal distributions of ranking 

values. The closer the ranking values of two constraints, the greater the overlap, and the 

greater the likelihood that stochastic evaluation will use a ranking different from that of 

the ranking values. For example, in one evaluation C’s ranking could decrease to 80.7 

while B’s increases to 81, resulting in B dominating C for that evaluation. The greater 

distance between A and C makes it far less likely – although not impossible – that C will 

dominate A in an evaluation.  

Similar to classic OT, different grammars in stochastic OT correspond to different 

ranking values of constraints; the GLA is the stochastic counterpart of RCD, providing an 

algorithm for setting these ranking values. Like MRCD, the GLA employs error-driven 

learning, but instead of constructing a new ranking for each error detected, the GLA 

simply modifies the existing ranking by nudging all W-preferring constraints slightly 

higher and all L-preferring constraints slightly lower. The size of the nudge is defined by 

a plasticity value that grows smaller as learning advances (Boersma 1997). The small 

shifts in ranking values regulated by the plasticity make errors less likely over time, 

whereas RCD immediately corrects the ranking to eliminate the error.  

The GLA does not maintain a support of W-L pairs. Once ranking values are shifted 

by the plasticity, the GLA has no more use for the W-L pair derived from error-detection. 

Both because W-L pairs are discarded after each ranking modification and because 
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modifications involve such small movements, the GLA is forgiving of noisy data such as 

speech errors and re-rankings based on such data do not severely interfere with learning. 

For a learner that uses MRCD to learn the ranking, adding to the support an ERC that 

results from observing a speech error has a permanent effect on the ranking and may lead 

to inconsistency. On the other hand, the GLA lacks MRCD’s ability to perform 

inconsistency detection because it does not store W-L pairs from prior errors.  

1.3 MANAGING	STRUCTURAL	AMBIGUITY	

A structure is ambiguous if it has more than one interpretation. For the stress data 

under discussion here, a structural interpretation consists of any parsing matching the 

observed form in its pattern of stressed and unstressed syllables. A two syllable word 

with initial stress, Ys, has the possible interpretations [(Y)s] and [(Ys)], but not [s(Y)] or 

[(sY)]; the latter two parsings are simply candidate structural descriptions for a two 

syllable input.  

Different interpretations of an overt form will correspond to different languages, and 

how the learner interprets one overt form can have consequences for what the learner 

infers about the grammar and the interpretations of other overt forms. This section 

reviews two basic responses to the problem of structural ambiguity.6 In the first, the 

learner takes a flexible approach to interpretations: either the interpretations can vary 

over the course of learning (sections 1.3.1 and 1.3.2) or the interpretations are simply 

ignored (section 1.3.3). The second response is more rigid: an overt form receives a 

permanent interpretation once it becomes clear that its interpretation cannot be ignored 

																																																													
6 See also section 1.4.2 and 1.4.3 for two learners that manage structurally ambiguous data while learning a 

lexicon. 
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(section 1.3.4). Both kinds of responses can be error-driven, but only the second kind can 

exploit inconsistency detection for learning.  

1.3.1 ROBUST	INTERPRETIVE	PARSING/	CONSTRAINT	DEMOTION	

The Robust Interpretative Parsing/ Constraint Demotion (RIP/CD) algorithm is an 

early, error-driven approach to resolving the problem of structural ambiguity (Tesar 

1998b, Tesar and Smolensky 2000). Robust interpretative parsing takes an observed form 

as input and assigns it the most harmonic structural interpretation, regardless of whether 

the ranking selects that interpretation as optimal. The learner then checks whether the 

underlying form of the observed form maps to the same interpretation.  If it does, the 

learner makes no changes to the ranking, but if it does not, the learner performs error-

driven learning. The ranking is altered using online constraint demotion, or “online CD” 

(Tesar and Smolensky 1998). For online CD, the W-L pair supplied by error detection is 

immediately used to update the ranking and is then discarded, with the next round of 

error-driven learning applying to the revised ranking. This process repeats until the 

assigned structural representation is the optimal output for the underlying form.  

Because the RIP/CD algorithm chooses the most harmonic structural interpretation as 

judged by the learner’s current ranking hypothesis, it has the potential to choose the 

wrong interpretation, and consequently to learn the wrong grammar. The algorithm can 

sometimes right itself, but there are several cases in which the algorithm fails because of 

its rigid selection of the most harmonic interpretation at the time (Tesar and Smolensky 

2000); however, when RIP/CD succeeds, it is quite efficient. In simulations of RIP/CD 

performed over 124 languages generated from a set of 12 constraints, Tesar and 
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Smolensky find that the algorithm typically succeeds in fewer than 10 learning steps, 

each an application of constraint demotion. 

1.3.2 ROBUST	INTERPRETIVE	PARSING/	GRADUAL	LEARNING	ALGORITHM	

Apoussidou and Boersma (2003) implement robust interpretative parsing with the 

GLA to learn foot structure in Latin. The differences between RIP/GLA and RIP/CD are 

minimal. As with RIP/CD, the learner uses an observed form as input, determines which 

of the possible interpretations of the observed form is most harmonic, and assigns this 

interpretation to the observed form. Because the GLA assumes stochastic OT, the ranking 

used to select the most harmonic interpretation of the observed form is in effect randomly 

chosen from the probability distribution over all possible rankings, given the current 

ranking values.  The learner then uses this same ranking to check whether the underlying 

form of the observed form maps to the same interpretation; if not, then error-driven 

learning occurs, with ranking values changed as described in section 1.2.2.  

Importantly, because RIP/GLA shares with RIP/CD the selection of the most 

harmonic interpretation at the time of observation, it also shares the possibility of getting 

stuck by selecting the wrong interpretation. In comparison to RIP/CD, which requires 

very few learning steps when it is successful, RIP/GLA generally processes thousands of 

data before succeeding. GLA simulations are typically evaluated by assessing the ranking 

values after the learner has processed a round of data.  In simulations where the learners 

process overt forms, as in the RIP/CD simulations, Apoussidou and Boersma report that 

the learners succeed after processing 3 to 35 rounds of 1000 data.  
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1.3.3 THE	NAÏVE	PAIRWISE	RANKING	LEARNER	AND	RANDOM	SEARCH	

Like the preceding learners, the Naïve Pairwise Ranking Learner, or NPRL, (Jarosz 

to appear) takes an online approach, but it is not error-driven. Moreover, NPRL ignores 

structural interpretations altogether and avoids the problem of structural ambiguity by 

comparing overt forms only. Simulations of the NPRL show that it is successful and 

efficient, at least as compared to exhaustive search and RIP/GLA, but its performance 

mirrors qualities of random search. Random search is just as successful and requires even 

fewer learning steps than NPRL.  

Based on Naïve Parameter Learning (Yang 2002), NPRL derives a total ranking from 

pairwise relative rankings of constraints. Thus, the ranking CON1 >> CON2 >> CON3 is 

derived from three pairwise rankings: CON1 >> CON2, CON1 >> CON3, CON2 >> CON3. 

Each relative ranking of a pair of constraints has a probability specified by the grammar.  

The total ranking is created by a repeating process in which two unranked constraints are 

ranked relatively given the probability assigned by the grammar, along with whatever 

other pairwise rankings follow from their ranking, until all constraints have been ranked 

with respect to each other. As in the GLA, the total ranking represents a selection from 

the probability distribution over all possible rankings. 

NPRL learns by comparing the overt form of the current ranking’s optimum against 

the observed form. If these overt forms match, then all pairwise rankings are rewarded 

using a learning rate that increases the probability associated with the ranking: the higher 

the learning rate, the greater the increase in probability. Similarly, if the overt forms do 

not match, the probabilities associated with each ranking are penalized. NPRL is not 
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error-driven because it updates the ranking in some way with each observed form and it 

is “naïve” because it updates every pairwise ranking rather than finding a way to reward 

just those that favor the desired outcome. 

In simulations of the NPRL applied to the metrical stress system used by Tesar and 

Smolensky (2000), Jarosz finds that given a high learning rate, the NPRL is efficient at 

learning a language as compared to exhaustive search and RIP/GLA, but not RIP/CD. 

The NPRL is also completely successful, where success means converging on a ranking 

that generates all the overt forms of the language. With twelve constraints used in the 

simulations, there are nearly five-hundred million different total rankings, but the NPRL 

requires on average 16004 iterations (each the processing of a single observed form) to 

successfully learn the 124 languages in the system. However, the learning rate is a key 

factor in both success and efficiency. At low rates, NPRL is unsuccessful after one 

million iterations, and at high rates, success is achieved essentially through random 

search, as updating after the mismatch between predicted and observed forms produces a 

far different ranking for the next evaluation.  

Jarosz also evaluates a random search learner which eliminates both the reward and 

penalty schemes of the NPRL. The learner simply picks a new ranking at random, checks 

whether the ranking can generate each observed overt form, and if not, selects a new 

ranking. This learner is error-driven, as a new ranking is selected only if the current 

ranking cannot generate a given overt form. The learner is successful if a ranking is 

chosen that generates all of observed forms. In simulations, random search proves 
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successful in all trials and more efficient than NPRL, requiring 10,025 iterations on 

average to learn a language.  

Compared to RIP/CD and RIP/GLA, random search appears to be a surprising 

winner: it requires fewer learning steps than RIP/GLA, and though nowhere near as few 

as RIP/CD can require, it succeeds where that algorithm fails. However, there are two 

key areas where random search is unsatisfying. First, the simulations evaluating random 

search do not take into account restrictiveness. The simulation is deemed successful if its 

ranking can generate all of the overt forms in a language and unsuccessful if it does not. 

Restrictiveness is irrelevant to these simulations because no neutralizations occur in the 

target languages, but if they did, on this criterion for success a “successful” ranking could 

overgenerate. The random search learner, while error-driven, cannot respond to errors in 

a way that will prevent their future occurrence, much less drive the learner toward a 

ranking more restrictive than the last. In contrast, an error-driven learner that builds from 

its accumulated store of knowledge from errors can incorporate a ranking bias to derive 

more restrictive rankings. Section 1.3.4 describes such a learner, which incorporates BCD 

and MRCD to efficiently derive restrictive rankings 

Second, random search is unlikely to be a computationally plausible strategy for 

learning both a lexicon and a ranking to generate the observed forms. The linguistic 

system presented in section 2.3.1 and used to evaluate the Commitment-Based Learner 

produces a typology of 97 languages but includes over 370 million grammar and lexicon 

combinations. It is true that all of these languages can be generated by multiple total 

rankings and even true that, as described in chapter 4, multiple lexicon and grammar 
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combinations can generate the observed forms of a language. Therefore, it might be 

reasonable to expect that it would take about the same number of iterations (roughly 

10,000) to find a lexicon and ranking to fit the data as it took to find a ranking fitting the 

data for a language in the Tesar and Smolensky typology, with its 500 million possible 

total rankings. However, this system is remarkably modest, having nine constraints, six 

morphemes, and only trisyllabic words. As the space of grammar and lexicon 

combinations grows for more complex systems, the number of iterations required to find 

a combination that generates the data is certain to explode – and the inability to address 

restrictiveness will remain.  

1.3.4 THE	INCONSISTENCY	DETECTION	LEARNER	

The Inconsistency Detection Learner, or IDL (Tesar 2004), is an error-driven learner 

that avoids the tendencies of RIP/CD and RIP/GLA to get stuck on the wrong 

interpretations by creating separate hypotheses containing different interpretations. A 

support in each hypothesis enables the learner to reap the benefits of MRCD, including 

identifying and rejecting inconsistent hypotheses. In comparison to random search, the 

most successful of the preceding learners reviewed, IDL both successfully and efficiently 

learns restrictive rankings to generate the observed data. 

While the IDL can assign stable interpretations to overt forms, it begins first by 

determining whether the current ranking hypothesis can map an input to some structural 

interpretation of the observed form, employing error-driven learning as described in 

section	1.1.1. If the ranking maps the input to one interpretation of the observed form, the 

learner makes no changes to the hypothesis and learns nothing new. If an error is detected 
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– if the input does not map to a structural interpretation or if it maps to more than one 

interpretation in a tie – then the learner follows the familiar pattern of error-driven 

learning for constraint demotion, constructing a W-L pair in which the loser is the 

candidate description selected as optimal by the current ranking.  

The IDL differs substantially from RIP/CD in allowing each interpretation to be the 

winner of its own W-L pair instead of selecting the most harmonic interpretation of the 

current ranking to be the winner. If an observed form has five structural interpretations, 

an error on this form will cause the learner to generate five separate W-L pairs that have 

the same loser, L, since the error has shown that each interpretation has separately lost to 

this candidate. Each of these W-L pairs is stored in the support of its own branch 

hypothesis which inherits the support of the original hypothesis. A branch’s support 

therefore includes everything that was in the parent’s list plus the W-L pair from the error 

that caused the branch. The learner derives a new ranking for each branch hypothesis by 

applying RCD to the branch’s support.7  

Storing a W-L pair in the support entails a commitment to its winner every time 

MRCD applies. If MRCD finds no constraint ranking that will allow all desired winners 

in a W-L pair list to win, then the structural interpretations of the winners are inconsistent 

with each other, and the learner rejects the hypothesis containing this list. Otherwise, the 

hypothesis remains active and under consideration. The learner will test the next 

																																																													
7 Because Tesar’s focus is on illustrating the use of the IDL in learning structurally ambiguous 

representations, all inputs match the observed forms completely, no Faithfulness constraints are 
included, and there is no benefit to applying BCD to the W-L pair list. BCD becomes useful again when 
Faithfulness violations are included. 
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observed form in each hypothesis that remains and will perform error-driven learning 

described above when errors are detected. 

The example from (8) in section 1.1.2 offers a partial example of the IDL at work. In 

that example, the learner has observed sYs and XsY and interpreted these forms as [(sY)s] 

and [(Xs)(Y)], respectively. As shown in tableau (8) and repeated below in (25), the 

identity mappings for these forms – /sYs/[(sY)s] and /ssY/[(Xs)(Y)] – are inconsistent 

with each other.8 

(25) /sYs/[(sY)s] and /ssY/[(Xs)(Y)] are inconsistent 

Input W~L F
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a. /sYs/ [(sY)s] ~ [s(Ys)]     W L W L W  
b. /ssY/ [(Xs)(Y)] ~ [(X)(sY)]    L  L W L  

 

The support in (25) represents one branch from a prior hypothesis which found that 

[(sY)s] is a possible – that is, consistent – interpretation of the first observed form, sYs. 

The original support for that hypothesis can be found in (6). The inconsistency here 

proves that [(sY)s] and [(Xs)(Y)] cannot both be correct interpretations of the observed 

forms, and any hypothesis that includes both of these interpretations can be rejected. 

However, this combination of interpretations is only one of those checked by the IDL. An 

alternative interpretation of XsY parses the head-foot as an iamb at the right edge: 

[(X)(sY)]. As shown in (26), this alternative interpretation is consistent with the 

candidate /sYs/[(sY)s]  for the first form. The comparative tableau below represents the 
																																																													
8 As described in 2.3, for the examples and simulations described in this dissertation, secondary stress is a 

parameter on -stress output syllables. Therefore, in the identity mapping for XsY, the input 
correspondent of the secondary stressed syllable is unstressed:/ssY/[(Xs)(Y)]. 



37	
	

	
	

support for these candidates and includes all of the W-L pairs created by error-driven 

learning. The stratified hierarchy in (27) is derived by BCD from this support. 

(26) /sYs/[(sY)s] and /ssY/[(X)(sY)] are consistent 
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a. /sYs/ [(sY)s] ~ [s(Ys)]   W     W L W   L   
b. /sYs/ [(sY)s] ~ [(Y)(sX)]      W   W W W W L 
c. /ssY/ [(Xs)(Y)] ~ [(sY)s]      W L W L L L W 
d. /sYs/ [(sY)s] ~ [(X)(sY)]      W W L W W W L 
e. /sYs/ [(sY)s] ~ [(sY)(X)]            W W W L 

 

(27) {IAMB, *LAPSE} >> MAXSTRESS >> {LMOST, RMOST, AFL, FT-BIN, FNF, 
PARSE-σ}  

 
The support in (26) represents a second branch from the hypothesis that assigns sYs 

the interpretation [(sY)s]. There is also a third branch, which is inconsistent because the 

identity mapping for this interpretation, /sYs/[s(Y)s], is harmonically bounded by the 

iambic candidate /sYs/[(sY)s]. In all, the IDL extends three branches from the initial 

hypothesis in which sYs is interpreted as [s(Ys)]. If the learner is committed to the 

interpretation [(X)(sY)] for overt form XsY, then only the branch hypothesis whose 

support is in (26) is consistent, and any new forms the learner observes must be evaluated 

against that support only, with the same branching procedure repeating as necessary. 

In simulations involving the same kind of metrical stress data9 used to evaluate the 

NPRL and the random search learners in section 1.3.4, the IDL proves successful and 

																																																													
9 The system used by Tesar (2004) omits the Word-Foot-Left/Right constraints used by Tesar and 

Smolensky (2000), whose system is used in the NPRL and random search learner simulations. 



38	
	

	
	

highly efficient (Tesar 2004). An IDL simulation successfully learns a language if it 

learns a ranking that generates the overt forms of the language. The constraints and 

candidate sets used in the simulations define a typology of 1527 languages.10 The IDL 

learns each language and, on average, succeeds in just 62 applications of RCD (one 

application for each ERC stored). This average includes all applications of RCD in all 

hypothesis branches created in the course of learning; for most languages, the learner 

maintains at most two consistent hypotheses simultaneously. 

Retaining a support for active hypotheses has a severe effect on the number of 

hypotheses the learner must retain. As a hypothesis increases in the number of 

interpretations and concomitant ranking restrictions that it is committed to, it also 

increases the potential that a candidate for a newly-observed form will be inconsistent 

with those ranking restrictions. Inconsistency here leads to hypothesis rejection. 

Consequently, while the maximum number of active hypotheses the learner would have 

to maintain at once would be equal to the product of the number of structural 

interpretations for all the observed forms in the language, restrictions placed by the ERCs 

of the W-L pairs mean that many combinations of interpretations will be inconsistent, and 

hypotheses containing these combinations are rejected.  

The IDL fares very well in comparison with the learners discussed in the preceding 

sections. It matches the total success rate of random search, but where random search 

fails to derive restrictive rankings, the IDL can easily incorporate a ranking bias such as 

																																																													
10	Tesar notes that there are in fact 2140 distinct languages, if full structural descriptions are included, but 

many have identical sets of overt forms. Languages with identical sets of overt forms are represented by 
only a single data set, leaving 1527 distinct sets of overt forms. These languages are globally surface-
ambiguous, as defined in section 4.1.	
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BCD to do so. The efficiency claims of each learner are harder to compare, as they use 

different metrics and involve different-sized constraint sets, but the IDL appears 

favorable nonetheless. The random search learner averages around 10,000 iterations, 

where an iteration is the observation of an overt form and the subsequent ranking update 

that occurs. Each IDL simulation includes 62 words, and on average the learner requires 

62 applications of RCD – counting those in all hypotheses created – to successfully learn 

the language. To observe 10,000 overt forms during the course of learning, the IDL 

would have to see each word 161 times before learning the language. Even if the learner 

had to observe the entire list of 62 words before detecting an error and applying RCD, 

making 62 updates would require observing only 3844 (=62*62) overt forms. 

The IDL owes much to the supports of its hypotheses. Maintaining multiple 

hypotheses, each with its own support, adds complexity and more machinery to this 

learner but guarantees success: somewhere, one of the hypotheses has the correct 

interpretations for the observed forms. Moreover, the number of hypotheses maintained 

at any given time is far fewer than the product of the interpretations of each overt form 

because having a support enables the learner to detect and reject inconsistent hypotheses. 

Finally, unlike the random search learner, the IDL displays gradual learning due to its use 

of supports: storing the W-L pair created after detecting an error ensures that this 

particular error will not happen again. Each error therefore brings the learner closer and 

closer to either learning the target grammar or detecting an inconsistency.  

All learners have disadvantages. As a learner that relies on a support, the major 

disadvantage of the IDL is its difficulty in handling noisy data such as speech errors and 
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free variation. In attempting to learn from these potentially contradictory data, the learner 

may find that every hypothesis is inconsistent and ultimately fail to learn the language. 

Random search experiences a similar failing: the learner cannot converge on a ranking if 

free variation creates a unending cycle of match and mismatch. By contrast, GLA-based 

learners tolerate noisy data well, but RIP/GLA is not guaranteed success.  

1.4 LEARNING	THE	LEXICON	

The preceding section presented learners using a variety of strategies for learning a 

grammar from structurally ambiguous data. These learners vary by whether or not they 

are error-driven and whether or not they maintain a support to enable inconsistency 

detection. Those divides continue in this section, which presents several different 

approaches to learning a lexicon and ranking. Two of these are error-driven and follow 

the pattern seen in the last section: the RCD-based approach utilizes inconsistency 

detection (1.4.1) while the GLA-based approach does not (1.4.2). The third approach, 

Maximal Likelihood Learning of Lexicons and Grammars (Jarosz 2006, section 1.4.3), 

also uses a stochastic, online learning algorithm but is not error-driven.  The latter two 

learners also can handle structurally ambiguous data, but they are discussed in this 

section because of their ability to learn the lexicon as well. 

1.4.1 INCONSISTENCY	DETECTION	AND	THE	OUTPUT‐DRIVEN	LEARNER	

Learning about underlying forms requires that the learner know the morphological 

composition of words in the language. Once the learner has this knowledge, paradigmatic 

information – the surface realizations of morphemic contrasts and alternations (Alderete 
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et al. 2005 and Tesar 2004) – makes it possible to learn underlying forms through 

inconsistency detection.  

A morphemic contrast consists of a pair of surface-distinct words differing by only a 

single morpheme in the same morphological environment. An example from Modern 

Hebrew is the pair gàmadím ‘dwarf’ (pl.) and tírasim ‘corn’ (pl). In these words the 

plural suffix /-im/ provides the morphological environment for the contrast morphemes, 

the roots /gamad/ and /tíras/. Since the context is the same for the contrasting morphemes 

in a contrast pair, the different surface realizations of the pair must be due to the 

underlying forms of the contrast morphemes.  

Tesar (2006) describes how the learner can infer individual features of the underlying 

forms by applying inconsistency detection to lexical hypotheses, or pairs of possible 

underlying forms for the contrast pair. Each lexical hypothesis includes a different 

combination of feature values for the as-yet unset features. If there are n binary features 

whose underlying values are unknown, the learner must construct 2n local lexical 

hypotheses (Merchant and Tesar 2008).  In the contrast pair gàmadím and tírasim each 

syllable has a single feature with two possible settings: +stress or –stress. The contrast 

pair therefore has five feature values that the learner must set, one for each syllable of the 

disyllabic contrast morphemes, the roots, and one for the monosyllabic environment 

morpheme, the shared suffix. In total, there are 32 (=25) lexical hypotheses, whose 

underlying stress values are summarized by the chart in (28). 
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(28) Lexical hypotheses for the contrast pair gàmadím and tírasim 

gamad  tíras -im gamad  tíras -im gamad  tíras -im gamad  tíras -im
/--/ /--/ /-/ /+-/ /--/ /-/ /-+/ /--/ /-/ /++/ /--/ /-/ 
/--/ /--/ /+/ /+-/ /--/ /+/ /-+/ /--/ /+/ /++/ /--/ /+/
/--/ /+-/ /-/ /+-/ /+-/ /-/ /-+/ /+-/ /-/ /++/ /+-/ /-/ 
/--/ /+-/ /+/ /+-/ /+-/ /+/ /-+/ /+-/ /+/ /++/ /+-/ /+/
/--/ /-+/ /-/ /+-/ /-+/ /-/ /-+/ /-+/ /-/ /++/ /-+/ /-/ 
/--/ /-+/ /+/ /+-/ /-+/ /+/ /-+/ /-+/ /+/ /++/ /-+/ /+/
/--/ /++/ /-/ /+-/ /++/ /-/ /-+/ /++/ /-/ /++/ /++/ /-/ 
/--/ /++/ /+/ /+-/ /++/ /+/ /-+/ /++/ /+/ /++/ /++/ /+/

 

In the method described by Tesar (2006) and Merchant and Tesar (2008), the learner 

tests each local lexical hypothesis for inconsistency, then examines the consistent 

hypotheses for common feature settings. Since the correct underlying forms must be in 

one of the consistent lexical hypotheses, any feature value that appears in all of the 

consistent hypotheses necessarily appears in the correct one. The common feature values 

of consistent lexical hypothesis provide the learner with information about underlying 

forms.  

Tesar (2008, 2009, to appear) improves the computational efficiency of testing lexical 

hypotheses significantly with the concept of output-driven maps, defined as below. 

(29) “A map is output-driven if, for every grammatical candidate A→X of the 
map, if candidate B→X has greater similarity than A→X, then B→X is also 
grammatical (it is part of the map).” (Tesar 2009) 

 
The map for a language consists of the set of grammatical candidates, with each 

candidate being a mapping from an input to an output. Similarity is judged according to 

disparities (Tesar 2008, 2009, to appear). Each disparity is one difference, such as in 

feature value, between corresponding segments of the input and output. For example, the 
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input /pa/ and the output [pá:] have two disparities: the length and stress of the second 

segment, the vowel. This mapping and an alternative mapping containing the output [pá:] 

are given with their disparities in (30) below. 

(30) Mappings and their disparities 

a. /pa/  [pá:] Disparities:  segment 2 stress; segment 2 length 
b. /pá/  [pá:]    segment 2 length 

The mappings above contain the same output and can be compared with reference to 

their disparities. To begin, the mapping in (30)b contains a subset of the disparities in 

mapping (30)a, making its input /pá/ more similar to the output than the unstressed input 

/pa/ of (30)a is. Therefore, if (30)a, the mapping /pa/  [pá:], is grammatical in a 

language where the grammatical candidates form an output-driven map, then the mapping 

in (30)b must also be grammatical. This example serves to illustrate the property of 

output-driven maps described in (29). Now consider the contrapositive of this property: if 

the mapping in (30)b is not grammatical in the language, and the language has an output-

driven map, then the mapping in (30)a also cannot be grammatical because it contains a 

superset of the disparities in (30)b. The Output-Driven Learner, or ODL, (Tesar 2008, 

2009, to appear) exploits this property. 

The ODL uses the structure of output-driven maps to apply inconsistency detection to 

just the lexical hypotheses that could provide information about the underlying form 

instead of to all local lexical hypotheses. In particular, the ODL tests only the hypotheses 

that include one disparity. If a lexical hypothesis with a single disparity is inconsistent, 

the learner knows that the feature tested by the disparity must be set as in the output.  
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contrast pair, only y hypotheses need be tested for y non-alternating unset features. In 

general, for binary feature values, if there are y non-alternating unset features and x 

alternating unset features, the learner must test 2x *(x+y) pairs for inconsistency. For the 

contrast pair gàmadím and tírasim, there are four non-alternating unset features and one 

alternating unset feature (the stress feature of the suffix /-im/), yielding 10 lexical 

hypotheses (21*(4+1)) out of the 32 total hypotheses. The unshaded cells of the chart in 

(33) represent all the single disparity lexical hypotheses for this contrast pair.11 

(33) Single disparity lexical hypotheses for contrast pair gàmadím and tírasim 

gamad  tíras -im gamad  tíras -im gamad  tíras -im gamad  tíras -im
/--/ /--/ /-/ /+-/ /--/ /-/ /-+/ /--/ /-/ /++/ /--/ /-/ 
/--/ /--/ /+/ /+-/ /--/ /+/ /-+/ /--/ /+/ /++/ /--/ /+/ 
/--/ /+-/ /-/ /+-/ /+-/ /-/ /-+/ /+-/ /-/ /++/ /+-/ /-/ 
/--/ /+-/ /+/ /+-/ /+-/ /+/ /-+/ /+-/ /+/ /++/ /+-/ /+/ 
/--/ /-+/ /-/ /+-/ /-+/ /-/ /-+/ /-+/ /-/ /++/ /-+/ /-/ 
/--/ /-+/ /+/ /+-/ /-+/ /+/ /-+/ /-+/ /+/ /++/ /-+/ /+/ 
/--/ /++/ /-/ /+-/ /++/ /-/ /-+/ /++/ /-/ /++/ /++/ /-/ 
/--/ /++/ /+/ /+-/ /++/ /+/ /-+/ /++/ /+/ /++/ /++/ /+/ 

 

Detecting an inconsistency depends on having access to necessary ranking conditions. 

Consequently, the ranking and the lexicon have a symbiotic relationship. As the learner 

determines more about the ranking, typically more features can be set by inconsistency 

detection.12 In turn, setting features can produce more ranking information. Morphemic 

alternations, in which the same morpheme has different surface realizations in different 

environments, indicate that at least one of the surface realizations must be unfaithful. A 

																																																													
11 A joint relative similarity order can be constructed for contrast pairs (Tesar to appear).  If the 

environment morpheme alternates, as –im does in this example, the joint relative similarity order is 
constituted of two separate suborders, one for each value of the alternating feature. Each suborder is a 
lattice. 

12 There are some cases, however, where inconsistency detection fails to set features even if the learner has 
full knowledge of the target grammar; see section 4.2. 
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set feature that surfaces unfaithfully suggests that a markedness constraint must dominate 

some faithfulness constraint13; therefore, this unfaithful mapping may yield non-

phonotactic ranking information if, having set the feature, an error is detected on the 

resulting mapping (Tesar 2006, to appear).   

Section 1.3.4 has shown that inconsistency detection can allow for extremely 

efficient, successful learning from data with ambiguous structural interpretations. This 

section has now shown that inconsistency detection can be used to learn a lexicon as well, 

by efficiently evaluating the space of local lexical hypotheses. Judging by the number of 

lexical hypotheses that must be evaluated to set a feature (if one can be set), it is clear 

that the Output-Driven Learner (ODL) is highly efficient: for single forms, the number of 

lexical hypotheses to evaluate only increases linearly with the number of features in the 

form. Contrast pairs require more evaluations, but far fewer than otherwise if the 

structure of output-driven maps is exploited. 

However, while the ODL can identify where to focus learning efforts, there is no 

guarantee on any evaluation that a feature will get set or that the feature can ever be set, 

even if it is contrastive in the target language. The grammar itself is one factor: a certain 

body of knowledge is required to set features by inconsistency detection. The same 

lexical hypotheses may be evaluated repeatedly until the support contains just the right 

ERCs to produce an informative inconsistency. The map of the target language is another 

factor. As chapter 4 explains, the paradigmatic properties of the map may prohibit 

successful applications of inconsistency detection, even if the map is output-driven. 

																																																													
13 An unfaithful mapping does not always result from an M >>F violation; there may also be restrictions on 

GEN that force unfaithful mappings, as in the Stress system described in 2.3.1; however, even these 
unfaithful mappings can reveal new ranking information, as described in section 2.4.4.2.  
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Setting features for these languages can require appealing to special strategies for 

deriving additional ranking information (see section 4.1.2). Finally, if the map is not 

output-driven, the ODL will not succeed. However, Tesar (to appear) suggests some 

directions towards modifications for achieving benefits of the ODL with non-output-

driven maps. 

1.4.2 LEXICAL	CONSTRAINTS	AND	THE	GLA	

In the RCD-based inconsistency detection learners described in 1.3.4 and 1.4.1, the 

support is the added structure to a hypothesis that makes inconsistency detection possible 

and ensures that errors do not recur; its presence is a major distinguishing characteristic 

for these learners. In contrast, while the GLA is also error-driven, it makes no use of a 

support. Apoussidou (2007) proposes a learner in the GLA-framework that also eschews 

the added structure of a separate lexicon and instead learns underlying forms via the 

ranking of lexical constraints. 

For this learner, each candidate for evaluation consists of an underlying form, surface 

representation, and meaning. Lexical constraints assign violations for pairing particular 

underlying forms and meanings in the same candidates (following Boersma 2001). For 

example, (34) below shows some of the lexical constraints for the root /tíras/ ‘corn’ in 

Modern Hebrew following Apoussidou’s model. 

(34) Lexical constraints on the root tíras 

a) */tiras/ ‘corn’   
b) */tírás/ ‘corn’ 
c) */tirás/ ‘corn’ 
d) */tíras/ ‘corn’ 
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Informally, the meaning of each constraint is that the underlying form and meaning 

should not be associated. If these constraints were ranked according to their order in (34), 

the most harmonic candidates with respect to this constraint would associate /tíras/ and 

‘corn,’ and would vary only by surface representation. Deciding between these 

candidates would then fall to the markedness and faithfulness constraints. 

The constraints listed in (34) include just the lexical constraints whose underlying 

form component includes possible settings of the stress features in the root. Since there 

are two binary stress features that must be set, there are only four (=22) hypotheses for the 

settings; however, the complete list of lexical constraints that matter for learning the 

underlying form of /tíras/ is far larger. In fact, there must be a lexical constraint against 

each pairing of a hypothetical underlying form and a meaning – and even pairings that 

include the meanings of other morphemes (Apoussidou 2007, p. 176). For just /tíras/ and 

the root /gamad/ ‘dwarf’ from Modern Hebrew, the constraint set must include all of the 

following lexical constraints.  

(35) Lexical constraints on the root tíras and gamad 

a. */tiras/ ‘corn’   b. */tírás/ ‘corn’ c. */tirás/ ‘corn’ d. */tíras/ ‘corn’ 
e. */tiras/ ‘dwarf’ f. */tírás/ ‘dwarf’ g. */tirás/ ‘dwarf’ h. */tíras/ ‘dwarf’ 
i. */gamad/ ‘corn’   j. */gámád/ ‘corn’ k. */gamád/ ‘corn’ l. */gámad/ ‘corn’ 
m. */gamad/ ‘dwarf’ n. */gámád/ ‘dwarf’ o. */gamád/ ‘dwarf’ p. */gámad/ ‘dwarf’

 

In one of Apoussidou’s simulations, the learner tackles the problem of learning 

structural interpretations as well as underlying forms. The learning data, from Modern 

Greek, include six words, comprising three different roots and three monosyllabic 

suffixes. The constraint set contains four faithfulness constraints (MAX and DEP for root 
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and affix stress), six markedness constraints to account for structural interpretations, and 

two lexical constraints for each morpheme.14 The learner randomly observes each form 

repeatedly (in descriptions of the other simulations involving learning underlying forms 

only, the learner observes 1,000,000 forms in each simulation). The ranking is updated by 

error-driven learning according to the GLA strategy explained in 1.2.2. 

Results of ten simulations indicate that the overt forms generated by the final ranking 

always match the observed forms, but underlying forms and surface interpretations can 

vary across simulations.15 Additionally, within a simulation the underlying form of the 

same morpheme can also vary due to the interaction of faithfulness and lexical 

constraints.  

The crucial example in the simulation involves the faithfulness constraint 

MAX(AFFIX), the lexical constraint */-on/ ‘Gen. Pl.’ and the suffix /-ón/ ‘Gen. Pl.,’ which 

is analyzed as underlyingly +stress. In the desired analysis, this suffix surfaces faithfully 

if the root is underlyingly unstressed, as in θalasón ‘sea-Gen.Pl’, but unfaithfully if the 

root is stressed underlyingly, as in γóndolon ‘gondola-Gen.Pl.’. Thus, the desired analysis 

of the underlying forms is /θalas+ón/ and /γóndol+ón/, respectively. 

For θalasón, either ranking of MAX(AFFIX) and */-on/ ‘Gen. Pl.’ achieves the desired 

analysis because the candidate with the underlying +stress suffix harmonically bounds 

																																																													
14 The constraint sets in all simulations do not contain the full set of possible lexical constraints as 

represented by the example in (35). Apoussidou explains that because the learning data include 
meanings (e.g. “tíras ‘corn’”), lexical constraints like */tíras/ ‘dwarf’ will be ranked very highly, with 
the implication that those constraints are not pertinent for learning underlying forms. 

15 Such variance in outcomes is not necessarily a problem because languages can be globally ambiguous 
with respect to their surface forms and lexica, as explained in chapter 4. In these cases, it is possible for 
different constraint rankings and lexica to generate the same forms and morpheme behaviors. 
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the –stress candidate, as shown in (36). In all simulations θalasón ‘sea-Gen.Pl’ therefore 

has the underlying form /θalas+ón/. 

(36) MAX(AFFIX) and */-on/ ‘Gen. Pl.’ do not conflict for θalasón ‘sea-
Gen.Pl.’ 

 

But if the learner derives a ranking in which MAX(AFFIX) dominates */-on/ ‘Gen. Pl.’, 

then the underlying form of this suffix could vary with its environment. The tableau in 

(37) shows that MAX(AFFIX) and */-on/ ‘Gen. Pl.’ conflict if the suffix surfaces as 

unstressed: satisfying one entails a violation of the other. Under the ranking MAX(AFFIX) 

>> */-on/ ‘Gen. Pl.’, the genitive plural suffix is underlyingly unstressed in the word  

γóndolon. 

(37) MAX(AFFIX) and */-on/ ‘Gen. Pl.’ conflict for γóndolon ‘gondola-Gen.Pl.’ 

‘gondola-Gen.Pl.’ 
MAX(AFFIX) */-on/ ‘Gen. Pl.’

Meaning UF Surface Rep.
a. ‘gondola-Gen.Pl.’ /γóndol+ón/ γóndolon 1 0  
b. ‘gondola-Gen.Pl.’ /γóndol+on/ γóndolon 0 1 

 

Allowing for different underlying forms for the same morpheme is not necessarily a 

problem. If suffix stress were neutralized, then regardless of underlying form the 

grammar would ensure the correct surface form. But suffix stress in these data is 

contrastive. In the nominative singular forms, the first syllable bears the main stress: 

θálasa ‘sea-Nom.Sg.’ and γóndola ‘gondola-Nom.Sg.’. It must be the underlying stress 

‘sea-Gen.Pl.’ 
MAX(AFFIX) */-on/ ‘Gen. Pl.’

Meaning UF Surface Rep.
a. ‘sea-Gen.Pl.’ /θalas +ón/ θalasón 0 0  
b. ‘sea-Gen.Pl.’ /θalas +on/ θalasón 0 1 
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value of the suffix that causes main stress to alternate between first and final syllables of 

surface forms of the root /θalas-/, and therefore the underlying form of the genitive plural 

suffix should have a stable stress value. 

To review, while this learner has eliminated the added structure of the support and 

lexicon, it remains quite complex. The explosion of lexical constraints, and the increased 

effort that results from evaluating these constraints, comes as the cost of learning about 

underlying forms through the ranking. Within this model the right ranking values, 

determined using error-driven learning, reveal both underlying forms and surface 

representations; the learner has no record of nor commitment to any structure outside of 

the ranking. Additionally, the interactions between faithfulness and lexical constraints 

lead to unusual conclusions, such as the same morpheme having a different underlying 

form according to its environment – and this result occurs even without the additional 

lexical constraints that have been ignored for this simulation. How different does the 

underlying form in the lexical constraint have to be from the observed form to ensure that 

the constraint does not have a crucial effect on a competition? 

As for the relative efficiency of this learner, it is not clear just how many forms must 

be processed before converging on a ranking that will generate the observed forms. It is 

clear, however, that as the number of lexical constraints increases, the amount of 

computation will increase as well. In fact, Apoussidou explicitly notes that not including 

all the possible lexical constraints in the simulations reduces computation time (2007, p. 

176). It is reasonable to expect that these constraints would affect not only the time 
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needed to compute violation profiles, but also how many forms must be processed before 

converging on a ranking. 

1.4.3 MAXIMUM	LIKELIHOOD	LEARNING	OF	LEXICONS	AND	GRAMMARS	

Maximum Likelihood Learning of Lexicons and Grammars, or MLG (Jarosz 2006), is 

a stochastic but not error-driven model for learning a grammar and lexicon. As with the 

GLA learners, an MLG grammar is a probability distribution over constraint rankings, 

but additionally, each underlying form is a probability distribution over possible 

underlying forms. For each observed form, the learner updates the grammar and lexicon 

by rewarding the ranking and underlying form combinations that maximize the likelihood 

of the observed form.  

The MLG represents a particular kind of approach to learning, with no particular set 

algorithmic implementation. For one implementation, Jarosz (2006, 2007) uses the 

Expectation-Maximization (EM) algorithm (Dempster et al. 1977) to illustrate MLG’s 

ability to derive restrictive grammars and simulate the effects of ranking biases. In the 

simulations performed by this implementation, the grammar is a probability distribution 

of all total constraint rankings, and the lexicon a probability distribution over all possible 

underlying forms. During phonotactic learning, probabilities in the lexicon remain fixed 

with a uniform value, while the probabilities associated with different total rankings 

change according to the data. The more frequently an overt form is observed, the more 

rankings that maximize the likelihood of that form are rewarded.  

For an extreme example of restrictiveness, one target language in the simulation has 

one overt form for all words (Jarosz 2007). As this form is observed repeatedly, the 
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probabilities associated with the rankings change: those associated with rankings that 

cannot generate this form at all shrink, while the others grow. Over time, as only this one 

form is observed, probabilities for rankings that generate other forms besides this one 

shrink as well, because the form is most likely to be generated by rankings that can only 

generate it and no other forms – that is, the most restrictive rankings. Having learned 

these rankings (or stratified hierarchy), the probabilities associated with different 

underlying forms can remain uniform: each is equally likely to be the underlying form 

that maps to the observed output, because the right ranking ensures that mapping. In 

simulations without such extensive neutralization, the lexicon is learned by a similar 

process, rewarding grammar and lexicon combinations that make the observed forms 

most likely. 

This simulation of MLG reveals very appealing qualities about its approach. Its 

ability to derive restrictive rankings is elegant, it models gradual learning and because it 

is sensitive to the frequency of observed forms, it shares the GLA learners’ robustness 

with noisy data. However, the simulation is tractable only because the constraint set and 

rich base are small. Rankings are not rewarded on the basis of a particular input mapping 

to the observed overt form (the identity map has no role in this approach), but rather on 

the likelihood of generating the overt form given the rich base. This approach does not 

scale well as constraint sets and underlying forms increase. 

To improve the efficiency of MLG learners, Jarosz (to appear) proposes several 

sampling variants using the EM algorithm. The specific implementations of these variants 

differ, but the general idea is the same. The learner maintains a single, stochastic 
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grammar hypothesis and for each observed form, samples a ranking compatible with the 

grammar. Again, if the ranking generates the observed form, it is rewarded; however, in 

these variants the grammar is a stochastic partial order updated according to the 

probabilities of pairwise rankings. Similarly, the lexicon is represented with probabilistic 

binary features, and feature values that generate the observed form are rewarded.  

In simulations of three sampling variants with the same data used to evaluate the 

Naïve Pairwise Ranking Learner in 1.3.3, none of the variants successfully learned all 

124 of the languages, although the worst performing variant only failed to learn seven 

languages. In another set of simulations, the variants successfully learned a grammar and 

lexicon to generate the forms of the “paka” language (Tesar 2006). While MLG is a 

promising approach to learning a grammar and lexicon, it is clear that more work is 

needed to develop implementations that efficiently achieve complete success. 

1.5 CONCLUSION	

The challenge of learning hidden structure and the grammar simultaneously lies in the 

fact that the two affect each other. Knowing the hidden structure would yield information 

about the grammar, and vice versa, but a single observed form and an initial constraint 

hierarchy offer little solid information. The learners described in the preceding sections 

address this uncertainty in various ways, from bypassing problematic structures 

altogether (NPRL, MLG) to finding ways to safely explore alternatives (IDL, ODL). In 

particular, the error-driven learners that incorporate inconsistency detection have 

demonstrated the benefit of exploiting the relationships between observed data, inferred 
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structural knowledge, and the grammar. Their strategies provide the foundation for the 

Commitment-Based Learner, introduced in chapter 2. 
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2 THE	COMMITMENT‐BASED	LEARNER	

This chapter introduces the Commitment-Based Learner (CBL) for learning structural 

interpretations and underlying forms. First, section 2.1 provides a closer look at how 

these hidden structures can interact to pose challenges that any learner must somehow 

overcome. Section 2.2 then uses the mutual dependency among structures to motivate the 

commitment-based strategy, showing that if the learner can uncover one hidden structure, 

it can be used to learn another in turn; sections 2.2.1 and 2.2.2 provide a basic description 

of how the learner makes structural and lexical commitments.  

Before delving any more deeply into the details of the CBL, section 2.3	introduces the 

Stress system used to evaluate this learner in simulations. This system provides the 

examples for the remainder of the dissertation, beginning with those illustrating the 

CBL’s actual implementation in section 2.4, which constitutes the majority of this 

chapter. Section 2.4 explains the CBL’s actions at critical points as the learner develops a 

language hypothesis corresponding to target L5 from the Stress system typology. The 

focus of this section is identifying what the critical issues are at different stages, 

explaining when the learner decides to handle them, and describing how they are 

handled.  

The complete simulation from which these pieces are drawn appears in chapter 3, 

which includes the learner’s progress beginning with the initial data and ending with the 

set of all final, consistent language hypotheses. In illustrating the simulation in its 

entirety, chapter 3 will demonstrate how the sets of commitments made by different 
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language hypotheses can affect when and how the learner confronts the issues identified 

in 2.4. 

2.1 MUTUAL	DEPENDENCY	AMONG	HIDDEN	STRUCTURES	

Each word the learner observes includes information about the grammar of the 

language that generated the word. Some information is explicit, such as the phonotactic 

information conveyed in an overt form. Other information is indirect and implicit. For 

example, the overt form represents an output with a particular prosodic interpretation, and 

whatever that output is, the grammar has mapped some input to it. The overt form 

therefore reflects an input-output mapping, but what the input and output are and what 

ranking determines that mapping are questions that cannot be resolved directly from the 

overt form. The crux of the learner’s task is to use the direct evidence to infer the 

unobservable information, yet attempting to learn about both hidden structures at once 

involves untangling complicated interactions between them, within single forms as well 

as in combination with other forms. 

First, for a single form the hidden structures of inputs and outputs can interact to 

make some input-output mappings possible and others not. For example, suppose that the 

learner observes the word tírasim ‘corn pl.’ (Modern Hebrew).16 Only two structural 

																																																													
16 Modern Hebrew was chosen for examples here because its properties can be modeled by the Stress 

system. Stress assignment in Modern Hebrew is quantity-insensitive, and in the nominal system primary 
stress is by default word final, with secondary stress on alternate syllables to the left (Bolozky 1982, 
Bat-El 1993, Graf 2000); this default pattern typically appears in native words (Becker 2003a). I have 
assumed the inclusion of secondary stresses, following Bolozky 1982, Bat-El 1993, Graf 2000, and 
Graf and Ussishkin  2003, but note that Becker (2003b), citing laboratory experiments and data from a 
radio talk show, reports that only the primary stressed syllable exhibits phonetic evidence for stress, in 
the form of increased vowel duration. Finally, against previous analyses (Bolozky 1982, Bat-El 1993, 
Graf 2000, Becker 2003b), I assume that the language parses iambic feet from right to left; however, in 
contrast with Graf and Ussishkin (2003), who derive this effect without recourse to constraints on foot 
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interpretations match the observed form in its pattern of stresses: [(tíra)sim] and 

[(tí)rasim]. The learner must determine an underlying form and constraint ranking that 

selects one of these interpretations as optimal against all other candidates. To simplify 

this illustration, consider only the possible underlying forms for which candidates incur 

no violations of MAXSTRESS
17, namely /tiras+im/ and /tíras+im/. While there are rankings 

that will map the input /tíras+im/ to either possible structural interpretation, no ranking 

will map the input /tiras+im/, with no lexical stress, to the interpretation [(tí)rasim]; only 

the binary trochaic interpretation, [(tíra)sim], can be optimal. As the tableau below 

shows, the degenerate interpretation is harmonically bounded by a structural description 

parsing an iambic foot at the left edge.  

(38) Harmonic bounding of /tiras+im/[(tí)rasim] 
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[(tí)rasim] ~ [(tirá)sim] L L   L   L  
 

Second, hidden structures can also interact across forms via the ranking conditions 

they separately impose on the grammar, making some combinations of structures possible 

and others not. To illustrate, suppose that the learner observes another word, mèvugár 

‘adult sg.’, which has two non-harmonically bounded structural interpretations: 

[(mèvu)(gár)] and [(mè)(vugár)].18 Again, two lexical hypotheses incur no MAXSTRESS 

violations: /mevugar/ and /mevugár/. The learner must determine the correct underlying 

																																																																																																																																																																																					
structure, I derive it via the rhythm constraints of the Stress system. The data for Modern Hebrew are 
from Bolozky 1982 and Graf 2000.   

17 All constraints are defined in 2.3. 
18 A third interpretation, [(mè)vu(gár)], is harmonically-bounded by [(mè)(vugár)], regardless of the 

underlying stress of the input. 
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forms and structural interpretations of both tírasim and mèvugár, where doing so requires 

finding a ranking that makes both input-output mappings optimal. Each word has two 

possible faithful inputs and two valid structural interpretations, creating sixteen different 

combinations of faithful mappings, shown in the chart in (39).   

(39) All faithful mappings of interpretations of tírasim and mèvugár 

Underlying Forms Structural Interpretations 
a. /tiras+im/ /mevugar/ [(tíra)sim] [(mè)(vugár)] 
b. /tiras+im/ /mevugar/ [(tíra)sim] [(mèvu)(gár)] 
c. /tiras+im/ /mevugar/ [(tí)rasim] [(mè)(vugár)] 
d. /tiras+im/ /mevugar/ [(tí)rasim] [(mèvu)(gár)] 
e. /tiras+im/ /mevugár/ [(tíra)sim] [(mè)(vugár)] 
f. /tiras+im/ /mevugár/ [(tíra)sim] [(mèvu)(gár)] 
g. /tiras+im/ /mevugár/ [(tí)rasim] [(mè)(vugár)] 
h. /tiras+im/ /mevugár/ [(tí)rasim] [(mèvu)(gár)] 
i. /tíras+im/ /mevugar/ [(tíra)sim] [(mè)(vugár)] 
j. /tíras+im/ /mevugar/ [(tíra)sim] [(mèvu)(gár)] 
k. /tíras+im/ /mevugar/ [(tí)rasim] [(mè)(vugár)] 
l. /tíras+im/ /mevugar/ [(tí)rasim] [(mèvu)(gár)] 
m. /tíras+im/ /mevugár/ [(tíra)sim] [(mè)(vugár)] 
n. /tíras+im/ /mevugár/ [(tíra)sim] [(mèvu)(gár)] 
o. /tíras+im/ /mevugár/ [(tí)rasim] [(mè)(vugár)] 
p. /tíras+im/ /mevugár/ [(tí)rasim] [(mèvu)(gár)] 

 

First consider the combinations in (39)a-(39)d, which have unstressed inputs for both 

words. The tableau in (40) reveals that the candidates in (39)a, /tiras+im/[(tíra)sim] and 

/mevugar/[(mè)(vugár)], have contradictory ranking requirements. Because these 

candidates therefore are impossible in combination, at least one of the underlying forms 

or structural interpretations in these mappings must be incorrect.  
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(40) /tiras+im/[(tíra)sim]  and /mevugar/[(mè)(vugár)] are inconsistent 
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/tiras+im/ [(tíra)sim] ~ [(tì)(rasím)] L W L W L W W L  
/mevugar/ [(mè)(vugár)] ~ [(mévu)gar] W L W L W L L W  

 

Changing the structural interpretations offers no improvement. The combination of 

mappings in (39)b retains /tiras+im/[(tíra)sim] but includes the alternative interpretation 

of mèvugár: /mevugar/[(mèvu)(gár)]. Yet this combination cannot be correct either, as 

(41)  demonstrates that /mevugar/[(mèvu)(gár)] is harmonically bounded. As a result, no 

combination that includes /mevugar/[(mèvu)(gár)] can be correct. Therefore, (39)b and 

(39)d are impossible, as are (39)j and (39)l.  

(41) Harmonic bounding of /mevugar/[(mèvu)(gár)] 
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/mevugar/ [(mèvu)(gár)] ~ [(mè)(vúgar)]      L L   
 

Likewise, (38) has already shown that /tiras+im/[(tí)rasim] is harmonically bounded; 

therefore, (39)c is not a valid combination of mappings, and neither are (39)g and (39)h. 

These facts together prove that the underlying forms /tiras+im/ and /mevugar/ cannot 

both be correct, as (39)a-(39)d are all inconsistent. Additionally, the harmonic bounding 

of /tiras+im/[(tí)rasim] and /mevugar/[(mèvu)(gár)] has ruled out all combinations that 

includes either one of these candidates, thereby eliminating half of the combinations 

included in (39). All inconsistent combinations to this point are shaded in (42) below. 
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(42) Combinations with /tiras+im/[(tí)rasim] or /mevugar/[(mèvu)(gár)] are 
inconsistent 

Underlying Forms Structural Interpretations 
a. /tiras+im/ /mevugar/ [(tíra)sim] [(mè)(vugár)] 
b. /tiras+im/ /mevugar/ [(tíra)sim] [(mèvu)(gár)] 
c. /tiras+im/ /mevugar/ [(tí)rasim] [(/mè)(vugár)] 
d. /tiras+im/ /mevugar/ [(tí)rasim] [(mèvu)(gár)] 
e. /tiras+im/ /mevugár/ [(tíra)sim] [(mè)(vugár)] 
f. /tiras+im/ /mevugár/ [(tíra)sim] [(mèvu)(gár)] 
g. /tiras+im/ /mevugár/ [(tí)rasim] [(mè)(vugár)] 
h. /tiras+im/ /mevugár/ [(tí)rasim] [(mèvu)(gár)] 
i. /tíras+im/ /mevugar/ [(tíra)sim] [(mè)(vugár)] 
j. /tíras+im/ /mevugar/ [(tíra)sim] [(mèvu)(gár)] 
k. /tíras+im/ /mevugar/ [(tí)rasim] [(mè)(vugár)] 
l. /tíras+im/ /mevugar/ [(tí)rasim] [(mèvu)(gár)] 
m. /tíras+im/ /mevugár/ [(tíra)sim] [(mè)(vugár)] 
n. /tíras+im/ /mevugár/ [(tíra)sim] [(mèvu)(gár)] 
o. /tíras+im/ /mevugár/ [(tí)rasim] [(mè)(vugár)] 
p. /tíras+im/ /mevugár/ [(tí)rasim] [(mèvu)(gár)] 

 

While tírasim and mèvugár cannot both have unstressed inputs, it remains possible 

that just one has an unstressed input. In fact, (42)e,f,i,k, are all consistent. First, 

/tiras+im/[(tíra)sim] is consistent with both interpretations of mèvugár as long as the 

input is /mevugár/. As proof, the tableau in (43) includes the W-L pairs that determine a 

ranking for the combination in (42)e, /tiras+im/[(tíra)sim] and /mevugár/[(mè)(vugár)]; 

the ranking itself appears in (44). 

(43) /tiras+im/[(tíra)sim] and /mevugár/[(mè)(vugár)] are consistent 
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a. /mevugár/ [(mè)(vugár)] ~ [(mevú)gar] W L L W W L L   
b. /tiras+im/ [(tíra)sim] ~ [ti(rasím)]  W W  L W  L  
c. /tiras+im/ [(tíra)sim] ~ [(tirá)(sìm)]  W  L  W W L L 
d. /mevugár/ [(mè)(vugár)] ~ [me(vugár)]    W  L L  W 
e. /tiras+im/ [(tíra)sim] ~ [(tirá)sim]      W  L L 
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(44) MAXSTRESS >> {AFL, LMOST} >> {PARSE-σ, RMOST} >> {FNF, FT-BIN} 

>> {IAMB, *LAPSE} 
 

The combinations of mappings in (42)f,i,k, are also all consistent. Rankings for each 

of these combinations appear below. 

(45) Ranking for (42)f: /tiras+im/[(tíra)sim] and /mevugár/[(mèvu)(gár)] 

MAXSTRESS >> FNF >> PARSE-σ >> {IAMB, FT-BIN, AFL, LMOST} >> {RMOST, 
*LAPSE} 

 
(46) Ranking for (42)i: /tíras+im/[(tíra)sim] and /mevugar/[(mè)(vugár)] 

MAXSTRESS >> RMOST >> {IAMB, AFL, LMOST} >> {PARSE-σ, *LAPSE} >> 

{FNF, FT-BIN} 

 
(47) Ranking for (42)k: /tíras+im/[(tí)rasim] and /mevugar/[(mè)(vugár)] 

{MAXSTRESS, IAMB} >> RMOST >> {AFL, LMOST} >> {PARSE-σ, *LAPSE} >> 

{FNF, FT-BIN} 

 

As a brief aside, the W-L pairs in tableau (43) constitute the support for the skeletal 

basis for that combination of mappings (Brasoveanu 2003, Brasoveanu and Prince 2011, 

Prince 2002a). For comparison, the skeletal basis itself is given in (48). For each row of 

the support tableau in (43), the skeletal basis includes only the W’s in the highest stratum 

represented in the row and the L’s that they immediately dominate; any information that 

can be derived by transitivity with other rows has been removed. Thus, the “W” under 

*LAPSE in (43)d is absent from the corresponding row of the skeletal basis because (43)d 

and (43)e jointly entail that PARSE-σ dominate *LAPSE. 
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(48) Skeletal basis for /tiras+im/[(tíra)sim] and /mevugár/[(mè)(vugár)] 
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(43)a W L L       
(43)b  W W  L     
(43)c  W  L      
(43)d    W  L L   
(43)e      W  L L 

 

The support of a skeletal basis provides clear and direct evidence of the minimum 

W-L pairs required to produce a ranking that ensures the optimality of a set of candidates. 

For this reason, in the remainder of this dissertation the support of the skeletal basis will 

serve as evidence for any ranking that is not otherwise supported by a set of ERCs 

derived from error-driven learning, such as the rankings for the target languages of the 

Stress system. The supports of the skeletal bases for the combinations in (42)f,i,k above 

can be found Appendix A. 

Finally, to finish the discussion of the combinations in (42), those in (42)m-p include 

lexically-stressed inputs for both words. The combinations in (42)m-o are consistent. 

Again, rankings for these combinations appear below, while the supports for their skeletal 

bases are included in Appendix A. 

(49) Ranking for (42)m: /tíras+im/[(tíra)sim] and /mevugár/[(mè)(vugár)] 

 MAXSTRESS >> {AFL, LMOST, RMOST} >> {IAMB, PARSE-σ, * LAPSE} >> {FNF, 
FT-BIN} 
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(50) Ranking for (42)n: /tíras+im/[(tíra)sim] and /mevugár/[(mèvu)(gár)] 

MAXSTRESS >> {FNF, RMOST} >> {PARSE-σ, *LAPSE} >> {IAMB, FT-BIN, AFL, 
LMOST} 

 
(51) Ranking for (42)o: /tíras+im/[(tí)rasim] and /mevugár/[(mè)(vugár)] 

{MAXSTRESS, IAMB} >> {AFL, LMOST, RMOST} >> {PARSE-σ, *LAPSE} >> {FNF, 
FT-BIN} 

 
The only inconsistent combination is in (42)p. As shown in (52), the ranking 

restrictions imposed by the candidates /tíras+im/[(tí)rasim] and /mevugár/[(mèvu)(gár)] 

contradict for *LAPSE, IAMB, PARSE-σ, and AFL: no ranking can make both candidates 

optimal. 

(52) /tíras+im/[(tí)rasim] and /mevugár/[(mèvu)(gár)] are inconsistent 
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/tíras+im/ [(tí)rasim] ~ [(tí)(ràsim)]           L W L W 
/mevugár/ [(mèvu)(gár)] ~ [me(vugár)]   L L     W L W L 

 

Although there are sixteen faithful combinations of mappings for tírasim and 

mèvugár, only seven can be correct for these observed forms. The following chart briefly 

summarizes the possible faithful input-output mappings for the observed forms tírasim 

and mèvugár. It divides horizontally according to the hypothesized underlying form of 

tírasim first, and each part divides horizontally again for the hypothesized underlying 

forms of mèvugár, then again for the structural interpretations of each word. Thus, the 

topmost row of mappings in the chart indicates that there are no consistent interpretations 

of tírasim and mèvugár if both are unstressed underlyingly.   
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(53) Faithful input-output mappings for tírasim and mèvugár 

Underlying Forms Structural Interpretations 

/tiras+im/ 
/mevugar/ no consistent combinations 

/mevugár/ [(tíra)sim] 
[(mèvu)(gár)]  
[(mè)(vugár)] 

/tíras+im/ 

/mevugar/
[(tíra)sim] 

[(mè)(vugár)] 
[(tí)rasim] 

/mevugár/
[(tíra)sim] 

[(mèvu)(gár)]  
[(mè)(vugár)] 

[(tí)rasim] [(mè)(vugár)] 
 

To review, this section has shown the effect of mutual dependency on the range of 

possible input-output mappings for two observed forms. Out of sixteen combinations of 

mappings, nine are inconsistent. If a third form were introduced, the total number of 

combinations would increase as well, but again, the number of consistent combinations 

would be far fewer than the total. Only combinations that include the consistent mappings 

in (53) have the potential to be consistent at all, and among those, it is likely that many 

would be inconsistent due to interactions with the candidate for the new observed form.  

This power of mutual dependency to reduce the space of hypotheses has been seen 

before, in use with the Inconsistency Detection Learner (IDL) in section 1.3.4. The IDL 

uses inconsistency detection to manage structurally ambiguous data like tírasim and 

mèvugár in order to learn the grammar for the observed forms, but unlike the 

Commitment-Based Learner (CBL), the IDL does not attempt to learn underlying forms.  

Section 2.2 will show how the mutual dependency among structural interpretations 

and underlying forms can yield the information to simultaneously learn both kinds of 

hidden structure. This section provides the fundamental motivation for the CBL’s 

approach to learning. 
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2.2 LEARNING	FROM	COMMITTED	INFORMATION	

The chart in (53) of the preceding section shows that there is no one underlying form 

or structural interpretation that is always correct; instead, what one structure can be 

depends on what the other structures are. As a result, an assumption about one structure 

can affect how the learner interprets another. For example, the shading in chart (54) 

below indicates that both consistent combinations of mappings that include [(tí)rasim] 

also include [(mè)(vugár)]. Therefore, if the learner is committed to interpreting tírasim 

as [(tí)rasim], then mèvugár must be interpreted as [(mè)(vugár)], simply because it the 

only interpretation of that form consistent with [(tí)rasim]. 

(54) Interpreting tírasim as [(tí)rasim] entails interpreting mèvugár as 
[(mè)(vugár)] 

Underlying Forms Structural Interpretations 

/tiras+im/ 
/mevugar/ no consistent combinations 

/mevugár/ [(tíra)sim] 
[(mèvu)(gár)]  
[(mè)(vugár)] 

/tíras+im/ 

/mevugar/
[(tíra)sim] 

[(mè)(vugár)] 
[(tí)rasim] 

/mevugár/
[(tíra)sim] 

[(mèvu)(gár)]  
[(mè)(vugár)] 

[(tí)rasim] [(mè)(vugár)] 
 

Mutual dependency therefore presents two key, related challenges. First, if learning 

these structures requires having learned something about a different structure, how does 

the learner ever start learning? Second, how does the learner ensure that each step taken 

is correct, or at least that it can recover from any missteps?  

The GLA and MLG learners in 1.4.2 and 1.4.3, which share the Commitment-Based 

Learner’s goal of learning a grammar and lexicon from structurally ambiguous data, 
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answer these questions in different ways. The GLA learner incorporates the lexicon into 

the grammar by way of lexical constraints. Because both structural interpretation and 

underlying form are evaluated by constraints, no prior knowledge of either structure is 

required; determining the most harmonic candidate determines both structures for a given 

observed form on a given evaluation. The MLG learner eliminates the need for prior 

knowledge by evaluating all possible underlying forms and structural interpretations. 

Both of these approaches to mutual dependency rely on the flexibility of probabilistic 

hypotheses, allowing these learners to recover from the use of incorrect values for hidden 

structure. 

Yet, as explained in 1.4.2 and 1.4.3, these learners are both unsatisfactory. In the first 

case, the GLA approach introduces an explosion of lexical constraints which must have a 

non-trivial effect on the number of learning steps required to converge on a ranking; 

additionally, these lexical constraints interact with faithfulness constraints to yield an odd 

conclusion about the lexicon – namely, that the underlying form of a morpheme can vary 

with its context. The MLG approach is promising but its implementation is a work in 

progress, and in simulations the more efficient implementations, the sampling variants, 

fail to learn some languages.  

Finally, in gaining flexibility both learners sacrifice the ability to capitalize on mutual 

dependency: knowing that one structure entails another can greatly reduce the space of 

possible grammars to account for the data. The Commitment-Based Learner employs 

mutual dependency to its benefit by using commitments to underlying forms and 

structural interpretations to winnow all possible hidden structures to just those possible in 
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combination. The interactions across kinds of hidden structures become an asset in this 

approach. With each newly observed form, the learner can develop more articulated 

hypotheses about the hidden structures of the language and its ranking conditions, and the 

space of possible grammars shrinks. 

To see how this can work, consider tírasim and mèvugár again, now from the 

perspective of the CBL. Upon observing tírasim the learner, assuming that the identity 

map is optimal in the target language, can know that the target’s grammar must generate 

a word whose input matches tírasim in its stress pattern and whose output is a valid 

interpretation of the overt form. There are two such mappings, /tírasim/[(tíra)sim] and 

/tírasim/[(tí)rasim], and each entails certain ranking restrictions that will affect what 

inferences the learner later draws from new data. Importantly, knowing something about 

the ranking conditions of the target language will help the learner to discern the correct 

hidden structures in new information. If the learner picks the right mapping here, its 

ranking conditions may help the learner determine the structural interpretation or 

underlying form of another word later. It therefore pays to learn this information now, but 

how? What kinds of commitments need to be made, and how does the learner insure 

against missteps while learning? 

2.2.1 MAKING	STRUCTURAL	COMMITMENTS	

To exploit mutual dependency effectively, the learner needs a base of information 

from which to draw conclusions. Commitments to structural interpretations provide a 

portion of that base. Adopting the approach of Prince and Tesar (2004), described in 

1.2.1.3, the Commitment-Based Learner attempts to learn phonotactic ranking 
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information from observed forms. The potential for this information is indicated by two 

methods of error detection. 

First, an error is detected if the current ranking does not map the identity input to 

exactly one output, it being any one of the structural interpretations of the observed form. 

Because the CBL uses the ranking information derived from error-driven learning 

throughout the course of learning, now there must be a particular, stable identity mapping 

associated with this overt form in order not to derive conflicting ranking information 

later. Therefore, detecting an error on the overt form leads the learner to commit to a 

particular structural interpretation to ensure that the interpretation will be the same every 

time the learner observes that overt form. If the learner commits to the interpretation 

[(tí)rasim] for the overt form tírasim, then any word that has the overt form tírasim will 

thereafter be interpreted as [(tí)rasim], even if it has a different morphemic composition 

from the word that initially spurred the commitment. Second, once the overt form has a 

committed interpretation, an error is detected if the current ranking does not map the 

identity input to that committed interpretation. The learner will add W-L pairs to the 

support and adjust the ranking until no more errors are detected. In this way, committing 

to a structural interpretation also commits the learner to an identity map and its entailed 

ranking conditions. Subsequent learning data will be interpreted through the lens of this 

ranking information.  

To revisit the example in the preceding section, the ranking requirements of 

/tíras+im/[(tí)rasim] are inconsistent with those of /mevugár/[(mèvu)(gár)], as illustrated 

by the chart in (53). Committing to this identity mapping for tírasim will therefore 



71	
	

	
	

require the learner to interpret mèvugár as [(mè)(vugár)] instead. As a result, this 

information leads the learner to search for the target grammar in the space of grammars 

that generates the set of mappings /tíras+im/[(tí)rasim] and /mevugár/[(mè)(vugár)]. 

These are the broad strokes of phonotactic learning by the CBL: the learner finds sets of 

consistent identity maps for the observed data, committing to the structural interpretations 

and attendant ranking conditions of those mappings along the way. 

Yet, how does the learner choose which structural interpretation to commit to? This is 

the first problem of handling mutual dependency: how does the learner choose a 

structural interpretation if picking the correct one requires knowing something more 

about the target language? Furthermore, the consequences of committing to a particular 

interpretation extend far beyond the interpretation itself: each interpretation commitment 

amounts to the decision taken between exploring a space of grammars that permits the 

mapping containing that interpretation and the space that does not. Because the learner 

cannot know which space of grammars the target language occupies, the safe tactic is to 

explore both by committing to each structural interpretation in its own language 

hypothesis.  

The Inconsistency Detection Learner (IDL; section 1.3.4) uses just this strategy to 

learn structural interpretations from overt forms. The learner investigates multiple 

interpretations, certain that one of these interpretations is the correct one. The interactions 

between committed structural interpretations help to limit the proliferation of hypotheses 

over time, as the learner rules out combinations of interpretations with conflicting 

ranking requirements. By incorporating the IDL at this point, the CBL not only learns 



72	
	

	
	

about the structural interpretations, but amasses ranking knowledge that will inform later 

learning steps, including for learning underlying forms. 

2.2.2 MAKING	LEXICAL	COMMITMENTS	

When morphophonemic learning begins, the learner will already have a substantial 

foundation of knowledge about the grammar of the target language derived from the 

phonotactic information of the observed forms’ identity mappings. Continuing to employ 

the IDL’s strategy of pursuing multiple possibilities now would be unwise, both because 

it would amount to evaluating all possible underlying forms and structural interpretations, 

just as the probabilistic learners do, and because it is possible, through neutralization, that 

multiple underlying forms could generate the same data. Moreover, the IDL’s strategy is 

unnecessary because the relationships among the accumulated commitments can reveal 

quite a lot about the space of possible underlying forms.  

To exploit these relationships effectively, it is essential that an observed form have a 

committed interpretation. This structural commitment identifies what the word’s input 

must map to, even though the precise underlying form remains unknown. Continuing the 

example from the preceding section, suppose the learner has committed to the following 

interpretations and identity mappings: /tírasim/[(tí)rasim] and /mevugár/[(mè)(vugár)]. 

The underlying forms in these mappings do not represent the learner’s knowledge of the 

lexicon – at least, not yet. They only indicate some valid mappings in the hypothesized 

grammar, but the ranking requirements of these mappings will nonetheless enable the 

learner to infer knowledge of the underlying forms.  
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Given this set of consistent, committed identity mappings, the learner can ask, what 

are the underlying forms of these words? The CBL answers this question by asking 

another, slightly different question: how can the inputs for these words differ from their 

surface forms? Recall from 2.1 that the mapping from the unstressed input, 

/tirasim/[(tí)rasim], is harmonically bounded. Because the learner is committed to this 

structural interpretation, the harmonic bounding of /tirasim/[(tí)rasim] is evidence that the 

first syllable of the morpheme tíras cannot differ from its surface form and therefore must 

be stressed underlyingly.19 The shaded cells in chart (55) illustrate this point. Observe 

that [(tí)rasim] is only a consistent interpretation if the input is /tírasim/, which matches 

the stress contour of the observed form.  

(55)  The underlying form of [(tí)rasim] must have initial stress 

Underlying Forms Structural Interpretations 

/tiras+im/ 
/mevugar/ no consistent combinations 

/mevugár/ [(tíra)sim] 
[(mèvu)(gár)]  
[(mè)(vugár)] 

/tíras+im/ 

/mevugar/
[(tíra)sim] 

[(mè)(vugár)] 
[(tí)rasim] 

/mevugár/
[(tíra)sim] 

[(mèvu)(gár)]  
[(mè)(vugár)] 

[(tí)rasim] [(mè)(vugár)] 
 

In contrast, the mapping /mevugar/[(mè)(vugár)] is not only not harmonically 

bounded, just like the faithful mapping it is consistent with the committed identity 

mapping for tírasim, as shown by the shaded cells in (56). The learner therefore cannot 

make any inferences about the underlying form of mèvugár based on the mapping with an 

unstressed input. 

																																																													
19 This conclusion assumes that the target language is output-driven, as are all languages in the Stress 

system typology. 
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(56) Both /mevugar/[(mè)(vugár)] and /mevugár/[(mè)(vugár)] are consistent 
with /tírasim/[(tí)rasim] 

Underlying Forms Structural Interpretations 

/tiras+im/ 
/mevugar/ no consistent combinations 

/mevugár/ [(tíra)sim] 
[(mèvu)(gár)]  
[(mè)(vugár)] 

/tíras+im/ 

/mevugar/
[(tíra)sim] 

[(mè)(vugár)] 
[(tí)rasim] 

/mevugár/
[(tíra)sim] 

[(mèvu)(gár)]  
[(mè)(vugár)] 

[(tí)rasim] [(mè)(vugár)] 
 

These examples illustrate lexical learning by the CBL in its broadest strokes: if 

changing the value of a single feature from its surface correspondent’s value makes the 

resultant mapping inconsistent with the other committed structures and mappings, then 

the feature must be set in the lexicon to match its surface value. Importantly, this strategy 

relies on the target language having an output-driven map, and the CBL therefore 

incorporates the Output-Driven Learner (section 1.4.1), which learns underlying forms by 

using inconsistency detection as described here.  

2.2.3 CONCLUSION	

Section 2.2 identified two problems for learning mutually dependent structures. The 

first, how the learner can begin to make headway if all structures depend on each other, 

has been answered for the CBL already: by using the multiple language hypothesis 

strategy of the IDL, the learner can simultaneously but separately commit to all 

interpretations of one overt form, knowing that one of these must be correct. Applying 

this strategy during the phonotactic learning stage provides a foundation for further 

learning, and it is also employed during the morphophonemic stage, when attempting to 

learn underlying forms requires words to have full structural descriptions. The second, 
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and more fundamental, question is, how does the learner protect against missteps and 

make progress in the right direction? The IDL’s branching strategy offers one answer – 

pursue all options – and inconsistency detection itself offers another – commit to a 

structure because no other structure could follow from the prior commitments.  

Underlying these strategies is the basic fact that the mutual dependency among 

inputs, outputs, and the ranking is less problematic if any two of the three are known, 

because the interactions themselves are informative. Learning structural interpretations 

by branching is a brute force response to knowing only one of the three components – the 

identity input.  Setting features by inconsistency detection is more subtle, but successful 

because the learner has at least partial knowledge of two components – a committed 

output and whatever ranking conditions are recorded in the support. Learning the ranking 

derives from committed input-output mappings, first from identity mappings and later 

from mappings that include learned lexical information. By committing to these 

components – underlying forms, structural interpretations, and mappings – the learner 

builds a store of knowledge used to tease out informative interactions between the 

committed structures.  

Finally, note that the piecewise commitments to single feature values stand in marked 

contrast to the CBL’s treatment of structural ambiguity, where commitments are made to 

entire structural interpretations and incite hypothesis branching. Whereas parsing a 

syllable into a foot may affect where the boundaries of other feet lie, feature values are 

independent of each other, making it permissible to commit to one value without 

reference to the others. Moreover, the structure of output-driven maps makes it possible 
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to identify single feature values for commitments. In the example of the preceding 

section, the harmonic bounding of /tirasim/[(tí)rasim] is not only evidence that this 

particular lexical hypothesis is incorrect, but that all lexical hypotheses that include the    

-stress value on the first syllable’s stress feature are also incorrect because they include 

the same disparity as this initial inconsistent mapping. There is no similar way to 

determine the optimal placement of feet independently of one another. These 

observations define a broader learning strategy for the CBL: branch only when piecewise 

commitments are impossible.  

In the remainder of this chapter, section 2.3 introduces the Stress system, used to 

evaluate the CBL, while section 2.4 describes the CBL’s use and storage of commitments 

for learning a language in the Stress system and focuses on the learner’s actions at several 

key points. The illustration in 2.4 shows what information the CBL knows at each 

learning step, how the CBL learns from this information, and what conclusions it draws. 

The objective is to highlight the details of the CBL in examples of its basic learning 

procedures, those the CBL applies to learn most languages in the Stress system typology. 

Chapter 3 then follows the CBL step-by-step as it processes a set of learning data to 

completion. 

2.3 THE	STRESS	SYSTEM	TYPOLOGY	AND	SIMULATION	DETAILS	

Computer learning simulations of languages in the Stress system were conducted to 

evaluate the Commitment-Based Learner (CBL). This section describes the Stress system 

and explains how the data for the learning simulations were produced. The languages of 
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the Stress system are used for all examples of the Commitment-Based Learner throughout 

the remainder of the dissertation. 

2.3.1 THE	STRESS	SYSTEM	

Words in the Stress system consist of disyllabic roots and monosyllabic suffixes. 

Each syllable has a binary stress feature with the value stressed (+) or unstressed (-). In 

the input, stressed syllables will be indicated by Y, unstressed syllables by s. The Stress 

system contains four unique roots and two unique suffixes, shown in (57). These 

morphemes combine to form eight morphological words, in (58). 

(57) Morphemes in the Stress system 

Roots Suffixes
r1 r2 r3 r4 s1 s2 
ss Ys sY YY s Y 

 

(58) Morphological words in the Stress system 

Words r1s1 r2s1 r3s1 r4s1 r1s2 r2s2 r3s2 r4s2 
UFs /ss-s/ /Ys-s/ /sY-s/ /YY-s/ /ss-Y/ /Ys-Y/ /sY-Y/ /YY-Y/

 

GEN makes the following restrictions on candidates. Each candidate has exactly one 

syllable with primary stress. Each stressed syllable is the head of a foot; therefore, each 

candidate has at least one foot: the head-foot, bearing primary stress. A foot may contain 

one or two syllables, and exactly one must be stressed. Therefore, a foot cannot be 

headless, unbounded or ternary. A syllable cannot be a member of more than one foot. 

Last, each candidate must have the same number of syllables as its input. These 

restrictions generate 24 possible outputs for each of the possible three-syllable inputs in 

the Stress system. 
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Note that in the Stress system, secondary stress is a property of -stress syllables in the 

output. The values +stress and “False” for the secondary-stress property represent the 

head of the head-foot, while -stress and “True” represent all other foot-heads; syllables 

that are not foot-heads are represented with the values –stress and “False”. In the outputs 

described in this section and elsewhere, Y denotes an output syllable bearing primary 

stress, and X one bearing secondary stress. The output forms of the Stress system 

therefore appear as in (59). 

(59) Output forms in the Stress system 

[s(sY)] [(sX)(Y)] [s(X)(Y)] [(Y)ss] [(X)s(Y)] [(X)(Y)s] 
[ss(Y)] [s(Ys)] [(Ys)s] [(Y)(sX)] [(Y)(Xs)] [(Y)(X)(X)]
[(sY)s] [s(Y)s] [(Ys)(X)] [(X)(sY)] [(X)(Ys)] [(X)(Y)(X)]

[(sY)(X)] [s(Y)(X)] [(Xs)(Y)] [(Y)s(X)] [(Y)(X)s] [(X)(X)(Y)]
 

The constraint set for the Stress system includes eight Markedness constraints and a 

single Faithfulness constraint, defined below. 

(60) Constraints 

a. FT-BIN Feet must be disyllabic. (Prince and Smolensky 1993) 
b. PARSE-σ Syllables must be parsed into feet. (Prince and Smolensky 1993) 
c. *LAPSE Rhythm is alternating; no two adjacent unstressed syllables.20 (Alber 

2005)  
d. IAMB Feet must be right-headed. 
e. FOOT-NONFINALITY (FNF) A  foot must not be right-headed. (Tesar 2000) 
f. ALL FEET LEFT (AFL)   foot  prosodic word such that the left edge of the 

prosodic word and the left edge of the foot coincide. (McCarthy and Prince 1993) 
g. LEFTMOST (LMOST) ALIGN (PRWD, L, HEAD-FT, L)  prosodic word  head-foot of 

the prosodic word such that the right/left edge of the prosodic word and the right/left 
edge of the head-foot coincide. (EDGEMOST in Prince and Smolensky 1993) 

h. RIGHTMOST (RMOST) ALIGN (PRWD, R, HEAD-FT, R)  
i. MAXSTRESS For each stressed syllable in the input, assign a violation if the 

corresponding output syllable does not bear primary stress. (MAX-HEAD-FOOT in 
Graf 2000) 

																																																													
20 The basic insight of this constraint can be found in Selkirk 1984. The constraint has been used in many 

more recent analyses, including Alber 2005, Gordon 2002, and Kager 2001, 2006. 
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2.3.2 THE	LEARNING	DATA	

Data for the learning simulations were produced from all languages in the typology. 

For each language, the output of each word was converted to its overt form. The resulting 

data set contains the overt form of each word in association with its morpheme identity; 

this is the learning data for the language. For example, the map of language L5 appears in 

(61). This language, which will be discussed further in section 2.4 and in chapter 3, 

produces the learning data in (62). Note that although the data include the morphemic 

composition of the overt forms, the learner does not access that information during the 

phonotactic learning stage. 

(61) L5 

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[s(sY)] [(Ys)s] [s(Ys)] [s(Ys)] s1 = /-s/ 
[s(sY)] [s(sY)] [s(sY)] [s(sY)] s2 = /-Y/ 

 

(62) L5 learning data 

ssY r1s1 ssY r1s2 Yss r2s1 ssY r2s2 sYs r3s1 ssY r3s2 sYs r4s1 ssY r4s2
 

After each data set was constructed, it was compared to all other stored data sets and 

discarded if it identically matched any of those stored. The data of L5 match those of L4, 

whose map appears in (63). Only the two shaded forms differ from L5, and these have the 

same overt form, sYs, as they do in L5, making L4 and L5 globally surface-ambiguous, as 

defined in the introduction to chapter 3. Because they cannot be distinguished by their 

overt forms and thus yield the same learning data, the learner is expected to learn both L4 

and L5 from the data in (62), as well as any other language that is globally surface-

ambiguous with them.  This process is illustrated in chapter 3. 
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(63) L4 

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[s(sY)] [(Ys)s] [(sY)s] [(sY)s] s1 = /-s/ 
[s(sY)] [s(sY)] [s(sY)] [s(sY)] s2 = /-Y/ 

 

The 97 languages in the Stress system typology yield 61 unique data sets like (62). 

The CBL processed each of these data sets in separate computer learning simulations. In 

every simulation, the CBL successfully learned all the globally surface-ambiguous 

languages associated with the data.  

2.4 FUNDAMENTAL	ISSUES	AND	PROCEDURES	FOR	THE	COMMITMENT‐BASED	LEARNER	

This section provides examples of the Commitment-Based Learner at key points in 

the learning process. These points are presented sequentially to show how the learner 

handles the data and language hypotheses at different stages and to highlight how 

commitments accumulate and inform later learning steps. An outline of the learner’s 

actions appears in (117) in section 2.4.5. 

2.4.1 THE	TARGET	LANGUAGE	

The typology of the Stress system, described in 2.3, includes language L5, shown in 

(64) and generated by the stratified hierarchy in (65). L5 has lexical stress and by default, 

feet are iambic and the head-foot is right-aligned. The following sections illustrate the 

elements of the CBL as the learner attempts to learn L5. The learning data for this 

language are shown in (66); forms are listed in the order in which they are observed in 

this illustration. 
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(64) L5 

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[s(sY)] [(Ys)s] [s(Ys)] [s(Ys)] s1 = /-s/ 
[s(sY)] [s(sY)] [s(sY)] [s(sY)] s2 = /-Y/ 

 

(65) FT-BIN  >> PARSE-σ >> MAXSTRESS >> RMOST >> {IAMB, AFL, LMOST} 

>> {FNF,  *LAPSE} 

 

(66) Learning data corresponding to L5 

ssY r1s1 ssY r1s2 Yss r2s1 ssY r2s2 sYs r3s1 ssY r3s2 sYs r4s1 ssY r4s2
 

2.4.2 PHONOTACTIC	LEARNING	

The CBL begins learning with an initial language hypothesis, Hyp0, which contains 

an empty support, an empty lexicon, and an empty set of structural interpretation 

commitments for overt forms. The initial stratified hierarchy is derived by applying BCD 

to the support. The result, (67), simply ranks all markedness constraints together, above 

the sole faithfulness constraint. 

(67) {FNF, IAMB, PARSE-σ, FT-BIN, AFL, LMOST, RMOST, *LAPSE} >> 

MAXSTRESS 

 

The objective of the phonotactic learning stage is to learn as much as possible about 

the target’s constraint hierarchy from the phonotactic information of the observed overt 

forms; learning underlying forms will wait until the learner knows the observed forms’ 

morphemic decomposition. The CBL’s committed ranking information – the support 

ERCs – derives from error-detection, which requires that the learner be able to identity an 

error by knowing which input-output mappings the ranking should generate. Each input 
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will simply match the observed overt form at this stage, while the output will be some 

interpretation of that overt form.   

Initially, error-driven learning will apply without committing to any particular 

interpretation for the output. The learner will wait to commit to interpretations until 

certain that commitments are needed to yield new information. Finding that the current 

ranking selects an optimum besides one of the possible identity maps of the overt form, 

or that it selects more than one of the possible identity maps as optimal, indicates that 

there is ranking information to be learned and that it is time for the overt form to receive 

a committed interpretation using the same branching strategy employed by the 

Inconsistency Detection Learner (IDL). These phonotactic learning steps are described in 

(68). 
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(68) Phonotactic learning21 

Def phonotactic_learning(overt_forms, l_hyp_list) 
WHILE any l_hyp in l_hyp_list has changed 

Move l_hyp to changed_hyps list if l_hyp.hyp_change is True22 
Move l_hyp to lang_hyp_list if l_hyp.hyp_change is False 
FOR each overt in overt_forms 

Set l_hyp_list = changed_hyps 
Set changed_hyps to empty list 
UNTIL l_hyp_list is empty 

Remove the first l_hyp from l_hyp_list  
Set l_hyp.hyp_change to False 
Find optima for the identity input of overt given ranking in l_hyp 
IF overt has a committed interpretation in l_hyp THEN 

IF any optimum does not match the committed interp. THEN  
Error detected: perform error-driven learning 
Set l_hyp.hyp_change to True 

ENDIF 
Add l_hyp to changed_hyps list if lang_hyp is consistent 
Discard l_hyp if it is inconsisent 

ELSE   // No committed interpretation for overt 
IF there is only one optimum AND it matches overt THEN 

Add l_hyp to changed_hyps  list 
ELSE 

Error detected: extend branches from l_hyp 
Add each consistent branch to changed_hyps list 

ENDIF 
ENDIF 

ENDUNTIL 
ENDFOR 
Shift all hypotheses in changed_hyps list to l_hyp_list 

ENDWHILE 
Shift all hypotheses in l_hyp_list to lang_hyp_list 
Return lang_hyp_list 

END 
 

To illustrate, suppose the learner is just beginning to learn from the data in (66) and 

observes the overt form ssY first. Because Hyp0 has not yet committed to any 

interpretation of this form, the learner simply checks whether the initial BCD hierarchy in 

																																																													
21	The actual Ruby code used to implement the CBL is included in Appendix B. Pseudocode included in the 

text omits code used for recordkeeping, such as maintaining the list of discarded hypotheses.  
22 All language hypotheses are initialized with this value set to True. 
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(67) allows for a tie or an optimum that is not an interpretation of ssY. The violation 

tableau below includes the two interpretations of the overt form, (69)a and (69)b, and the 

remainder of the possible optima – that is, all candidates which are not individually or 

collectively harmonically bounded. The degenerate interpretation in (69)b is 

harmonically bounded by (69)a. The remaining candidates CTie (see 1.1.1.1) with (69)a 

on the constraints in the first stratum, resulting in an error. 

(69) Initial ranking produces an error on ssY 

Input Output F
N

F
 

IA
M

B
 

P
A

R
S

E
-σ

 

F
T
-B

IN
 

A
F

L
 

L
M

O
S

T
 

R
M

O
S

T
 

*L
A

P
S

E
 

M
A

X
S

T
R

 

a. /ss-Y/ [s(sY)] 1 0 1 0 1 1 0 1 0 
b.  [ss(Y)] 1 0 2 1 2 2 0 1 0 
c.  [(sY)s] 1 0 1 0 0 0 1 0 1 
d.  [(sY)(X)] 2 0 0 1 2 0 1 0 1 
e.  [s(Ys)] 0 1 1 0 1 1 0 0 1 
f.  [(Ys)s] 0 1 1 0 0 0 1 1 1 
g.  [(Ys)(X)] 1 1 0 1 2 0 1 0 1 
h.  [(Xs)(Y)] 1 1 0 1 2 2 0 0 0 
i.  [(Y)(sX)] 2 0 0 1 1 0 2 0 1 
j.  [(X)(sY)] 2 0 0 1 1 1 0 0 0 
k.  [(Y)(Xs)] 1 1 0 1 1 0 2 0 1 
l.  [(X)(Ys)] 1 1 0 1 1 1 0 0 1 

 

This error indicates unresolved conflicts in the ranking, but to correctly resolve the 

conflicts, the learner needs to know which candidate should win. In this case, making the 

choice appears trivial because one candidate interpretation harmonically bounds the 

other; however, the learner will not reach this conclusion until separately evaluating each 

interpretation in its own language hypothesis. Here the CBL calls on the IDL to resolve 

the structural ambiguity of the overt form.  
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Each language hypothesis in the CBL includes a support, a set of committed 

structural interpretations, and a lexicon. When the IDL applies to these language 

hypotheses, they split into language hypothesis branches according to the method 

described in (70). Each branch is created as a copy of its parent hypothesis and inherits 

all of the committed information of the parent, including its lexicon, structural 

commitments, and W-L pairs, and adds a new structural commitment and any W-L pairs 

resulting from its addition. For this first error, each branch simply inherits the empty 

support and empty lexicon of Hyp0. 

(70) Branch method for language hypotheses 

Def branch(overt_form, l_hyp) 
Create empty branch_list 
Determine the interpretations of overt_form 
FOR each interpretation 

lang_hyp = copy of l_hyp 
  Add a commitment to interpretation for overt in lang_hyp 
  Perform error-driven learning in lang_hyp 
         IF lang_hyp is consistent THEN 

Set lang_hyp.hyp_change to True 
   Add lang_hyp to branch_list 

ENDIF 
ENDFOR 
Return branch_list 

END 
 

GEN provides two interpretations for ssY: [s(sY)] and [ss(Y)]. The IDL directs the 

initial language hypothesis Hyp0, on which the error occurred, to extend two branches to 

separately accommodate each interpretation. The diagram in (71) charts the learner’s 

progress as a tree. The two new branches, A1 and A2, commit to [s(sY)] and [ss(Y)], 

respectively. 
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(72) A1 support; committed to [s(sY)] 

ERC# 
Morph.  
word Input Winner Loser R

M
O

S
T
 

F
T
-B

IN
 

I A
M

B
 

L
M

O
S

T
 

A
F

L
 

P
A

R
S

E
-σ

 

F
N

F 

*L
A

P
S

E
 

M
A

X
S

T
R

 

a. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)] W W  L  L W L W 

b. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s] W  L L   L W 

c. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)] W    L L W 

 

(73) {RMOST, FT-BIN, IAMB} >> {LMOST, AFL, PARSE-σ, FNF, *Lapse} >> 
MAXSTRESS  

 

(74) A2 support; commitment to [ss(Y)] is inconsistent 

 

ERC# 
Morph. 
word Input Winner Loser R

M
O

S
T
 

IA
M

B
 

F
N

F 

*L
A

P
S

E
 

M
A

X
S

T
R

 

L
M

O
S

T
 

A
F

L
 

P
A

R
S

E
-σ

 

F
T
-B

IN
 

a. 1P r1s1 /ss-Y/ ss(Y) [s(Ys)]  W L L W L L L L 

b. 2P r1s1 /ss-Y/ ss(Y) [s(sY)]      L L L L 

 
 

In the tree in (75), the dashed line connecting Hyp0 to A2 indicates that A2 has been 

rejected for inconsistency, while the solid line to A1 indicates that that language 

hypothesis is consistent and remains for processing with further data. Because language 

hypothesis A1 contains a commitment to the structural interpretation [s(sY)], it is also 

committed to the ranking conditions entailed by the identity mapping /ss-Y/[s(sY)], 

recorded in the support in (72). Whatever other commitments the learner makes for the 

remainder of the data, they must be consistent with the commitments made thus far in 

A1. 
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(76) Error in A1 for r2s1 Yss 

Input Output R
M

O
S

T
 

F
T
-B

IN
 

IA
M

B
 

L
M

O
S
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A
F

L
 

P
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R
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F
N

F
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A

P
S

E
 

M
A

X
S

T
R

 

a. /Ys-s/ [s(sY)] 0 0 0 1 1 1 1 1 1 
b.  [(sY)s] 1 0 0 0 0 1 1 0 1 
c.  [(sY)(X)] 1 1 0 0 2 0 2 0 1 
d.  [s(Ys)] 0 0 1 1 1 1 0 0 1 
e.  [(Ys)s] 1 0 1 0 0 1 0 1 0 
f.  [(Ys)(X)] 1 1 1 0 2 0 1 0 0 
g.  [(Y)ss] 2 1 0 0 0 2 1 1 0 
h.  [(Y)(sX)] 2 1 0 0 1 0 2 0 0 
i.  [(X)(sY)] 0 1 0 1 1 0 2 0 1 
j.  [(Y)(Xs)] 2 1 1 0 1 0 1 0 0 
k.  [(X)(Ys)] 0 1 1 1 1 0 1 0 1 

 

A1 now extends two branches to accommodate the two interpretations of the overt 

form Yss. Branch A1B1 commits to [(Ys)s] and inherits from A1 its commitment to 

[s(sY)] and its support. Candidate (76)a is adopted as the informative loser for  a new W-

L pair, included as (77)d below. The ranking in (78) derived by BCD makes both 

committed interpretations optimal. 

(77) A1B1 support; committed to [s(sY)] and [(Ys)s] 
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a. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)] W L W L W  W  L 

b. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)]   W    L W L 

c. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s]   W L W L   L 

d. 4P r2s1 /Ys-s/ [(Ys)s] [s(sY)]   W W L W W L  
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(78) FT-BIN >> PARSE-σ >> MAXSTRESS >> {LMOST, RMOST, AFL, FNF, 
IAMB, *LAPSE}  

 

Branch A1B2 commits to the unary interpretation [(Y)ss] and inherits the 

commitment and support of A1 also. Like A1B1, it adopts candidate (76)a as a loser for 

the new W-L pair 4P, included as (79)d in the support below. The resulting ranking in 

(80) makes both committed interpretations optimal. 

(79) A1B2 support; committed to [s(sY)] and [(Y)ss] 
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a. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)] W L W      L 

b. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)]  W W L W  L W L 

c. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s]   W L W L   L 

d. 4P r2s1 /Ys-s/ [(Y)ss] [s(sY)]   W W L W L L  

 

(80) IAMB >> FNF >> MAXSTRESS >> {LMOST, RMOST, AFL, PARSE-σ, FT-BIN, 
*LAPSE}  
 

 
Both language hypotheses are consistent, and the learner will evaluate the next 

observed form against the ranking of each. The new branches are included in the diagram 

in (81). 
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Language hypothesis A1B2 does not have to extend branches at this time because it 

processes sYs without error. The violation tableau in (86) shows that there is only one 

optimum for /sYs/ given the current ranking, and that optimum includes the trochaic 

interpretation of the observed form. The shaded cells indicate that this candidate, in 

(86)d, is the most harmonic because it incurs no violations of the constraints IAMB and 

FNF in the highest strata. Phonotactic learning will end without language hypothesis 

A1B2 ever making a structural interpretation commitment for sYs. 

(86) No error in A1B2 for sYs 
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a. /sYs/ [s(sY)] 1 1 1 0 1 1 0 1 0 
b.  [(sY)s] 1 0 1 1 0 0 0 0 0 
c.  [(sY)(X)] 2 0 0 1 0 0 1 2 0 
d.  [s(Ys)] 0 0 1 0 0 1 0 1 1 
e.  [(Ys)s] 0 1 1 1 1 0 0 0 1 
f.  [(Ys)(X)] 1 1 0 1 0 0 1 2 1 
g.  [(Y)(sX)] 2 1 0 2 0 0 1 1 0 
h.  [(X)(sY)] 2 1 0 0 0 1 1 1 0 
i.  [(Y)(Xs)] 1 1 0 2 0 0 1 1 1 
j.  [(X)(Ys)] 1 0 0 0 0 1 1 1 1 

 

Constructing simultaneous language hypotheses to accommodate each possible 

interpretation of an overt form guarantees that the learner will construct the correct 

structural interpretations of the target language; the only question is how many other 

language hypotheses the learner will have to construct and consider also. Applying 

inconsistency detection reduces the number of language hypotheses to evaluate for 



94	
	

	
	

further learning and prevents the learner from wasting effort on combinations of 

interpretations that cannot be correct. Although there are twelve logically possible 

hypotheses containing interpretations of these three overt forms, the learner creates just 

five during phonotactic learning: A1B1C1, A1B1C2, A1B1C3, A1B2, and A2. 

Eliminating A2 early on enables the learner to avoid considering any of the six possible 

branches that contain its committed interpretation, [ss(Y)].  

Error-driven learning helps to limit the number of simultaneous hypotheses as well by 

ensuring that hypotheses branch only when necessary. A1B2 does not immediately 

branch when the learner observes the third overt form, sYs, because its current ranking 

makes one of the valid interpretations the sole optimum. Until branching is required, the 

learner can evaluate all data against the commitments made in A1B2, and will be able to 

set a number of features before branching for the third time.   

2.4.3 IS	LEARNING	COMPLETE?	

For every data set, the learner will derive as much phonotactic ranking information as 

possible using the error-driven learning procedures described in section 2.4.2.  This 

learning stage is complete when the rankings of the consistent language hypotheses can 

process all overt forms without error. For some data sets, this will be enough to account 

for the target language, and the learner will not have to set the underlying values of 

features. For languages with predictable stress, for example, no features need be set at all 

as the appropriate ranking will ensure that, whatever the input, the correct output is 

optimal. 
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After ending the phonotactic learning stage, then, the learner pauses to evaluate 

whether each of the remaining consistent language hypotheses fully account for the data. 

There are two criteria the learner checks. First, does any word fail error detection in this 

hypothesis? Second, for any overt form still without a committed interpretation, would 

making a commitment lead to new information? If the answer is “yes” to either question, 

there is more to learn in this language hypothesis.  

All targets in this simulation have an output-driven map, a fact which allows the 

learner to easily determine whether any word in a language hypothesis fails error 

detection. Following Tesar (to appear), for each word the learner constructs an input in 

which each unset feature is assigned the opposite of its surface value and checks the 

resultant mapping for errors against the ranking derived by BCD. Just as in section 2.4.2, 

if the word has a committed interpretation, an error is detected if the ranking does not 

select this interpretation as the sole optimum.  

It is possible for a language hypothesis to successfully derive the grammar of a target 

language without making a structural interpretation commitment for every overt form 

observed. To evaluate the second criterion of language hypothesis completion, then, it is 

necessary to have an error detection procedure for uncommitted overt forms. In the CBL, 

this procedure has several parts. First, the identity mapping of the overt form cannot yield 

an error under the current ranking derived by BCD; there must be exactly one optimal 

candidate whose output is an interpretation of the overt form. This part is the standard 

error detection procedure illustrated in (69) for the uncommitted overt form ssY. Second, 

the ranking must map the maximal mismatch input, with all unset features set to 
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mismatch their surface forms, to exactly one output with the same overt form as 

observed. This is the counterpart to the error detection procedure for words with 

committed interpretations. Finally, the optima selected in these previous tests must be 

identical.  

Whether or not it has a committed interpretation, if a word fails error detection, then 

the current grammar is missing some crucial piece of information, whether about the 

ranking or the value of an unset feature in this word. If all words in a language hypothesis 

pass error detection, then the CBL judges that the language hypothesis is complete.  For 

the CBL, learning is complete when, for each consistent language hypothesis remaining, 

every word passes error detection. 

To continue the example from the previous section, the learner performs error 

detection on the words in A1B1C1 and determines that this language hypothesis is 

incomplete. Note that because the learner has not observed the words during the non-

phonotactic stage, morphemic identities are as yet unknown; however, all that matters for 

error detection at this point is the identity mapping. Suppose, then, that the learner 

performs the error detection test on a word with the mapping /ssY/[s(sY)]. This word has 

a committed interpretation, [s(sY)], and all three stress features are unset; therefore, the 

error detection test evaluates the candidate /YY-s/[s(sY)] against the current ranking, 

repeated in (87).  

(87) FT-BIN >> PARSE-σ >> MAXSTRESS >> {RMOST, FNF, *LAPSE} >> 

{LMOST,  AFL, IAMB}  
 

The violation tableau below reveals an error. The error detection candidate, (88)a, ties 
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with the candidates in (88)b,d,e on the two highest ranked constraints and incurs more 

violations of MAXSTRESS in the next highest stratum. The pertinent violations of these 

candidates are shaded. 

(88) A1B1C1 – /ssY/[(s(sY)] fails error detection  

Input Output F
T
-B

IN
 

P
A

R
S

E
-σ

 

M
A

X
S

T
R

 

R
M

O
S

T
 

F
N

F
 

*L
A

P
S

E
 

L
M

O
S

T
 

A
F

L
 

IA
M

B
 

a. /YY-s/ [s(sY)] 0 1 2 0 1 1 1 1 0 
b.  [(sY)s] 0 1 1 1 1 0 0 0 0 
c.  [(sY)(X)] 1 0 1 1 2 0 0 2 0 
d.  [s(Ys)] 0 1 1 0 0 0 1 1 1 
e.  [(Ys)s] 0 1 1 1 0 1 0 0 1 
f.  [(Ys)(X)] 1 0 1 1 1 0 0 2 1 
g.  [(Y)(sX)] 1 0 1 2 2 0 0 1 0 
h.  [(X)(sY)] 1 0 2 0 2 0 1 1 0 
i.  [(Y)(Xs)] 1 0 1 2 1 0 0 1 1 
j.  [(X)(Ys)] 1 0 1 0 1 0 1 1 1 

 

In addition to demonstrating that a language hypothesis as a whole lacks some crucial 

bit of information, performing error detection tests over the entire data set indicates for 

which words in particular the language hypothesis requires more information.  Keeping 

track of these words allows the learner to focus effort where it is needed and where it is 

likely to be most fruitful. Note that as the language hypothesis grows with new 

committed information, which words pass error detection will change as well. Therefore, 

it is important to repeat the error detection tests over the entire data set – including for 

words which have previously passed error detection – to evaluate whether learning is 

complete.  
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On the basis of just one word’s failure to pass error detection, the learner can know 

that the current grammar is incomplete. What happens next depends on what procedures 

the learner has just completed and whether they were successful. In this example for 

A1B1C1, the learner has successfully completed the phonotactic learning stage and the 

error here means that the learner will next attempt to set the features of individual words. 

If some features are set, yet after one pass through the learning data some word still fails 

error detection, the learner will attempt another round of learning from individual words. 

But if no features can be set from single forms, the learner will appeal to contrast pairs in 

the next round of learning. Therefore, after every pass through the learning data hereafter, 

the learner will perform error detection and determine whether to continue learning and 

by what methods. 

2.4.4 NON‐PHONOTACTIC	LEARNING	

During the phonotactic learning stage, the learner commits to structural 

interpretations and to input-output mappings – as W-L pairs in the support – to learn 

ranking information. While this next stage focuses on learning underlying forms, the 

learner can still make any kind of commitment. In fact, reliance on an inconsistency 

detection strategy to set features compels the learner to assign structural interpretations to 

uncommitted overt forms if those forms are to be used to set features. The CBL 

incorporates the Output-Driven Learner (ODL) for learning underlying forms in 

languages with output-driven maps. As explained in 1.4.1, the ODL sets features by 

evaluating test candidates in which one unset feature at a time is set to mismatch its 

corresponding output value. If the resulting test candidate is inconsistent with the current 

support, then the underlying value of the feature must match its surface value. Using this 
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method, the ODL can more efficiently set features from single words and contrast pairs 

than a learner that must evaluate every local lexical hypothesis for consistency, such as 

the learners of Merchant (2008), and Merchant and Tesar (2008). 

This section describes how the CBL increases both ranking and lexical commitments 

during the non-phonotactic learning stage in language hypothesis A1B1C1 from the 

preceding section. This branch already includes committed interpretations for each of the 

three overt forms in the data set for L5. The learning data are repeated in (89) along with 

their interpretations in this language hypothesis; all words currently fail to pass the error 

detection.  The current support for A1B1C1 and its ranking by BCD are repeated in (90) 

and (91).  

(89) Learning data for L5, showing committed interpretations 

[s(sY)] 
r1s1 

[s(sY)] 
r1s2 

[(Ys)s] 
r2s1 

[s(sY)] 
r2s2 

[s(Ys)] 
r3s1 

[s(sY)] 
r3s2 

[s(Ys)] 
r4s1 

[s(sY)] 
r4s2 

 

(90) A1B1C support 
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a. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)] W L W W W L L   

b. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)] W L L   W 

c. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s] W W  L L L  

d. 4P r2s1 /Ys-s/ [(Ys)s] [s(sY)] W L W  W W L 

e. 5P r3s1 /sY-s/ [s(Ys)] [(sY)s] W W  L L L 

 

(91) FT-BIN >> PARSE-σ >> MAXSTRESS >> {RMOST, FNF, *LAPSE} >> 

{LMOST, AFL, IAMB}  
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Section 2.4.4.1 describes how the learner sets features using a contrast pair when 

single forms prove uninformative. In section 2.4.4.2, the learner uses the new lexical 

commitments to derive new ranking information, and section 2.4.4.3 shows how the 

commitments of the previous two sections finally enable the learner to set features from 

single forms. 

2.4.4.1 Setting	features	by	contrast	pair	

Both single words and contrast pairs can be used to set features using the ODL. For 

A1B1C1, however, single words fail to set any features. To understand why, suppose the 

learner attempts to set features in r1s1 [s(sY)] using the test candidates shown below. As 

no features have yet been set in the lexicon, there is a test candidate for each of the three 

stress features in the word. The syllable whose stress value is being tested in each 

candidate is indicated by outlining. 

(92) Test candidates for r1s1 

a. / s-Y/  [s(sY)] 
b. /s -Y/  [s(sY)] 
c. /ss- /  [s(sY)] 

 

Again, this language hypothesis corresponds to target L5, and therefore its support is 

consistent with L5, whose map appears below. The reason why the test candidates for 

r1s1 cannot set a feature should be clear from this map: each is a mapping in L5 and 

cannot be inconsistent with the support. The pertinent mappings are shaded below.  
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(93) L5 

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[s(sY)] [(Ys)s] [s(Ys)] [s(Ys)] s1 = /-s/ 
[s(sY)] [s(sY)] [s(sY)] [s(sY)] s2 = /-Y/ 

 

Because r1s2, r2s2, r3s2, and r4s2 have the same interpretation as r1s1, and therefore 

the same test candidates at this point as well, they too are unable to set features. 

Similarly, two of the three test candidates for r3s1 – and thus r4s1, which shares the 

interpretation [s(Ys)] – are mappings in L5 and must be consistent with the support; these 

are (94)a and (94)b below. The third test candidate for r3s1, (94)c, as well as those for 

r2s1 in (95), are not mappings in the target language, and their consistency with the 

support must be explained by a lack of crucial ranking information. Contrast pairs prove 

vital for uncovering this information. Because the members of a contrast pair must be 

consistent with each other as well as with the support, processing in pairs provides more 

opportunity to detect an inconsistency and therefore to set a feature. 

(94) Test candidates for r3s1 

a. / Y-s/  [s(Ys)] 
b. /s -s/  [s(Ys)] 
c. /sY- /  [s(Ys)] 

 

(95) Test candidates for r2s1 

a. / s-s/  [(Ys)s] 
b. /Y -s/  [(Ys)s] 
c. /Ys- /  [(Ys)s] 
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The informative contrast pair identified by the learner is r1s1 [s(sY)] and r2s1 [(Ys)s]. 

There are five unset features – in r1, r2, and s1 – and because the surface value of s1 

alternates, the learner must evaluate a total of 10 different test candidates. The values 

assigned to each feature to construct the candidates are listed in the chart below, together 

with the outcome of inconsistency detection for each pair of candidates evaluated. 

(96) Test candidates for contrast pair r1s1 [s(sY)], r2s1 [(Ys)s]. 

Feature value 
Disparity 

 
Input Consistent? 

a. 
r1 

σ1 +stress 

r1s1 
r2s1

/ s-Y/ 
/Ys-Y/ No 

same input, different output r1s1 
r2s1

/ s-s/ 
/Ys-s/ 

b. 
r1 

σ2 +stress 

r1s1 
r2s1

/s -Y/ 
/Ys-Y/ No 

inconsistent with support r1s1 
r2s1

/s -s/ 
/Ys-s/ 

c. 
r2 

σ1 –stress 

r1s1 
r2s1

/ss-Y/ 
/ s-Y/ No 

same input, different output r1s1 
r2s1

/ss-s/ 
/ s-s/ 

d. 
r2 

σ2 +stress 

r1s1 
r2s1

/ss-Y/ 
/Y -Y/

Yes 
r1s1 
r2s1

/ss-s/ 
/Y  -s/

e. 
s1 

stress alternates

r1s1 
r2s1

/ss- / 
/Ys- / 

Yes 
r1s1 
r2s1

/ss- / 
/Ys- / 

 

The contrast pair produces several inconsistencies, two of which are quite easy to see. 

The pairs in (96)a test the value of stress in the first syllable of r1 and are inconsistent 

because they involve the same input mapping to different outputs. This inconsistency 

allows the learner to set r1’s first syllable to –stress. For the same reason, the pairs in 
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(96)c, which test the value of stress in the first syllable of r2, are inconsistent and allow 

the learner to set that syllable’s feature  to +stress.  

A third inconsistency arises from the pairs in (96)b, which test the stress value of the 

second syllable of r1 by setting it to +stress. Tableau (97) includes the support from (90) 

as well as, in (97)f,g, W-L pairs constructed for this contrast pair (labeled “test” as these 

are test mappings for the contrast pair).  FT-BIN, PARSE-σ and MAXSTRESS can be ranked 

in the first three strata, but none of the remaining unranked constraints prefer only 

winners. For W-L pair 5 of the support, given in (97)e, only FNF and RMOST prefer the 

winner, but FNF prefers the loser to the test candidate for r1s1 in (97)f, and RMOST 

prefers the loser to r2s1 in (97)g. Setting r1 to /sY/ is therefore inconsistent with the 

support. 

(97) A1B1C is inconsistent with r1s1 / Y-Y/[s(sY)] 
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a. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)] W L W W W L L   

b. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)] W L L   W 

c. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s] W W  L L L  

d. 4P r2s1 /Ys-s/ [(Ys)s] [s(sY)] W L W  W W L 

e. 5 r3s1 /sY-s/ [s(Ys)] [(sY)s] W W  L L L 

f. test r1s1 /sY-Y/ [s(sY)] [s(Ys)] L L   W 

g. test r2s1 /Ys-Y/ [(Ys)s] [s(sY)] L W  W W L 

 

The other pair in (96)b is also inconsistent. This pair tests the stress value of the 

second syllable of r1 as well, but sets s1 to –stress, its surface value in r2s1. The resulting 

test candidate for r1s1, / Y-s/[s(sY)], now includes two disparities from its output: one in 
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r1, and one in s1. The crucial ERC is in (98)f. For this W-L pair, MAXSTRESS prefers the 

loser, leaving no way to rank the remaining constraints after ranking FT-BIN and PARSE-

σ: all the remaining constraints prefer the loser in at least one W-L pair. Based on these 

inconsistencies, the updated lexicon for A1B1C1 in (99) now includes three set features. 

(98) A1B1C1 is inconsistent with r1s1 / Y-s/[s(sY)] 

ERC# 
Morph.  
word Input Winner Loser F
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a. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)] W L W W W L L   

b. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)] W  L L   W 

c. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s] W W  L L L  

d. 4P r2s1 /Ys-s/ [(Ys)s] [s(sY)] W L W  W W L 

e. 5 r3s1 /sY-s/ [s(Ys)] [(sY)s] W W  L L L 

f. test r1s1 /sY-s/ [s(sY)] [s(Ys)] L W  L L L  

 

(99) A1B1C1 lexicon 

r1 r2 r3 r4 s1 s2 
/ss/ /Y?/ /??/ /??/ /-?/ /-?/

 

As explained earlier in this section, the learner could not set any features in this 

language hypothesis using single forms alone. However, because contrast pairs generally 

require more effort than single forms in terms of the number of forms that must be 

evaluated, the learner appeals to them only after the latest pass through the data fails to 

set any features from single forms. For single forms the learner constructs one test 

candidate for each unset feature. The maximum number of tests therefore equals the 

number of unset features in the word. In contrast pairs, an unset feature can alternate, as it 

does for s1 in r1s1 and r2s1 here, and both values must be evaluated in each test. Each 
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alternating unset binary feature therefore doubles the number of tests the learner must 

evaluate. For r1s1 and r2s1, there are five unset features, and one alternates, causing the 

learner to evaluate the ten tests shown in (96).   

Just how much more effort the contrast pair requires depends on how many of its 

unset features alternate in value. In the Stress system, where all words contain just three 

features, at most the learner would have to evaluate 10 tests for a contrast pair, as in (96).  

In this worst-case scenario the environment morpheme is a monosyllabic suffix and the 

contrast morphemes are disyllabic roots. This pair has a total of five unset features, the 

feature of the environment morpheme alternates, so that the learner must evaluate 10 

tests. The CBL does not compare all potentially informative contrast pairs to determine 

which involves the fewest tests, and instead simply attempts to learn from single forms 

first before evaluating any contrast pair. 

In total, the contrast pair r1s1 [s(sY)] and r2s1 [(Ys)s] enables the learner to set three 

features that could not be set by evaluating either form individually. As 2.4.4.3 shows, 

the information learned from this pair allows the learner to use r2s1 to set the remaining 

stress features in that word.  

2.4.4.2 Learning	ranking	information	from	set	features	

The task of learning ranking information occurs continually, in both stages of 

learning. During the phonotactic learning stage, what committed ranking information the 

support contains determines whether a language hypothesis survives for another round of 

learning or is rejected due to inconsistency. While this role for the support continues to be 
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vital, in the non-phonotactic learning stage the support also becomes essential for setting 

features. It is imperative, then, that the support contain crucial ranking information, 

balanced as always with the need to gather that information efficiently. The low-

faithfulness ranking bias of BCD enables the learner to detect errors and recover 

phonotactic ranking information even when no features have been set; however, set 

features themselves are a potential source of new ranking information, if they ever 

surface unfaithfully. To draw out informative errors from set features the learner benefits 

from employing a low-markedness ranking bias, following Tesar (to appear). This section 

illustrates how one of the features set by the contrast pair in 2.4.4.1 contributes new 

ranking information to the language hypothesis. 

The current support for A1B1C1 from (90) is repeated below in (100). The tableau 

shows the support after applying BCD, whose low-faithfulness bias causes MAXSTRESS 

to occupy the third stratum, despite it preferring only winners. This ranking is given in 

(101).  

(100) A1B1C1 support – BCD ranking 

ERC# 
Morph.  
word Input Winner Loser F
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a. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)] W L W W W L L   

b. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)] W L L   W 

c. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s] W W  L L L  

d. 4P r2s1 /Ys-s/ [(Ys)s] [s(sY)] W L W  W W L 

e. 5P r3s1 /sY-s/ [s(Ys)] [(sY)s] W W  L L L 

 

(101) FT-BIN >> PARSE-σ >> MAXSTRESS >> {RMOST, FNF, *LAPSE} >> 

{LMOST, AFL, IAMB} 
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The BCD ranking is extremely useful for deriving phonotactic ranking information, 

but a different bias can uncover different errors. In an attempt to learn non-phonotactic 

ranking information, the learner applies a low-markedness bias to the support to produce 

the ranking in (102), in which MAXSTRESS now occupies the highest stratum. Unfaithful 

mappings of set features are checked for errors against this ranking. 

(102) A1B1C1 low-markedness ranking 

MAXSTRESS >> {FT-BIN, PARSE-σ, RMOST, FNF, *LAPSE} >> {LMOST, IAMB, 
AFL} 

 

Usually an unfaithful mapping of a set feature means that a markedness constraint 

crucially dominates some faithfulness constraint(s). For the Stress system, this would 

mean that one of the eight markedness constraints must dominate MAXSTRESS. The low-

markedness ranking allows MAXSTRESS to be ranked as high as possible and increases 

the likelihood that it will conflict with a markedness constraint to produce an error. 

Learning this non-phonotactic ranking information is the intention of the low-markedness 

bias. 

However, in the Stress system an unfaithful mapping can also arise as a consequence 

of the restrictions on GEN. While it is possible for every feature in a word to be 

underlyingly +stress, only one can surface with primary stress; the others will each incur 

one violation of MAXSTRESS. Therefore, the low-markedness ranking may not produce an 

informative error about the relative ranking of MAXSTRESS and a markedness constraint, 

but it nonetheless could prove informative for sorting out relations among the markedness 
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constraints themselves. If each candidate must incur at least one violation of MAXSTRESS, 

then it falls to the markedness constraints to determine which feature surfaces faithfully. 

With the majority of the markedness constraints clumped into the second stratum of the 

ranking in (102), the conditions are set to produce errors from CTies. This is just what 

happens when the learner checks for errors in A1B1C1 using the ranking in (102). 

The map of A1B1C1 is shown in (103) with as-yet unset features indicated by “?”. 

From the contrast pair used in section 2.4.4.1, the learner has set r1 to /ss/ and r2 to /Y?/. 

Only an underlyingly +stress feature in the Stress system can surface unfaithfully, and the 

+stress feature in r2 surfaces unfaithfully in r2s2 [s(sY)], shaded. The learner will check 

this form for errors against the low-markedness ranking. 

(103) A1B1C1 

r1 = /ss/ r2 = /Y?/ r3 = /??/ r4 = /??/  
[s(sY)] [(Ys)s] [s(Ys)] [s(Ys)] s1 = /-?/ 
[s(sY)] [s(sY)] [s(sY)] [s(sY)] s2 = /-?/ 

 

The learner checks for errors on r2s2 using the mapping /Ys-Y/[s(sY)], whose input 

includes the value of the set feature in r2 and matches the remaining unset feature values 

to their surface forms. Because the input has two underlyingly stressed syllables, every 

candidate will violate MAXSTRESS at least once. The violation tableau below includes just 

the candidates that incur a single MAXSTRESS violation. The shaded cells indicate the 

candidates that are most harmonic through the second stratum; observe that the desired 

winner, (104)a, is in a CTie with two other candidates. The learner adopts the first of 

these as a loser and adds W-L pair 6 to the support in (105). Applying the low-

markedness bias to the updated support produces the ranking in (106). 
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(104) Error in A1B1C1 on r2s2 /Ys-Y/[s(sY)] using ranking (102) 
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a. /Ys-Y/ [s(sY)] 1 1 1 0 0 1 0 1 1 
b.  [(Ys)s] 1 0 1 0 1 1 1 0 0 
c.  [(Ys)(X)] 1 1 0 1 1 0 1 2 0 
d.  [(Xs)(Y)] 1 1 0 1 0 0 1 2 2 
e.  [(Y)ss] 1 1 2 1 2 1 0 0 0 
f.  [(Y)(sX)] 1 2 0 1 2 0 0 1 0 
g.  [(X)(sY)] 1 2 0 1 0 0 0 1 1 
h.  [(Y)(Xs)] 1 1 0 1 2 0 1 1 0 

 

(105) A1B1C updated support – low-markedness ranking 

ERC# 
Morph.  
word Input Winner Loser M
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a. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)] W L W W L W     L 

b. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)] W       L L W     

c. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s] W     W L     L L 

d. 4P r2s1 /Ys-s/ [(Ys)s] [s(sY)] W     L   W L W W 

e. 5P r3s1 /sY-s/ [s(Ys)] [(sY)s]       W   W L L L 

f. 6 r2s2 /Ys-Y/ [s(sY)] [(Ys)s]       W   L W L L 

 

(106) A1B1C1 updated low-markedness ranking 

MAXSTRESS >> { PARSE-σ, FT-BIN, RMOST,  *LAPSE} >> {FNF, IAMB, AFL, 
LMOST} 
 

The learner now reevaluates r2s2 /Ys-Y/[s(sY)] and detects a second error under the 

updated ranking from (106). As before, the violation tableau below includes just the 

candidates with the minimal MAXSTRESS violation, and the shaded cells emphasize the 

violations in the second stratum for /Ys-Y/[s(sY)] and the most harmonic competitors. 
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There are two informative losers that CTie with the desired optimum, and the learner 

adopts (107)g for the seventh W-L pair. The resulting support and low-markedness 

ranking appear in (108) and (109). 

(107) Second error in A1B1C1 on r2s2 /Ys-Y/[s(sY)] using low-markedness 
bias 

Input Output M
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a. /Ys-Y/ [s(sY)] 1 1 0 0 1 1 0 1 1 
b.  [(Ys)s] 1 1 0 1 1 0 1 0 0 
c.  [(Ys)(X)] 1 0 1 1 0 1 1 2 0 
d.  [(Xs)(Y)] 1 0 1 0 0 1 1 2 2 
e.  [(Y)ss] 1 2 1 2 1 1 0 0 0 
f.  [(Y)(sX)] 1 0 1 2 0 2 0 1 0 
g.  [(X)(sY)] 1 0 1 0 0 2 0 1 1 
h.  [(Y)(Xs)] 1 0 1 2 0 1 1 1 0 

 

(108) A1B1C1 updated support – low- markedness bias 

ERC# 
Morph.  
word Input Winner Loser M
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a. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)] W W W L L L   W   

b. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)] W       L     L W 

c. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s] W W     L L L     

d. 4P r2s1 /Ys-s/ [(Ys)s] [s(sY)] W L       W W W L 

e. 5P r3s1 /sY-s/ [s(Ys)] [(sY)s]   W       L L W L 

f. 6 r2s2 /Ys-Y/ [s(sY)] [(Ys)s]   W       L L L W 

g. 7 r2s2 /Ys-Y/ [s(sY)] [(X)(sY)]     W L L     W   

 

(109) A1B1C1 updated low-markedness ranking 

MAXSTRESS >> {RMOST, FT-BIN} >> {PARSE-σ, *LAPSE, LMOST, AFL, FNF, 
IAMB} 
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No further errors are detected on r2s2 using the new ranking above. If there were any 

other unfaithful mappings of set features, the learner would continue to perform error-

driven learning using the low-markedness ranking. Once all unfaithful mappings are 

processed without error, the learner returns to error-driven learning using the ranking 

derived by BCD. The updated support for A1B1C1 derived by applying BCD is given in 

(110), with ranking in (111). 

(110) A1B1C1 current support – BCD ranking 

ERC# 
Morph.  
word Input Winner Loser F

T
-B

IN
 

P
A

R
S

E
-σ

   

M
A

X
S

T
R

 

R
M

O
S

T
 

*L
A

P
S

E
 

L
M

O
S

T
 

A
F

L
 

F
N

F 

I A
M

B
 

a. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)] W L W W L L   W   

b. 7 r2s2 /Ys-Y/ [s(sY)] [(X)(sY)] W L     L     W   

c. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)]     W   L     L W 

d. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s]     W W L L L     

e. 4P r2s1 /Ys-s/ [(Ys)s] [s(sY)]     W L   W W W L 

f. 5P r3s1 /sY-s/ [s(Ys)] [(sY)s]       W   L L W L 

g. 6 r2s2 /Ys-Y/ [s(sY)] [(Ys)s]       W   L L L W 

 

(111) A1B1C1 updated BCD ranking 
FT-BIN >> PARSE-σ >> MAXSTRESS >> {RMOST, *LAPSE} >> {LMOST, AFL, FNF, 
IAMB} 
 

The low-markedness bias has served here to flesh out the relationships between the 

markedness constraints. This round of error-driven learning focusing on unfaithful 

mappings of set features produces two new W-L pairs. Based on these pairs, the learner 

now knows that RMOST must dominate all of LMOST, AFL, FNF, and IAMB. Before, the 

support had only revealed the less-informative disjunction that either RMOST or FNF 

must dominate the other three.  
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2.4.4.3 Setting	features	by	single	form		

The learner can often set some, if not all, features from single forms before ever 

appealing to a contrast pair. A1B1C1 is an unusual exception, as it requires a contrast 

pair to set some features initially; thereafter, all remaining features that must be set can be 

set from single forms. Having seen already how features can be learned from contrast 

pairs, understanding how the learner uses single forms for that purpose should be simple. 

The process follows the same principles as for using contrast pairs: the learner varies the 

value of one unset feature at a time and checks whether the resulting mapping is 

inconsistent with the support. If so, the feature must be set in the lexicon to match its 

surface value. This section shows how the learner sets the remaining unset features in 

r2s1, one of the members of the contrast pair used earlier. 

The current support for A1B1C1 remains as in (110). The current lexicon, in (112), 

includes only the set features learned from the contrast pair in 2.4.4.1.  

(112) A1B1C lexicon 

r1 r2 r3 r4 s1 s2 
/ss/ /Y?/ /??/ /??/ /-?/ /-?/

 

The learner may now attempt to learn from r2s1 [(Ys)s], which has two unset 

features. The stress feature of the second syllable of r2 is unset, and its surface value is –

stress. To test the value of this feature, the learner constructs a candidate in which that 

feature is set to +stress. The test candidate, /Y -s/[(Ys)s] in (113)h, is inconsistent with 

A1B1C1. The problematic ranking conditions appear in (113)f-h. 
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(113) A1B1C1  is inconsistent when r2 = /YY/ 

ERC# 
Morph.  
word Input Winner Loser F
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a. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)] W L W W L L   W   

b. 7 r2s2 /Ys-Y/ [s(sY)] [(X)(sY)] W L     L     W   

c. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)]     W   L     L W 

d. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s]     W W L L L     

e. 4P r2s1 /Ys-s/ [(Ys)s] [s(sY)]     W L   W W W L 

f. 5P r3s1 /sY-s/ [s(Ys)] [(sY)s]       W   L L W L 

g. 6 r2s2 /Ys-Y/ [s(sY)] [(Ys)s]       W   L L L W 

h. test r2s1 /YY-s/ [(Ys)s] [s(Ys)]       L L W W     

 

After FT-BIN, PARSE-σ and MAXSTRESS are ranked, the ERCs in (113)f-h must 

explain the rankings of the other constraints. W-L pairs 5P and 6 contradict each other in 

all but RMOST, which prefers the winner in both pairs; however, RMOST prefers the loser 

in (113)h. With all unranked constraints preferring losers for at least one pair, the ranking 

conditions are inconsistent. The learner updates the lexicon, (114), so that r2 is set to 

/Ys/. 

(114) A1B1C1 lexicon updated for r2 

r1 r2 r3 r4 s1 s2 
/ss/ /Ys/ /??/ /??/ /-?/ /-?/

 

The process repeats for the unset feature in s1, setting it to +stress in the test 

candidate: /Ys- /[(Ys)s]. The tableau in (115) shows that the test candidate is 

inconsistent because its ranking conditions contradict those of W-L pair 6. The learner 

can now update the lexicon as in (116), with s1 set to /-s/. 
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(115) A1B1C1 is inconsistent when s1 = /-Y/ 

ERC# 
Morph.  
word Input Winner Loser F
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a. 6 r2s2 /Ys-Y/ [s(sY)] [(Ys)s]       W   L L L W 

b. test r2s1 /Ys-Y/ [(Ys)s] [s(sY)]       L   W W W L 

 

(116) A1B1C1 lexicon updated for s1 

r1 r2 r3 r4 s1 s2 
/ss/ /Ys/ /??/ /??/ /-s/ /-?/

 

2.4.5 PUTTING	THE	PIECES	TOGETHER	

The preceding sections have provided a close look at each component of the CBL, 

from its initial passes through the data during phonotactic learning to how it sets features 

and how it judges whether learning is complete. These sections have provided a glimpse 

into how these components can fit together, but not yet a full outline of how the learner 

uses and re-uses them throughout the course of learning; this is now provided in (117). 

(117) Preliminary outline of the Commitment-Based Learner 

Within each language hypothesis, beginning with Hyp0, and for each observed 
form: 

Phonotactic Learning 

1. Check for errors 
a. If the form lacks a committed structural interpretation and yields 

an error, apply the IDL to extend branches. Repeat step 1 for each 
branch. 

b. If a form has a committed structural interpretation and produces an 
error, perform error-driven learning. Repeat step 1. 

c. If the form does not produce an error, process the next overt form. 
2. Phonotactic learning ends when no errors are detected on any observed 

forms. 
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Non-phonotactic Learning – first pass through data 

3. Perform error-driven learning over all known words. 
a. Reject hypothesis if it is inconsistent 

4. Does the form have a committed interpretation? 
a. Yes – apply the ODL to set features from the single form. 

i. If features are set, seek non-phonotactic ranking 
information from unfaithful mappings using the low-
markedness ranking bias. 

ii. If no features are set, observe the next form. 
b. No – perform error detection on the overt form. 

a. If the overt form passes error detection, observe the next 
form. Go to step	3. 

b. If it does not pass error detection, apply the IDL to assign 
interpretations and extend branches. 

i. Continue learning in the resulting branches, beginning 
with the first observed form in the data set. Go to step	3. 

5. Perform error detection on the list of known words. 
a. If all words pass error detection, this language hypothesis is 

complete. 
i. Are all consistent language hypotheses are complete? 

1. Yes – stop. Learning is complete. 
2. No – continue learning in the incomplete language 

hypotheses. 
b. If some words fail error detection, go to step 6. 

Non-phonotactic Learning – after the first pass through the data 

6. Were any features set by single-form learning in the last pass through the 
data? 

a. Yes – repeat steps 3-5 for each word that currently fails error 
detection. 

b. No – apply the ODL to set features from contrast pairs in the list of 
known words. Go to step 7. 

7. Were any features set by contrast pairs in this pass? 
a. Yes – repeat steps 3-5 for each word that currently fails error 

detection. 
b. No – wait for new information in the language hypothesis and 

repeat steps 3-5 for each word that currently fails error detection.. 
(See chapter 4). 
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2.5 CONCLUSION	

The mutual dependency between hidden structures can provide valuable information 

about the target grammar. The Commitment-based Learner (CBL) exploits that potential 

and uses commitments to some hidden structures to illuminate others. The CBL lays a 

foundation of knowledge during phonotactic learning with commitments to structural 

interpretations and their entailed ranking conditions, then builds on that foundation 

during the non-phonotactic stage with commitments to underlying feature values. To do 

so, the CBL incorporates procedures and learners that individually have proved 

successful at solving intermediate learning problems. In particular, error-driven learning 

yields ranking information and inconsistency detection indicates whether combinations of 

structures are permissible. These techniques are incorporated by the Inconsistency 

Detection Learner and the Output-Driven Learner, both of which are in turn incorporated 

by the CBL.  

In addition to describing the motivations for the CBL, this chapter has illustrated how 

the CBL makes commitments and manipulates the incorporated learners at critical 

learning points. Chapter 3 will expand the scope of the illustration to follow the learner’s 

progress from start to finish, through each step described in (117), as the learner 

processes this same learning data.  
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3 A	COMPLETE	LEARNING	SIMULATION	

The preceding chapter described the component procedures of the Commitment-

Based Learner (CBL) for learning hidden structures of the surface and underlying forms. 

This chapter follows the CBL as it learns, from start to finish, showing where and when it 

uses each component and finally providing a successful outcome from the learning data. 

This chapter uses the same data as in chapter 2 and refers to that chapter for some 

explanations of the learner’s actions. 

The learning data in (118) are from set 15. The forms are listed left to right in the 

order in which the learner observes them in this illustration.  

(118) Learning data set 15 

ssY r1s1 ssY r1s2 Yss r2s1 ssY r2s2 sYs r3s1 ssY r3s2 sYs r4s1 ssY r4s2
 

Because the CBL rejects only inconsistent language hypotheses, it is possible to end 

learning with more than one consistent language hypothesis. In fact, this chapter will 

show that the CBL will learn all three targets associated with the learning data above, 

including L5, introduced previously, as well as L4 and L6, whose overt forms match 

those of L5. These languages are globally-surface ambiguous, as defined in (119). 

(119) Global surface ambiguity (map-based definition) 

Languages LA and LB are globally surface-ambiguous if their maps are identical 
with respect to overt forms. 
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Each target is described below, along with a stratified hierarchy derived from the 

support of its skeletal basis. As expected by their global ambiguity, there are a number of 

similarities between these languages. The shaded cells highlight the key differences. 

(120) L4  

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[s(sY)] [(Ys)s] [(sY)s] [(sY)s] s1 = /-s/ 
[s(sY)] [s(sY)] [s(sY)] [s(sY)] s2 = /-Y/ 

 

(121) FT-BIN  >> PARSE-σ >> MAXSTRESS >> IAMB >> {FNF, RMOST} >> 

{AFL, LMOST, *LAPSE} 

 

(122) L5   

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[s(sY)] [(Ys)s] [s(Ys)] [s(Ys)] s1 = /-s/ 
[s(sY)] [s(sY)] [s(sY)] [s(sY)] s2 = /-Y/ 

 

(123) FT-BIN  >> PARSE-σ >> MAXSTRESS >> RMOST >> {IAMB, AFL, LMOST} 

>> {FNF,  *LAPSE} 

 

(124) L6 

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[s(sY)] [(Y)ss] [(sY)s] [(sY)s] s1 = /-s/ 
[s(sY)] [s(sY)] [s(sY)] [s(sY)] s2 = /-Y/ 

 

(125) IAMB >> FNF >> MAXSTRESS >> {FT-BIN, RMOST} >> {PARSE-σ, AFL, 
LMOST,  *LAPSE} 

 

All the languages are sensitive to lexical stress but are by default iambic with 

rightmost primary stress. The languages group together according to two major 
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properties. First, L4 and L6 sacrifice right-alignment of the head-foot in order to parse 

iambs, unlike L5, which makes the opposite sacrifice. Therefore, r3s1 and r4s1 both 

surface as [(sY)s] in L4 and L6, but as [s(Ys)] in L5. Second, when faithfulness to an 

underlying stress pushes the head-foot from the right edge, as for r2s1 /Ys-s/, L4 and L5 

pattern alike by parsing a binary trochaic head-foot to reduce the distance from the right 

edge, so that r2s1 surfaces as [(Ys)s]. L6 instead prefers to avoid trochaic feet altogether 

at a further expense to right-alignment. In that language, r2s1 surfaces with a degenerate 

foot: [(Y)ss]. 

Stress is contrastive in the suffixes of each language. Each language has three root 

behaviors, with r3 and r4 behaving alike. Stress is therefore contrastive for the second 

syllable of the root, and stress in the first root syllable is neutralized if the second syllable 

is stressed underlyingly. If structural interpretations are excluded, the three languages 

have the same morpheme behaviors, as illustrated by the table in (126), which groups r3 

and r4 together to show that these roots behave alike. 

(126) L4, L5, and L6: like morphemes grouped together 

r1 =/ss/ r2 = /Ys/
r3 = /sY/ 
r4 = /YY/

 

ssY Yss sYs s1 = /-s/ 
ssY ssY ssY s2 = /-Y/

 

This observation suggests the revised definition of global surface ambiguity given in 

(127), which specifically compares morpheme behaviors. 
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(127) Global surface ambiguity (morpheme behavior definition) 

Language LA and LB are globally surface-ambiguous if they have the same 
morpheme behaviors, excluding structural interpretations. 

 

Although the map-based definition of global surface ambiguity in (119) is useful for 

quickly identifying some globally-surface ambiguous language, section 4.4 will show that 

comparing the overt realizations of morpheme behavior instead will identify cases of 

global surface ambiguity that the earlier definition misses. Additionally, reference to 

morpheme behaviors will be useful for providing a unified definition of global ambiguity, 

encompassing both global surface amibiguity and global lexical ambiguity. For more on 

global ambiguity and the CBL’s response to globally ambiguous languages, see chapter 

4. 

3.1 PHONOTACTIC	LEARNING	

Some of the actions taken during phonotactic learning for this data set have been 

described already in chapter 2. The remainder of this section reviews each step taken by 

the learner for all the data, but for the details of the errors and inconsistencies related to 

the overt forms ssY and Yss, including the support updates for these forms, see section 

2.4.2.  

As explained in the preceding chapter, the CBL begins learning with an initial, empty 

language hypothesis, Hyp0, containing no structural commitments, W-L pairs, or lexical 

entries.  The learner observes the first overt form, without its morpheme identity, and 

applies error-driven learning to check for new ranking information. If an error is detected, 

the learner applies the IDL and extends new branches. After this point, use of error-
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driven learning and the IDL applies within each separate, consistent language hypothesis, 

and it is possible for an overt form to yield a branch-inducing error in one language 

hypothesis but not another. The CBL repeatedly cycles through the learning data until all 

overt forms are processed in all consistent language hypotheses without error. The outline 

for phonotactic learning in (128) is extracted from the more complete learning outline in 

2.4.5; a fuller description of phonotactic learning specifically appears in (68) in section 

2.4.2. 

(128) Phonotactic learning outline 

Within each language hypothesis, beginning with Hyp0, and for each observed 
form: 

1. Check for errors 
a. If the form lacks a committed structural interpretation and yields 

an error, apply the IDL to extend branches. Repeat step 1 for each 
branch. 

b. If a form has a committed structural interpretation and produces an 
error, perform error-driven learning. Repeat step 1. 

c. If the form does not produce an error, process the next overt form. 
2. Phonotactic learning ends when no errors are detected on any observed 

forms. 
 

The diagram in (129) summarizes the outcome of observing the first form, ssY.  An 

error detected on this form causes Hyp0 to branch into language hypotheses A1 and A2.  

The dashed line to A2 indicates that this branch is inconsistent. Again, the learner rejects 

inconsistent language hypotheses and never evaluates them again for learning.  

  



	

	

ti

pr

al

m

o

ch

br

in

m

co

 

(129) 

 

According

ime as the 

rocessed wi

ltered to acc

must evaluate

f this sectio

hanged since

(130) 

ssY r1s1 
 

The next 

ranching int

nformation i

makes its own

onsistent. 

Branches e

g to the data

overt form 

thout error i

commodate s

e each overt 

on will avoi

e the last tim

Learning d

ssY r1s2 

new overt f

to A1B1 an

n A1, as ind

n commitme

extended fro

a set in (118)

of the wor

in the only r

ssY when th

form in eac

id discussing

me the overt 

data set 15 (L

Yss r2s1 ss

form observe

nd A1B2. T

dicated by th

ent to a struc

 

	

om initial err

), repeated b

rd r1s2. As 

remaining la

he form was 

ch consistent

g overt form

form was pr

Lgs. 4, 5, 6)

sY r2s2 sYs

ed is Yss. An

These langua

he repetition 

ctural interpr

ror on ssY in

elow, the lea

explained 

anguage hyp

observed fo

t language h

ms processe

rocessed. 

s r3s1 ssY r

n error on th

age hypothe

of A1 in th

retation for 

n Hyp0 

arner observ

in 2.4.2, th

pothesis, A1

or the word r

hypothesis, b

d in branch

r3s2 sYs r4

his overt for

eses inherit 

heir labels. A

Yss. Both of

 

ves ssY again

his overt for

1, which wa

r1s1. The le

but the rema

hes that hav

4s1 ssY r4s

rm in A1 ind

all of the s

Additionally,

f the branche

122	

n, this 

rm is 

s just 

earner 

ainder 

e not 

s2

duces 

stored 

 each 

es are 



	

	

fo

A

in

bu

th

ex

(131) 

 

The fourth

orm was last

A1; this time 

ncluded in th

ut the rankin

Finally, th

hat the learne

xtends branc

(132) 

Branches e

h overt form

t observed fo

it is process

hese branch

ngs of both b

he learner o

er detects an

ches now, sh

A1B1 bran

extended fro

m observed f

or r1s2, whe

sed in both A

es make it p

branches pro

observes a n

n error on thi

hown in the t

nches for err

	

om error on Y

from the data

en it was pro

A1B1 and A

plausible tha

ocess the form

new overt fo

is form in A

tree in below

ror on sYs 

 

Yss in A1 

a set is ssY, 

ocessed in th

A1B2. The ad

at a new err

m without er

orm, sYs, for

1B1 but not 

w.  

for the word

he parent lan

dditional ran

ror could be 

rror.  

r r3s1. Secti

A1B2; there

 

d r2s2. This 

guage hypot

nking inform

detected on

ion 2.4.2 sh

efore, only A

123	

overt 

thesis 

mation 

n ssY, 

owed 

A1B1 

 



124	
	

	
	

Branch A1B1C1 commits to the trochaic interpretation [s(Ys)]. Section 2.4.2 explains 

that the iambic interpretation [(sY)s] is the informative loser for this branch, and the 

appropriate W-L pair is added to the support for A1B1C1, which appears now in (133). 

Following the format established in chapter 2, the order in which W-L pairs are added is 

indicated in the leftmost column, with a “P” to indicate pairs added during phonotactic 

learning; thus, the newly added W-L pair is 5P. The updated ranking is shown in (134). 

(133) A1B1C1 support; committed to [s(sY)], [(Ys)s], and [s(Ys)] 

ERC# 
Morph.  
word Input Winner Loser F

T
-B

IN
 

P
A

R
S

E
-σ

  

M
A

X
S

T
R

 

R
M

O
S

T
 

F
N

F 

*L
A

P
S

E
 

L
M

O
S

T
 

A
F

L
 

IA
M

B
 

a. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)] W L W W W L L     

b. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)]     W   L L     W 

c. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s]     W W   L L L   

d. 4P r2s1 /Ys-s/ [(Ys)s] [s(sY)]     W L W   W W L 

e. 5P r3s1 /sY-s/ [s(Ys)] [(sY)s]       W W  L  L L 

 

(134) FT-BIN >> PARSE-σ >> MAXSTRESS >> {RMOST, FNF, *LAPSE} >> 

{LMOST, AFL, IAMB}  

 

The learner then checks for new ranking information, evaluating the identity 

mappings of the committed interpretations – that is, all the winners in the W-L pairs – to 

determine whether they yield errors under the updated ranking. No further errors are 

detected in this branch. Because each of the three unique overt forms in the data set now 

has a committed interpretation in A1B1C1, detecting no more errors means that this 

language hypothesis has acquired all the information it can without knowing the 

morpheme identities of the learning data:  its phonotactic learning stage has effectively 
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ended after observing the first five overt forms in the learning data. The learner, however, 

does not have this insight. Therefore, as the learner observes the remaining data – ssY for 

r3s2, sYs for r4s1, and ssY again for r4s2 – each form will by duly processed in turn. Each 

will be assigned a structural interpretation from the stored commitment list – [s(sY)] and 

[s(Ys)], as appropriate – and then its identity mapping will be evaluated against the 

current ranking. No errors can arise, as the support in (133) already includes the ranking 

conditions necessary to ensure the optimality of /ssY/[s(sY)] and /sYs/[s(Ys)]. 

The second branch arising from the error on the overt form sYs is A1B1C2, which 

commits to the iambic interpretation, and now the trochaic interpretation is the 

informative loser. The appropriate W-L pair is labeled 5P in the updated support for 

A1B1C2, (135). Again, the learner processes all the committed identity mappings 

according to the updated ranking, (136), and detects no further errors.  

(135) A1B1C2 support; committed to [s(sY)], [(Ys)s], and [(sY)s] 

ERC# 
Morph.  
word Input Winner Loser F

T
-B

IN
 

P
A

R
S

E
-σ

  

M
A

X
S

T
R

 

I A
M

B
 

L
M

O
S

T
 

A
F

L
 

*L
A

P
S

E
 

R
M

O
S

T
 

F
N

F 
a. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)] W L W   L   L W W 

b. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)]     W W     L   L 

c. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s]     W   L L L W   

d. 4P r2s1 /Ys-s/ [(Ys)s] [s(sY)]     W L W W   L W 

e. 5P r3s1 /sY-s/ [(sY)s] [s(Ys)]       W W W   L L 

 

(136) FT-BIN >> PARSE-σ >> MAXSTRESS >> {IAMB, LMOST, AFL, *LAPSE} >> 

{RMOST, FNF}  
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Finally, branch A1B1C3 commits to the degenerate interpretation [s(Y)s], but this 

interpretation is harmonically bounded by the iambic interpretation, shown in (137) by 

W-L pair 5P. Because no constraints prefer the winner for that W-L pair, the commitment 

to [s(Y)s] makes A1B1C3 inconsistent. This language hypothesis is rejected. 

(137) A1B1C3 is inconsistent; /sYs/[s(Y)s] is harmonically-bounded 

ERC# 
Morph.  
word Input Winner Loser F

T
-B

IN
 

P
A

R
S

E
-σ

  

M
A

X
S

T
R

 

I A
M

B
 

L
M

O
S

T
 

A
F

L
 

*L
A

P
S

E
 

R
M

O
S

T
 

F
N

F 

a. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)] W L W   L   L W W 

b. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)]     W W     L   L 

c. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s]     W   L L L W   

d. 4P r2s1 /Ys-s/ [(Ys)s] [s(sY)]     W L W W   L W 

e. 5P r3s1 /sY-s/ [s(Y)s] [(sY)s]  L L    L L   
 

The last branch to review now is A1B2. This language hypothesis does not yield an 

error on the overt form sYs r3s1 because, as 2.4.2 explains, its current ranking 

information is sufficient to ensure the optimality of exactly one interpretation of the overt 

form. For this reason, it is unnecessary at this time to extend branches from A1B2 and 

commit to any particular interpretation. Its current support, which will remain unchanged, 

is given in (138), with ranking in (139). 
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(138) A1B2 support; committed to [s(sY)] and [(Y)ss] 

ERC# 
Morph.  
word Input Winner Loser IA

M
B

 

F
N

F 

M
A

X
S

T
R

 

L
M

O
S

T
 

R
M

O
S

T
 

A
F

L
 

P
A

R
S

E
-σ

 

F
T
-B

IN
 

*L
A

P
S

E
 

a. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)] W L W      L 

b. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)]  W W L W  L W L 

c. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s]   W L W L   L 

d. 4P r2s1 /Ys-s/ [(Y)ss] [s(sY)]   W W L W L L  

 

(139) IAMB  >>  FNF >> MAXSTRESS >> {LMOST,RMOST, AFL, PARSE-σ, FT-
BIN, *LAPSE} >> {RMOST, FNF}  
 

To review, at this point the learner has observed the first five overt forms in the 

learning data set and created four language hypotheses: A1B1C1, A1B1C2, A1B1C3, and 

A1B2.  Of these, A1B1C1, A1B1C2, and A1B2 are consistent. The learner next cycles 

through the remaining three overt forms in data set (130), observing sYs once more and 

ssY twice more to complete one pass through the data. These forms are processed without 

error in each of the three consistent language hypotheses. There are no further changes. 

The phonotactic learning stage ends when no more ranking information can be 

extracted from the overt forms of the learning data, which in turn means that every overt 

form can be processed in every consistent language hypothesis without error. A1B1C1 

and A1B1C2 have in effect already completed phonotactic learning; having a 

commitment for each of the three unique overt forms and then rechecking the stored 

commitments for errors as this first pass through the data continues ensures that no new 

information can arise from revisiting the data in these language hypotheses. But A1B2 

does not have a committed interpretation for sYs, and therefore the repeated check of 
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A total of 21 ERCs were stored (and 21 RCD applications were made) during 

phonotactic learning. Combined, the three consistent language hypotheses that remain 

store 14 ERCs in their supports. The maximum number of hypotheses stored at any one 

time is four, when the learner has extended branches from A1B1 for the form sYs and 

lasting only until inconsistency detection reveals that the commitment for this form in 

branch A1B1C3 is inconsistent. 

3.1.1 IS	LEARNING	COMPLETE?	

Before the non-phonotactic learning stage begins, and before each pass through the 

learning data thereafter, the CBL checks each consistent language hypothesis to see if it 

is complete using the error detection procedure described in 2.4.3. Because the non-

phonotactic learning stage has not yet begun, the learner does not know the morphemic 

identities of any of the words observed during phonotactic learning. All features are 

currently unset, and therefore all words with the same overt forms will have the same 

error detection candidates, regardless of their morphemic identity. This section will refer 

to the morphological word labels, such as r1s1, but what matters for error detection now 

is simply the identity mapping of that word: /ssY/[s(sY)].  

As illustrated in 2.4.3, r1s1 /ss-Y/[s(sY)] fails error detection for A1B1C1, whose 

current ranking is repeated in (141).  

(141) A1B1C1 current ranking 

FT-BIN  >> PARSE-σ >> MAXSTRESS >> {RMOST, FNF, *LAPSE} >> {LMOST, 
AFL, IAMB} 
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All three features of r1s1 are unset, and as a consequence the error detection 

candidate is /YY-s/[s(sY)], with all features set to mismatch the values of their surface 

correspondents. As 2.4.3 explains, although this candidate, (142)a in the violation tableau 

below, ties for most harmonic through the first two strata, it incurs two violations of 

MAXSTRESS in the third stratum, making it less harmonic than the candidates in 

(142)b,d,e that remain faithful to one of the underlying stresses. This error is sufficient to 

demonstrate that the language hypothesis is as yet incomplete.  

(142) A1B1C1 – r1s1 fails error detection  

Input Output F
T
-B

IN
 

P
A

R
S

E
-σ

 

M
A

X
S

T
R

 

R
M

O
S

T
 

F
N

F
 

*L
A

P
S

E
 

IA
M

B
 

L
M

O
S

T
 

A
F

L
 

a. /YY-s/ [s(sY)] 0 1 2 0 1 1 0 1 1 
b.  [(sY)s] 0 1 1 1 1 0 0 0 0 
c.  [(sY)(X)] 1 0 1 1 2 0 0 0 2 
d.  [s(Ys)] 0 1 1 0 0 0 1 1 1 
e.  [(Ys)s] 0 1 1 1 0 1 1 0 0 
f.  [(Ys)(X)] 1 0 1 1 1 0 1 0 2 
g.  [(Y)(sX)] 1 0 1 2 2 0 0 0 1 
h.  [(X)(sY)] 1 0 2 0 2 0 0 1 1 
i.  [(Y)(Xs)] 1 0 1 2 1 0 1 0 1 
j.  [(X)(Ys)] 1 0 1 0 1 0 1 1 1 

 

The same word will demonstrate that A1B1C2 and A1B2 are also incomplete. As 

branches from the original A1 parent, each of these language hypotheses commits to 

[s(sY)] for r1s1, and therefore all use the error detection candidate /YY-s/[s(sY)]. In fact, 

the violation tableau in (142) above also serves to illustrate the error on r1s1 in A1B1C2. 

In the current ranking for this branch, repeated in (143), the first three strata are identical 
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to those of A1B1C1. Consequently, an error is detected on r1s1 [s(sY)] in A1B1C2 for 

the same reason as in A1B1C1. 

(143) A1B1C2 current ranking 

FT-BIN  >>  PARSE-σ  >> MAXSTRESS >> {IAMB, LMOST, AFL, *LAPSE} >> 

{RMOST, FNF} 

 

Finally, in A1B2 MAXSTRESS also occupies the third stratum, and its relatively high 

rank causes r1s1 to fail error detection in this language hypothesis as well.  The current 

ranking of A1B2 is repeated in (144). As for the other language hypotheses, the error 

detection candidate, (145)a in the violation tableau below, fails because it incurs more 

violations of MAXSTRESS than a competitor, here (145)b. 

(144) A1B2 current ranking 

IAMB >> FNF >> MAXSTRESS >> {LMOST,RMOST, AFL, PARSE-σ, FT-BIN, 
*LAPSE} >> {RMOST, FNF}  

(145) A1B2 – r1s1 fails error detection  

Input Output IA
M

B
 

F
N

F
 

M
A

X
S

T
R

 

L
M

O
S

T
 

R
M

O
S

T
 

A
F

L
 

P
A

R
S

E
-σ

 

F
T
-B

IN
 

*L
A

P
S

E
 

a. /YY-s/ [s(sY)] 0 1 2 1 0 1 1 0 1 
b.  [(sY)s] 0 1 1 0 1 0 1 0 0 
c.  [(sY)(X)] 0 2 1 0 1 2 0 1 0 
d.  [s(Ys)] 1 0 1 1 0 1 1 0 0 
e.  [(Ys)s] 1 0 1 0 1 0 1 0 1 
f.  [(Ys)(X)] 1 1 1 0 1 2 0 1 0 
g.  [(Y)(sX)] 0 2 1 0 2 1 0 1 0 
h.  [(X)(sY)] 0 2 2 1 0 1 0 1 0 
i.  [(Y)(Xs)] 1 1 1 0 2 1 0 1 0 
j.  [(X)(Ys)] 1 1 1 1 0 1 0 1 0 
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Because all the consistent language hypotheses fail error detection for at least one word, the 

learner will seek to set features in each of them during the non-phonotactic learning stage. 

3.2 LEARNING	UNDERLYING	FORMS	

Now that the non-phonotactic learning stage has begun, the learner will receive the 

morphological information associated with each observed form, but the data continue to 

be processed in each consistent language hypothesis according to the order represented in 

(118). The CBL assumes that the learner can recall all previously observed words and can 

perform error-driven learning over them at any time. To model this assumption in this 

implementation of the CBL, each word observed is added to a list of known words unless 

it already appears in the list, and the learner performs error-driven learning over the list to 

check for new ranking information. Note that keeping a record of these known words is 

not essential to the CBL. An implementation that checks for errors only on the current 

observed word rather than on all known words will ultimately determine the same 

ranking information as this one, with the only difference being precisely when errors are 

detected. While the learner might have to complete a pass through the data to cycle back 

to a form that produces an error, such an implementation would not be dramatically 

slower than this one: each error could delay detection only for as many words as there are 

between the current observed word and a word that yields the error. 

After checking for new ranking information, the learner will attempt to set features by 

employing the Output-Driven Learner (ODL) as long as the word already has a 

committed structural interpretation. Otherwise, the learner will check if the word passes 

error detection with all unset features set to mismatch their surface values. If it does not, 
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(147) L5 

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[s(sY)] [(Ys)s] [s(Ys)] [s(Ys)] s1 = /-s/ 
[s(sY)] [s(sY)] [s(sY)] [s(sY)] s2 = /-Y/ 

 

(148) FT-BIN >> PARSE-σ >> MAXSTRESS >> RMOST >> {IAMB, AFL, LMOST} 

>> {FNF,  *LAPSE} 

 

A1B1C1 begins the non-phonotactic learning stage with the support and ranking 

below. 

(149) A1B1C1 support 

ERC# 
Morph.  
word Input Winner Loser F
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a. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)] W L W W W L L     

b. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)]     W   L L     W 

c. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s]     W W   L L L   

d. 4P r2s1 /Ys-s/ [(Ys)s] [s(sY)]     W L W   W W L 

e. 5P r3s1 /sY-s/ [s(Ys)] [(sY)s]       W W  L  L L 

 

(150) FT-BIN >> PARSE-σ >> MAXSTRESS >> {RMOST, FNF, *LAPSE} >> 

{LMOST, AFL, IAMB} 

 

3.2.1.1.1 First	pass	through	the	data	fails	to	set	features	

The learner adds each of the eight observed words to the list of known words but can 

derive no new grammatical information from them. Each of these words already has a 

committed interpretation, and there are no errors because the current ranking is 

unchanged from phonotactic learning. As explained in 2.4.4.1,	initially	no	features	can	be	
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set	from	single	forms.	Because all the words fail error detection and single form learning 

has proved fruitless, the learner appeals to contrast pairs to set a feature.  

3.2.1.1.2 Second	pass	through	the	data	sets	features	with	contrast	pair	r1s1,	r2s1	

A1B1C1 is the language hypothesis of the example in 2.4.4.1, and as detailed there, it 

takes a contrast pair to set the first few features. The first contrast pair identified is r1s1 

[s(sY)], r2s1 [(Ys)s]. In this pair, the environment morpheme s1 alternates between –

stress in r1s1 and +stress in r2s1, making this a plausible pair for learning. As previously 

described, the pair is informative and enables the learner to set features in r1 and r2, and 

to update the lexicon in (151). Additionally, 2.4.4.2 explains how the unfaithful mapping 

of r2’s first syllable in r2s2 [s(sY)] yields new ranking information as well. The resulting 

W-L pairs 6 and 7 are added to the support in (152); application of BCD yields the 

ranking in (153).  

(151) A1B1C1 – Contrast pair r1s1/r2s1 sets three features  

r1 r2 r3 r4 s1 s2 
/ss/ /Y?/ /??/ /??/ /-?/ /-?/

 

(152) A1B1C1 support updated  using unfaithful mappings of r2s2 

ERC# 
Morph.  
word Input Winner Loser F
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a. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)] W L W W L L   W   

b. 7 r2s2 /Ys-Y/ [s(sY)] [(X)(sY)] W L     L     W   

c. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)]     W   L     L W 

d. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s]     W W L L L     

e. 4P r2s1 /Ys-s/ [(Ys)s] [s(sY)]     W L   W W W L 

f. 5P r3s1 /sY-s/ [s(Ys)] [(sY)s]       W   L L W L 

g. 6 r2s2 /Ys-Y/ [s(sY)] [(Ys)s]       W   L L L W 
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(153) FT-BIN >> PARSE-σ >> MAXSTRESS >> {RMOST, *LAPSE} >> {LMOST, 
AFL, FNF, IAMB} 

 

The contrast pair has set some features, but all words continue to fail error detection. 

Having added new lexical and ranking information, it is plausible that single forms which 

could not be used to set a feature in the first pass through the data might be able to now. 

In this simulation, the learner ceases this second pass through the learning data and starts 

a third pass, beginning with the first word in the data set, r1s1. The progress of this pass 

through the data continues below. 

3.2.1.1.3 Third	pass	begins:	r1s1	[s(sY)],	r1s2	[s(sY)],	and	r2s1	[(Ys)s]	

The test candidates for the first two words observed in this pass are consistent with 

the current support for A1B1C1. Because r1 was set to /ss/ in the preceding section using 

a contrast pair, both r1s1 and r1s2 each have just one unset feature, in the suffix. These 

words surface alike as [s(sY)], and therefore they have the same test candidate, shown in 

(154).  

(154) Test candidate for r1s1 and r1s2 

/ss- /  [s(sY)] 

 

In spite of the new lexical and ranking information obtained by the contrast pair in the 

preceding section, this test candidate remains consistent with the support. Just as section 

2.4.4.1 explains, language hypothesis A1B1C1 corresponds to target L5, which includes 

/ss-s/[s(sY)] in its map. Any mapping that is consistent with L5 is consistent with 
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A1B1C1, whose ranking conditions are less stringent than L5’s. This test candidate will 

always be consistent with A1B1C1, and therefore it will always be uninformative for 

lexical learning. 

The third word, r2s1 [(Ys)s], finally allows the learner to set a feature. With the stress 

feature of the first syllable already set to +stress, there are two candidates to test, below. 

(155) Test candidates for r2s1 [(Ys)s] 

a. /Y -s/  [(Ys)s]  
b. /Ys- /  [(Ys)s]  

 

A1B1C1 is the language hypothesis described in 2.4.4.3, and the candidates above are 

the same ones used in that section. As explained there, both test candidates are 

inconsistent with the support for A1B1C1. The learner has now determined that r2 must 

be /Ys/ underlyingly and s1 /-s/. Three morphemes now have complete entries in the 

lexicon, below. 

(156) A1B1C1 lexicon updated for r2 and s1  

r1 r2 r3 r4 s1 s2 
/ss/ /Ys/ /??/ /??/ /-s/ /-?/

 

Having set a feature, the learner seeks non-phonotactic ranking information. Although 

s1 surfaces as +stress in r1s1 [s(sY)], this does not count as an unfaithful mapping. 

MAXSTRESS assigns violations only for +stress syllables that surface as –stress, not the 

reverse. In this case, r1s1 is not identified as potentially informative for non-phonotactic 

ranking information. 
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3.2.1.1.4 Third	pass	continues:	r2s2	[s(sY)]	

The next word processed in the third pass through the data is r2s2 [s(sY)], in which 

only the suffix s2 remains unset. Each time a word is processed, the learner checks that 

the current ranking makes all the known words optimal. In this example, r2s2 /Ys-

Y/[s(sY)] is optimal according to the current ranking, but one word in the list, r1s1 /ss-

s/[s(sY)], is not.  

Because all features of r1s1 have already been set, the learner evaluates the mapping 

/ss-s/[s(sY)] against the current ranking derived by BCD, in (153). The violation tableau 

in (157) includes the candidate for r1s1 in (157)a and all other potential optima that 

satisfy undominated FT-BIN by parsing only binary feet. All candidates tie in the first 

three strata, but the desired winner (157)a loses to the right-aligned trochaic candidate, 

(157)c, in the fourth stratum, as the shaded cells indicate. The learner adopts (157)c as a 

loser and adds the resulting W-L pair 8 to the support in (158); the updated ranking 

appears in (159). 

(157) Error in A1B1C1 for r1s1 /ss-s/[s(sY)] 

Input Output F
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a. /ss-s/ [s(sY)] 0 1 0 0 1 1 1 1 0 
b.  [(sY)s] 0 1 0 1 0 0 0 1 0 
c.  [s(Ys)] 0 1 0 0 0 1 1 0 1 
d.  [(Ys)s] 0 1 0 1 1 0 0 0 1 
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(158) A1B1C1 support updated after error on r1s1 

ERC# 
Morph.  
word Input Winner Loser F
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a. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)] W L W W L     W L 

b. 7 r2s2 /Ys-Y/ [s(sY)] [(X)(sY)] W L           W L 

c. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)]     W       W L L 

d. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s]     W W L L     L 

e. 4P r2s1 /Ys-s/ [(Ys)s] [s(sY)]     W L W W L W   

f. 5P r3s1 /sY-s/ [s(Ys)] [(sY)s]       W L L L W   

g. 6 r2s2 /Ys-Y/ [s(sY)] [(Ys)s]       W L L W L   

h. 8 r1s1 /ss-s/ [s(sY)] [s(Ys)]           W L L  

 

(159) FT-BIN >> PARSE-σ >> MAXSTRESS >> RMOST>> {LMOST, AFL, IAMB} 

>> {FNF, *LAPSE} 
 

With no errors detected on the other words, the learner returns to r2s2 and now 

detects a lexically-informative inconsistency using the test candidate /Ys- /[s(sY)] to set 

the feature in s2. The tableau in (160) includes the current support and one W-L pair 

created for the test candidate, (160)i. After FT-BIN and PARSE-σ are ranked in the first 

two strata, each of the remaining constraints prefers a loser at least once. Based on this 

inconsistency the learner can set s2 to +stress. The updated lexicon appears in (161). 
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(160) A1B1C1 is inconsistent with r2s2 when s2 = /-s/ 

ERC# 
Morph.  
word Input Winner Loser F
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a. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)] W L W W L   W L 

b. 7 r2s2 /Ys-Y/ [s(sY)] [(X)(sY)] W L    W L 

c. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)] W   W L L 

d. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s] W W L L   L 

e. 4P r2s1 /Ys-s/ [(Ys)s] [s(sY)] W L W W L W  

f. 5P r3s1 /sY-s/ [s(Ys)] [(sY)s] W L L L W  

g. 6 r2s2 /Ys-Y/ [s(sY)] [(Ys)s] W L L W L  

h. 8 r1s1 /ss-s/ [s(sY)] [s(Ys)]   W L L 

i. test r2s2 /Ys-s/ [s(sY)] [(Ys)s] L W L L L   

 

(161) A1B1C1 lexicon updated for s2 

r1 r2 r3 r4 s1 s2 
/ss/ /Ys/ /??/ /??/ /-s/ /-Y/

 

3.2.1.1.5 Third	pass	concludes:	r3s1	[s(Ys)],	r3s2	[s(sY)],	r4s1	[s(Ys)],		r4s2	[s(sY)]	

The learner continues this pass through the data and processes r3s1, which has unset 

features in the root only. Because no errors are detected on any of the known words for 

the current ranking in (159), the learner can now attempt to set the features of r3 using the 

candidates in (162). 

(162) Test candidates for r3s1 [s(Ys)] 

a. / Y-s/  [s(Ys)]  
b. /s -s/  [s(Ys)]  

 

The first candidate is consistent with the support for a familiar reason. Recall that 

although the learner does not know it, A1B1C1 corresponds to target L5. Test candidate 
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(162)a is a mapping in L5, as shaded in the map repeated below, and therefore it is 

consistent with the support of A1B1C1. 

(163) L5 

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[s(sY)] [(Ys)s] [s(Ys)] [s(Ys)] s1 = /-s/ 
[s(sY)] [s(sY)] [s(sY)] [s(sY)] s2 = /-Y/ 

 

However, test candidate (162)b is inconsistent because it makes contradictory ranking 

requirements with W-L pair 8, as shown in (164). The learner therefore can set the 

second syllable of r3 to +stress in the lexicon, (165).  

(164) /ss-s/[s(Ys)] is inconsistent with W-L pair 8 

ERC# 
Morph.  
word Input Winner Loser F

T
-B

IN
 

P
A

R
S

E
-σ

  

M
A

X
S

T
R

 

R
M

O
ST

 

L
M

O
ST

 

A
F

L
 

IA
M

B
 

F
N

F
 

*L
A

PS
E

 

a. 8 r1s1 /ss-s/ [s(sY)] [s(Ys)]           W L L  

b. test r3s1 /ss-s/ [s(Ys)] [s(sY)]   L W W 
 

(165) A1B1C1 lexicon updated for r3 

r1 r2 r3 r4 s1 s2 
/ss/ /Ys/ /?Y/ /??/ /-s/ /-Y/

 

Although r3 now has only one unset feature, the next word, r3s2 [s(sY)], will not set 

it. The test candidate shown in (166) again matches a mapping in the target L5: it is the 

canonical mapping of r2s2.  

(166) Test candidates for r3s2 [s(sY)] 

/ s-Y/  [s(sY)]   
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Finally, the learner processes r4s1 [s(Ys)] and r4s2 [s(sY)]. Because r4 behaves like 

r3, the test candidates for these words will be identical to those in (162) and (166), with 

the same outcomes. Thus, the learner can set the second syllable of r4 to +stress also. 

Only the initial syllables of these roots remain unset in the lexicon, (167). 

(167) A1B1C1 lexicon updated for r3 and r4 

r1 r2 r3 r4 s1 s2 
/ss/ /Ys/ /?Y/ /?Y/ /-s/ /-Y/

 

The set features in r3 and r4 surface unfaithfully in r3s2 and r4s2, making these words 

potential sources of non-phonotactic ranking information. The learner applies a low-

markedness bias to the support to produce ranking (168), used in the violation tableau in 

(169). Candidate (169)a corresponds to both r3s2 and r4s2. It ties with the right-aligned 

trochaic candidate in (169)d through the first two strata, and does better in the third 

because it incurs no violations of IAMB. As a result, there is no error, and no new ranking 

information to be learned. 

(168) MAXSTRESS >> {FT-BIN, RMOST} >> {PARSE-σ, LMOST, AFL, IAMB} >> 

{FNF, *LAPSE} 
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(169) No error on r3s2 /sY-Y/[s(sY)] under low-markedness ranking 
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a. /sY-Y/ [s(sY)] 1 0 0 1 1 1 0 1 1 
b.  [(sY)s] 1 0 1 1 0 0 0 1 0 
c.  [(sY)(X)] 1 1 1 0 0 2 0 2 0 
d.  [s(Ys)] 1 0 0 1 1 1 1 0 0 
e.  [(Ys)s] 2 0 1 1 0 0 1 0 1 
f.  [(Ys)(X)] 2 1 1 0 0 2 1 1 0 
g.  [(Y)(sX)] 2 1 2 0 0 1 0 2 0 
h.  [(X)(sY)] 1 1 0 0 1 1 0 2 0 
i.  [(Y)(Xs)] 2 1 2 0 0 1 1 1 0 
j.  [(X)(Ys)] 1 1 0 0 1 1 1 1 0 

 

3.2.1.1.6 A1B1C1	is	complete	

R3 and r4 still have unset features, but now all words pass error detection. In L5, 

underlying stress in the first syllable of the root is neutralized if the second syllable is 

also stressed underlyingly. R3 and r4 therefore have the same phonological behaviors, 

and the feature values of their first syllables do not have to be set in the lexicon, as their 

error detection tests indicate: the error detection candidates, shown below, match the 

canonical mappings of r4s1 and r4s2 in L5 and are necessarily consistent with the 

support.  

(170) Final error detection candidates 

a. r3s1, r4s1 / Y-s/  [s(Ys)]  
b. r3s2, r4s2  / Y-Y/  [s(sY)]  

 

The final lexicon for A1B1C1, in (171), leaves r3 and r4 each with one unset feature. 

The final support is repeated in (172), with its ranking derived by BCD in (173).  
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(171) A1B1C1 – Final lexicon 

r1 r2 r3 r4 s1 s2 
/ss/ /Ys/ /?Y/ /?Y/ /-s/ /-Y/

 

(172) A1B1C1 – Final support 

ERC# 
Morph.  
word Input Winner Loser F

T
-B

IN
 

P
A

R
S

E
-σ

  

M
A

X
S

T
R

 

R
M

O
S

T
 

L
M

O
S

T
 

A
F

L
 

I A
M

B
 

F
N

F 

*L
A

P
S

E
 

a. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)] W L W W L     W L 

b. 7 r2s2 /Ys-Y/ [s(sY)] [(X)(sY)] W L           W L 

c. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)]     W       W L L 

d. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s]     W W L L     L 

e. 4P r2s1 /Ys-s/ [(Ys)s] [s(sY)]     W L W W L W   

f. 5P r3s1 /sY-s/ [s(Ys)] [(sY)s]       W L L L W   

g. 6 r2s2 /Ys-Y/ [s(sY)] [(Ys)s]       W L L W L   

h. 8 r1s1 /ss-s/ [s(sY)] [s(Ys)]           W L L  

 

(173) FT-BIN >> PARSE-σ >> MAXSTRESS >> RMOST>> {LMOST, AFL, IAMB} 

>> {FNF, *LAPSE} 
 
 

3.2.1.2 	A1B1C2	

Language hypothesis A1B1C2, framed in (174), is the second consistent branch that 

survives when A1B1 branches to commit to interpretations of sYs during phonotactic 

learning. A1B1C2 corresponds to target L4, whose map appears in (175) followed by a 

stratified hierarchy that will generate it.  
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(177) Outline of learning A1B1C2 

1. Single form learning fails to set any features 
2. Contrast pair learning  

a. Set r1 to /ss/ and r2 to /Y?/ using contrast pair r1s1 [s(sY)], r2s1 
[(Ys)s] 

b. Add W-L pairs 6 and 7 from unfaithful mapping of r2 in r2s2 [s(sY)], 
using markedness-low ranking. 

3. Single form learning. 
a. Add W-L pair 8 from error on r2s2 using BCD ranking. 
b. Set r2 to /Ys/ and s1 to /s/ using  r2s1 [(Ys)s]  
c. Add W-L pair 9 from unfaithful mapping of s1 in r1s1 [s(sY)], using 

markedness-low ranking. 
d. Set r3 to /?Y/ using r3s1 [(sY)s]. 
e. Set r4 to /?Y/ using r4s1 [(sY)s]. 

4. All words pass error detection. 

 

(178) A1B1C2 final support; committed to [s(sY)], [(Ys)s] and [(sY)s] 

ERC# 
Morph.  
word Input Winner Loser F

T
-B

IN
 

P
A

R
S

E
-σ

  

M
A

X
S

T
R

 

I A
M

B
 

R
M

O
S

T
 

F
N

F 

L
M

O
S

T
 

A
F

L
 

*L
A

P
S

E
 

a. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)] W L W   W W L   L 

b. 6 r2s2 /Ys-Y/ [s(sY)] [(Y)ss] W W     W   L L   

c. 7 r2s2 /Ys-Y/ [s(sY)] [(Y)(sX)] W L     W W L   L 

d. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)]     W W   L     L 

e. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s]     W   W   L L L 

f. 4P r2s1 /Ys-s/ [(Ys)s] [s(sY)]     W L L W W W   

g. 5P r3s1 /sY-s/ [(sY)s] [s(Ys)]       W L L W W   

h. 8 r2s2 /Ys-Y/ [s(sY)] [(Ys)s]       W W L L L   

i. 9 r1s1 /ss-s/ [s(sY)] [(sY)s]         W   L L L 
 

(179) FT-BIN  >> PARSE-σ >> MAXSTRESS >> IAMB >> {RMOST, FNF} >> 

{LMOST, AFL, *LAPSE} 
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(182) A1B2 support; committed to [s(sY)] and [(Y)ss] 

ERC# 
Morph.  
word Input Winner Loser IA

M
B

 

F
N

F 

M
A

X
S

T
R

 

L
M

O
S

T
 

R
M

O
S

T
 

A
F

L
 

P
A

R
S

E
-σ

  

F
T
-B

IN
 

*L
A

P
S

E
 

a. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)] W L W           L 

b. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)]   W W L W   L W L 

c. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s]     W L W L     L 

d. 4P r2s1 /Ys-s/ [(Y)ss] [s(sY)]     W W L W L L   

 

(183) IAMB >> FNF >> MAXSTRESS >> {LMOST, RMOST, AFL, PARSE-σ, FT-BIN, 
*LAPSE} 
 

A1B2 is notably different from A1B1C1 and A1B1C2 because it allows for the 

learner to set features as soon as single form learning begins, even before committing to 

an interpretation for the third overt form. First, however, the attempts to set features in  

r1s1 [s(sY)] and r1s2 [s(sY)] fail, just as in the other language hypotheses and for the 

same reason: A1B2 will eventually branch and yield the grammar of a target language, 

L6, and it happens that the test candidates for these words are mappings in that target. As 

the current support of A1B2 is consistent with L6, the test candidates must be consistent 

also. But at last the learner processes r2s1, and here A1B2’s commitment to [(Y)ss] 

instead of the trochaic [(Ys)s] results in a lexically informative inconsistency. The three 

test candidates of r2s1 appear below. 

(184) Test candidates for r2s1 [(Y)ss] 

a. / s-s/  [(Y)ss] 
b. /Y -s/  [(Y)ss] 
c. /Ys- /  [(Y)ss]  

 



149	
	

	
	

The first candidate is harmonically bounded by the candidate parsing a left-aligned 

iamb. The comparative tableau in (185) shows that no constraint prefers the test candidate 

to that competitor; likewise, (186) shows that the second test candidate is harmonically 

bounded by the same iambic competitor. These inconsistencies enable the learner to set 

r2 to /Ys/ and to update the lexicon, (187). 

(185) /ss-s/[(Y)ss] is harmonically bounded; sets r2 to /Y?/ 

Input Winner Loser M
A

X
S

T
R

 

IA
M

B
 

L
M

O
S

T
 

A
F

L
 

F
N

F
 

P
A

R
S

E
-σ

 

F
T
-B

IN
 

R
M

O
S

T
 

*L
A

P
S

E
 

/ss-s/ [(Y)ss] [(sY)s]           L L L L 
 

(186) /YY-s/[(Y)ss] is harmonically bounded; sets r2 to /Ys/ 

Input Winner Loser IA
M

B
 

M
A

X
S

T
R

 

L
M

O
S

T
 

A
F

L
 

F
N

F
 

P
A

R
S

E
-σ

 

F
T
-B

IN
 

R
M

O
S

T
 

*L
A

P
S

E
 

/YY-s/ [(Y)ss] [(sY)s]           L L L L 
 

(187) A1B2 lexicon updated for r2 

r1 r2 r3 r4 s1 s2 
/??/ /Ys/ /??/ /??/ /-?/ /-?/

 

These features do not ever surface unfaithfully, but the learner receives new ranking 

information anyway from an error detected on r2s2 [s(sY)] under ranking (183). The 

violation tableau below includes the two candidates which best satisfy constraints in the 

top three strata. The candidates conflict on the constraints of the bottom stratum, with 

LMOST and AFL preferring the competitor (188)b to (188)a, which includes the 
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committed output. By the CTie criterion, these candidates tie despite the fact that (188)b 

incurs more total violations than (188)a. The learner adopts (188)b as an informative 

loser and adds W-L pair 5 to the support, (189). The updated ranking appears in (190) 

(188) Error in A1B2 for r2s2 /Ys-Y/[s(sY)] 

Input Output IA
M

B
 

F
N

F
 

M
A

X
S

T
R

 

L
M

O
S

T
 

R
M

O
S

T
 

A
F

L
 

P
A

R
S

E
-σ

 

F
T
-B

IN
 

*L
A

P
S

E
 

a. /Ys-Y/ [s(sY)] 0 1 1 1 0 1 1 0 1 
b.  [(Y)ss] 0 1 1 0 2 0 2 1 1 

 

(189) A1B2 support updated after error on r2s2 

ERC# 
Morph.  
word Input Winner Loser IA

M
B

 

F
N

F 

M
A

X
S

T
R

 

R
M

O
S

T
 

P
A

R
S

E
-σ

  

F
T
-B

IN
 

*L
A

P
S

E
 

L
M

O
S

T
 

A
F

L
 

a. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)] W L W       L     

b. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)]   W W W L W L L   

c. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s]     W W     L L L 

d. 4P r2s1 /Ys-s/ [(Y)ss] [s(sY)]     W L L L   W W 

e. 5 r2s2 /Ys-Y/ [s(sY)] [(Y)ss]       W W W   L L 

 

(190) IAMB >> FNF >> MAXSTRESS >> {RMOST, PARSE-σ, FT-BIN, *LAPSE} >> 

{LMOST, AFL} 
 

Because the features of the root r2 have already been set, there is only one test 

candidate to evaluate for r2s2, with the feature value disparity in the suffix: /Ys- /[s(sY)]. 

The tableau in (191) shows that this test candidate is inconsistent with W-L pair 4P, 

which makes contradictory ranking requirements for its winner /Ys-s/[(Y)ss]. The 

inconsistency allows the learner to set s2 to +stress, updating the lexicon to (192). 
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(191) /Ys-s/[s(sY)] is inconsistent with A1B2 

ERC# 
Morph.  
word Input Winner Loser IA

M
B

 

F
N

F 

M
A

X
S

T
R

 

R
M

O
S

T
 

P
A

R
S

E
-σ

  

F
T
-B

IN
 

*L
A

P
S

E
 

L
M

O
S

T
 

A
F

L
 

a. 4P r2s1 /Ys-s/ [(Y)ss] [s(sY)]     W L L L   W W 

b. test r2s2 /Ys-s/ [s(sY)] [(Y)ss]      L  W W W L L 

 

(192) A1B2 lexicon updated for s2 

r1 r2 r3 r4 s1 s2 
/??/ /Ys/ /??/ /??/ /-?/ /-Y/

 

Halfway into this first pass through the data in language hypothesis A1B2, the learner 

has already set three features from single forms and added new ranking information. The 

learner next observes r3s1 sYs, for which no structural commitment has yet been made 

and now error detection reveals that a committed interpretation is finally warranted. The 

error detection input is /Ys-Y/, with all features set to mismatch their surface values. The 

violation tableau in (193) includes the most harmonic candidates through the first two 

strata. Candidate (193)a has the overt form sYs, matching the observed form, but it is less 

harmonic than candidates (193)b,c because it receives an additional violation of 

MAXSTRESS. 

(193) R3s1 sYs fails error detection 

Input Output IA
M

B
 

F
N

F
 

M
A

X
S

T
R

 

R
M

O
S

T
 

P
A

R
S

E
-σ

  

F
T
-B

IN
 

*L
A

P
S

E
 

L
M

O
S

T
 

A
F

L
 

a. /Ys-Y/ [(sY)s] 0 1 2 1 1 0 0 0 0 
b.  [s(sY)] 0 1 1 0 1 0 1 1 1 
c.  [(Y)ss] 0 1 1 2 2 1 1 0 0 
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Tableau (195) includes the W-L pairs added by error-driven learning after committing 

to [s(Ys)]. The commitment initially leads to adding W-L pairs 6 and 7 using r3s1. Next, 

the learner reviews the rest of the forms, which now all have committed structural 

interpretations, checking for errors on the new ranking. Detecting an error on r1s1, the 

learner adds W-L pair 8, then detects an error on r2s1. The resulting W-L pair 9 produces 

the final inconsistency. MAXSTRESS prefers only winners, leaving the remaining 

markedness constraints to be ranked. Of these, only RMOST, FT-BIN, and FNF prefer the 

winners of pairs 5-8, but they prefer the loser in pair 9. 

(195) A1B2C1 support; commitments to [s(sY)], [(Y)ss] and [s(Ys)] are 
inconsistent 

ERC# 
Morph.  
word Input Winner Loser M

A
X

S
T

R
 

L
M

O
S

T
 

R
M

O
S

T
 

A
F

L
 

P
A

R
S

E
-σ

  

F
T
-B

IN
 

F
N

F 

I A
M

B
 

*L
A

P
S

E
 

a. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)] W           L W L 

b. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)] W L W   L W W   L 

c. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s] W L W L         L 

d. 4P r2s1 /Ys-s/ [(Y)ss] [s(sY)] W W L W L L       

e. 5 r2s2 /Ys-Y/ [s(sY)] [(Y)ss]   L W L W W       

f. 6 r3s1 /sY-s/ [s(Ys)] [(sY)s]   L W L     W L   

g. 7 r3s1 /sY-s/ [s(Ys)] [(X)(Ys)]         L W W     

h. 8 r1s1 /ss-Y/ [s(sY)] [(Xs)(Y)]   W   W L W   W L 

i. 9 r2s1 /Ys-s/ [(Y)ss] [(Ys)s]     L   L L L W   

 

Whereas A1B2C1 is inconsistent due to the final combination of its structural 

commitments, A1B2C3 is doomed simply on the basis of its commitment to [s(Y)s]. The 

parsing of a degenerate foot may be optimal when right- or left-aligned, but not 

otherwise; thus, this interpretation is harmonically bounded, and the learner rejects 

A1B2C3. The pertinent W-L pair is the same as W-L pair 5P in (137) of section 3.1, 
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which shows that this interpretation is harmonically bounded. The learner rejects 

A1B2C3 after adding only five ERCs to its support. 

3.2.2.3 	A1B2C2	

Finally, A1B2C2 is the branch that commits to [(sY)s], making it the language 

hypothesis for target L6, repeated with a corresponding stratified hierarchy below. In 

contrast to L4 and L5, this target prefers iambs over rightmost main stress. It parses a 

degenerate foot at the left edge of r2s1, [(Y)ss], to satisfy this preference without 

violating MAXSTRESS. 

(196) L6 

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[s(sY)] [(Y)ss] [(sY)s] [(sY)s] s1 = /-s/ 
[s(sY)] [s(sY)] [s(sY)] [s(sY)] s2 = /-Y/ 

 

(197) IAMB >> FNF >> MAXSTRESS >> {FT-BIN, RMOST} >> {PARSE-σ, AFL, 
LMOST, FNF,  *LAPSE} 

 

During phonotactic learning in A1B1 and A1B2, there was no commitment made for 

sYs because the rankings always made at least one interpretation of the overt form 

optimal. Within language hypothesis A1B2, that optimal interpretation was [(sY)s]. This 

should be evident from reviewing the conclusions of the previous section. The degenerate 

interpretation [s(Y)s] is harmonically bounded, and (195) shows that the trochaic  

interpretation [s(Ys)] is inconsistent with commitments to [s(sY)] and [(Y)ss]. 

Consequently, when the learner commits to [(sY)s] now, the current ranking already 

makes the interpretation optimal. The support and lexicon for this branch are inherited 
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from A1B2 without any additions, and are included below along with the ranking derived 

by applying BCD to the support.    

(198) A1B2C2 support; committed to [s(sY)], [(Y)ss], and [(sY)s] 

ERC# 
Morph.  
word Input Winner Loser IA

M
B

 

F
N

F 

M
A

X
S

T
R

 

R
M

O
S

T
 

P
A

R
S

E
-σ

  

F
T
-B

IN
 

*L
A

P
S

E
 

L
M

O
S

T
 

A
F

L
 

a. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)] W L W       L     

b. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)]   W W W L W L L   

c. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s]     W W     L L L 

d. 4P r2s1 /Ys-s/ [(Y)ss] [s(sY)]     W L L L   W W 

e. 5 r2s2 /Ys-Y/ [s(sY)] [(Y)ss]       W W W   L L 

 

(199) A1B2C2 lexicon  

r1 r2 r3 r4 s1 s2 
/??/ /Ys/ /??/ /??/ /-?/ /-Y/

 

(200) IAMB >> FNF >> MAXSTRESS >> {RMOST, PARSE-σ, FT-BIN, *LAPSE} >> 

{LMOST, AFL} 
 

Because A1B2C2 remains consistent after branching from A1B2, the learner can 

begin the second pass through the learning data, starting again with r1s1. The first form 

to set a feature in the newly extended branch is r2s1, whose unset feature is in the suffix. 

The test candidate, /Ys- /[(Y)ss], is the loser of W-L pair 5, (198)e, and therefore 

inconsistent with the support. The lexicon is updated with s1 set to –stress. 

(201) A1B2C2  lexicon updated for s1 

r1 r2 r3 r4 s1 s2 
/??/ /Ys/ /??/ /??/ /-s/ /-Y/
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Recall that although s1 surfaces as +stress in r1s1 [s(sY)], this mapping does not 

count as unfaithful according to MAXSTRESS and the learner does not select it to learn 

non-phonotactic ranking information from the low-markedness ranking; however, the 

word does yield an error on the BCD ranking. The violation tableau in (202) includes the 

most harmonic candidates through the first two strata: the two iambic candidates that also 

best satisfy FNF by avoiding degenerate feet. The shaded cells reveal an unresolved 

conflict between RMOST and *LAPSE in the fourth stratum, with RMOST preferring the 

committed desired winner and *LAPSE its competitor. By the CTie criterion, these 

candidates tie, and the learner adopts (202)b as a loser, adding the new W-L pair 6 to the 

support for A1B2C2 in (203). In the updated ranking in (204), *LAPSE now occupies the 

bottom stratum.  

(202) Error in A1B2C2 for r1s1 /ss-s/[s(sY)] 

Input Output IA
M

B
 

F
N

F
 

M
A

X
S

T
R

 

R
M

O
S

T
 

P
A

R
S

E
-σ

 

F
T
-B

IN
 

*L
A

P
S

E
 

L
M

O
S

T
 

A
F

L
 

a. /ss-s/ [s(sY)] 0 1 0 0 1 0 1 1 1 
b.  [(sY)s] 0 1 0 1 1 0 0 0 0 
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(203) A1B2C2 support after error on r1s1 

ERC# 
Morph.  
word Input Winner Loser IA

M
B

 

F
N

F 

M
A

X
S

T
R

 

R
M

O
S

T
 

P
A

R
S

E
-σ

  

F
T
-B

IN
 

L
M

O
S

T
 

A
F

L
 

*L
A

P
S

E
 

a. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)] W L W           L 

b. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)]   W W W L W L   L 

c. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s]     W W     L L L 

d. 4P r2s1 /Ys-s/ [(Y)ss] [s(sY)]     W L L L W W   

e. 5 r2s2 /Ys-Y/ [s(sY)] [(Y)ss]       W W W L L   

f. 6 r1s1 /ss-s/ [s(sY)] [(sY)s]       W     L L L 

 
 

(204) IAMB >> FNF >> MAXSTRESS >> {RMOST, PARSE-σ, FT-BIN} >> {LMOST, 
AFL,  *LAPSE} 
 

Finally, the new ranking allows the learner to set features in the rest of the roots. 

First, continuing to process the data in order, the learner can set r3 and r4 using r3s1 and 

r4s1, which now have a committed interpretation. These roots have the same 

phonological behaviors, and the test candidates for r3 in (205) will suffice to demonstrate 

those for r4. The first test candidate is consistent with the support, an unsurprising 

conclusion as this is the canonical mapping of r4s1 in the target L6. The second test 

candidate is inconsistent with the support, as it is the loser of W-L pair 6. R3, and by the 

same reasoning r4, must have its second syllable set to +stress in the lexicon, (206). 

(205) Test candidates for r3s1  

a. / Y-s/  [(sY)s] 
b. /s -s/  [(sY)s] 
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(206) A1B2C2 – Lexicon updated for r3 and r4 

r1 r2 r3 r4 s1 s2 
/??/ /Ys/ /?Y/ /?Y/ /-s/ /-Y/

 

Before continuing, note here the importance of r3s1 and r4s1 for learning L6. The 

roots r3 and r4 behave alike, and differently from either r1 or r2. This difference must be 

reflected in the lexicon to explain the observed behaviors, but only a word containing the 

unstressed suffix s1 can be informative about the underlying form of the roots. In L6 the 

preference to right-align the head-foot means that the rightmost underlyingly stressed 

syllable will surface faithfully with primary stress. Therefore, all words containing s2 

surface as [s(sY)]. The test candidates for the roots in these words will themselves be 

mappings in L6 and are necessarily consistent with the support. Branching and 

committing to an interpretation of sYs for r3s1 and r4s1 is not simply a consequence of 

the learner encountering an uncommitted overt form during the non-phonotactic learning 

stage, it is a crucial part of the whole learning process. Without a committed 

interpretation, the learner cannot use these words to set features in r3 and r4 by 

inconsistency detection, and without distinguishing r3 and r4 from the other roots in the 

lexicon, the learner cannot successfully learn the target. 

After setting these features, only features in r1 remain to be set. The learner returns to 

the beginning of the data set, again observing r1s1, which has two unset features, both in 

the root. The test candidate with the disparity in the first syllable, / s-s/[s(sY)], is 

inconsistent because it is the loser in W-L pair 4P. This inconsistency allows the learner 

to set the first syllable of r1 now to –stress. The second test candidate has its disparity in 

the second syllable of r1: /s -s/[s(sY)]. The following comparative tableau shows that 
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this candidate, in (207)g, is inconsistent with the support because it has contradictory 

ranking requirements with W-L pair 4P, in (207)d. Together, these two inconsistencies 

enable the learner to update the lexicon in (208) by setting r1 to /ss/.  

(207) A1B2C2 is inconsistent for r1s1 /s -s/[s(sY)] 

ERC# 
Morph.  
word Input Winner Loser IA

M
B

 

F
N

F 

M
A

X
S

T
R

 

R
M

O
S

T
 

P
A

R
S

E
-σ

  

F
T
-B

IN
 

L
M

O
S

T
 

A
F

L
 

*L
A

P
S

E
 

a. 1P r1s1 /ss-Y/ [s(sY)] [s(Ys)] W L W           L 

b. 2P r1s1 /ss-Y/ [s(sY)] [(Y)(sX)]   W W W L W L   L 

c. 3P r1s1 /ss-Y/ [s(sY)] [(sY)s]     W W     L L L 

d. 4P r2s1 /Ys-s/ [(Y)ss] [s(sY)]     W L L L W W   

e. 5 r2s2 /Ys-Y/ [s(sY)] [(Y)ss]       W W W L L   

f. 6 r1s1 /ss-s/ [s(sY)] [(sY)s]       W     L L L 

g. test r1s1 /sY-s/ [s(sY)] [(sY)s]     L  W L L L 

 

(208) A1B2C2 lexicon updated for r1 

r1 r2 r3 r4 s1 s2 
/ss/ /Ys/ /?Y/ /?Y/ /-s/ /-Y/

 

To be sure that the language hypothesis is complete, the learner evaluates the error 

detection candidates for the words containing unset features: r3s1, r3s2, r4s1, and r4s2. 

These candidates, shown below, correspond to canonical mappings for r4s1 and r4s2 in 

the target language and are therefore consistent; again, the stress in the first syllable of a 

root is not contrastive if the second syllable is stressed underlyingly. These features can 

remain unset in the lexicon. 
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particular structural interpretations. In that learning stage, committing to an interpretation 

in effect means committing to an identity mapping containing that interpretation, which 

in turn means committing to the ranking conditions entailed by that mapping. The 

interpretation commitment has significant and lasting consequences. For example, the 

ranking information provided by structural commitments can affect when and how 

features get set. A1B1C2 and A1B2C2 make the same commitments for ssY and sYs (the 

A1 and C2 commitments), but their different commitments for Yss means that only the 

latter, which commits to [(Y)ss], can set all features by single forms. Because A1B1C2 

lacks the ranking conditions entailed by that committed interpretation, the learner first 

must use a contrast pair to draw out a lexically informative inconsistency. 

Making structural commitments continues to be important in the non-phonotactic 

learning stage. In order to set features of a morpheme in a given word using inconsistency 

detection, that word must have a committed interpretation. A1B2 illustrates this point. 

The lexicon must sufficiently distinguish the three root behaviors observed in the target 

language, but only words containing the underlyingly unstressed suffix s1 will enable the 

learner to set features in roots. Additionally, using inconsistency detection to set features 

requires a full structural description: an input and a specific output, not just an overt 

form. Therefore, all words containing s1 must have committed structural interpretations 

in order for the learner to set the necessary root features and, ultimately, to successfully 

learn the language. For A1B2, this requirement forces sYs to finally receive a committed 

interpretation during the non-phonotactic learning stage. 
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The Stress system generates a typology of 97 languages represented by 61 sets of 

learning data, including set 15, and the learner’s progress through this data set is typical 

of the progress through the majority of the others. This simulation has demonstrated the 

CBL’s successful use of committed information to exploit the mutual dependency 

between structural interpretations and underlying forms. Moreover, the CBL has 

succeeded at learning having processed and stored a reasonably small amount of 

information. For the seven language hypotheses created, RCD applies only 44 times 

(once for each ERC stored), and only 26 times within the three consistent language 

hypotheses.  
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4 PARADIGMATIC	RELATIONSHIPS	AND	GLOBAL	AMBIGUITIES	

Languages can relate to one another in ways which may make it difficult for a learner 

to distinguish between them. Identifying and understanding the relationships between 

languages is crucial for ensuring that the learner has the means to successfully learn every 

language in the typology. For example, a language that contains a subset of the forms of 

another language gives rise to the “subset problem” mentioned in 1.2.1.3: positive 

evidence cannot distinguish between the two such languages. Biased Constraint 

Demotion (BCD) (Prince and Tesar 2004) or Low-Faithfulness Constraint Demotion 

(LFCD) (Hayes 2004) ranking biases arise as a response to this problem. By applying a 

low-faithfulness ranking bias, the learner enforces a more restrictive ranking until 

positive evidence supports a less restrictive one and derives different rankings for the 

subset language and its superset.  

This chapter focuses on three other relationships between languages, including global 

ambiguities and the heretofore unrecognized relationship of paradigmatic equality. The 

chapter examines both how the CBL handles these relationships and what consequences 

follow from the learner’s methods.  

Sections 4.1 and 4.2 examine how paradigmatic relationships can interfere with the 

Commitment-Based Learner’s standard learning procedures described in chapter 3. 

Section 4.1 introduces paradigmatic equality, in which two languages share all of the 

same morpheme behaviors. Paradigmatic equals are problematic because the learner 

cannot derive the ranking information required to distinguish one language from another 

using error-driven learning. In turn, inconsistency detection fails because of the missing 
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ranking information. Once again, it is the interactions between hidden structures that pose 

trouble for the learner, but paradigmatic equality presents a new twist: the learning data 

alone cannot decide between competing language hypotheses. This section proposes a 

procedure called ERC by Consistent Mismatch (ECM), which uses consistent surface-

mismatched candidates to extract additional ranking information, allowing the learner to 

untangle the paradigmatic equals that both explain the data. 

Section 4.2 discusses learning paradigmatic subsets, which contain a proper subset of 

the morpheme behaviors of another language in the typology (Tesar, to appear). 

Paradigmatic subsets likewise pose a problem for setting features by inconsistency 

detection, because although the learner derives a restrictive ranking by applying BCD, the 

support is nonetheless consistent with the less-restrictive superset language. Section 4.2 

further shows that even if the learner acquires the ERCs to support the restrictive ranking, 

inconsistency detection may still fail to set features in some paradigmatic subsets. For 

these cases, the CBL learns the lexicon using the Fewest Set Features procedure (Tesar, 

to appear).  

With section 4.3, the focus turns to the learner’s response to languages that relate in 

multiple ways to other languages in the typology. Section 4.3 presents a language that is 

both a paradigmatic subset and a paradigmatic equal. This section demonstrates that the 

separate learning complications of each relationship need and can be overcome using the 

procedures described in 4.1 and 4.2. Section 4.4 is concerned with global ambiguities, in 

particular with the interactions of global lexical ambiguity, evinced by paradigmatic 

equals, and global surface ambiguity, in which two languages share the overt forms of all 
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words. Section 4.4 shows that the Commitment-Based Learner will learn all globally 

ambiguous languages from a data set, so that learning data for a language with a 

paradigmatic equal will also yield language hypotheses corresponding to all globally 

surface ambiguous counterparts of that paradigmatic equal.  

Finally, section 4.5 considers some reasons and criteria for selecting a single language 

hypothesis out of all the consistent branches when learning ends.  

4.1 PARADIGMATIC	EQUALS	AND	GLOBAL	LEXICAL	AMBIGUITY	

Paradigmatic relationships are defined by the morpheme behaviors evinced between 

two languages. This section will begin by first examining the maps and morpheme 

behaviors of two languages that are paradigmatic equals, before launching into more 

specific definitions of this relationship and global lexical ambiguity. 

The central languages for this section are L75 and L76, which appear in (211) and 

(213), each followed by a ranking that will generate it. Both languages require exhaustive 

parsing, and their preference for left-alignment leaves the degenerate foot always at the 

left edge. Suffixes are contrastive in these languages. Observe that one language is no 

more restrictive than the other, as each has a phonotactic inventory of three forms: 

[(X)(sY)], [(Y)(sX)], and [(X)(Ys)]. 

(211) L75  

r1 =/ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[(X)(sY)] [(Y)(sX)] [(X)(Ys)] [(Y)(sX)] s1 = /-s/ 
[(X)(sY)] [(X)(sY)] [(X)(sY)] [(X)(sY)] s2 = /-Y/ 
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(212) {PARSE-σ, *LAPSE} >> {AFL, FT-BIN} >> MAXSTRESS >>  IAMB  >> 

{RMOST, FNF} >> LMOST 

 

(213) L76  

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[(X)(sY)] [(Y)(sX)] [(X)(Ys)] [(X)(Ys)] s1 = /-s/ 
[(X)(sY)] [(X)(sY)] [(X)(sY)] [(X)(sY)] s2 = /-Y/ 

 

(214) { PARSE-σ, *LAPSE} >> {AFL, FT-BIN} >> MAXSTRESS   >> RMOST >> 
{IAMB, LMOST} >> FNF 

 

R4s1 manifests the only overt difference between the two languages.  Its input, /YY-

s/, entails a violation of MAXSTRESS, and the languages crucially differ on which syllable 

of the root r4 is realized faithfully. For L75, the ranking IAMB  >> {RMOST, FNF} causes 

the first syllable to surface faithfully in a unary head-foot at the left edge, and the 

requirement for exhaustive parsing forces an iambic secondary foot to the right, yielding 

[(Y)(sX)]. In this language, stress in the second syllable of the root is neutralized if the 

first syllable is underlyingly +stress. 

Morphemes that behave alike in L75 are grouped together in the chart below. L75 

evinces two suffix behaviors and three root behaviors. Roots with an unstressed initial 

syllable contrast for the values of the second syllable, yielding two of the three behaviors. 

The third behavior is evinced by roots with a stressed initial syllable. Thus, r2 /Ys/ and r4 

/YY/ behave alike, differently from both r1 /ss/ and r3 /sY/.  
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(215) L75 – like morpheme grouped together 

r1 =/ss/ 
r2 = /Ys/ 
r4 = /YY/

r3 = /sY/  

[(X)(sY)] [(Y)(sX)] [(X)(Ys)] s1 = /-s/ 
[(X)(sY)] [(X)(sY)] [(X)(sY)] s2 = /-Y/ 

 

By contrast, in L76 the ranking RMOST >> IAMB allows the output of /YY-s/ to 

preserve stress on the second root syllable by parsing the head-foot as a trochee at the 

right edge, with a secondary degenerate foot aligned to the left: [(X)(Ys)]. Like L75, L76 

distinguishes two suffix behaviors and three root behaviors, shown in (216). The key 

difference is that in L76 stress in the first syllable of the root is neutralized if the second 

syllable is +stress underlyingly; thus, roots r3 /sY/ and r4 /YY/ behave alike, and 

differently from both r1 /ss/ and r2 /Ys/. 

(216) L76 – like morpheme behaviors grouped together 

r1 = /ss/ r2 = /Ys/ 
r3 = /sY/ 
r4 = /YY/

 

[(X)(sY)] [(Y)(sX)] [(X)(Ys)] s1 = /-s/ 
[(X)(sY)] [(X)(sY)] [(X)(sY)] s2 = /-Y/ 

 

A comparison of (215) and (216) reveals that the languages exhibit all the same 

morpheme behaviors. In fact, if (215) were laid over (216), the languages would look 

identical, as shown in (217).  

(217) L75 and L76 overlaid 

/ss/ 
/Ys/ 

(/YY/ L75)
/sY/ 

(/YY/ L76)
 

[(X)(sY)] [(Y)(sX)] [(X)(Ys)] /-s/ 
[(X)(sY)] [(X)(sY)] [(X)(sY)] /-Y/
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There is one final, and crucial, observation to be made about the morpheme behaviors 

in these languages: they are identical in structural interpretations as well as overt 

realizations. For this reason, L75 and L76 are paradigmatic equals. 

(218) Paradigmatic equal 

Languages LA and LB are paradigmatic equals if the set of morpheme behaviors, 
including structural interpretations, in LA is identical to the set of morpheme 
behaviors in LB. 

 

What is remarkable about paradigmatic equals, and problematic for using 

inconsistency detection to set features, is that from the learner’s perspective the data for 

these different languages appear to be the same. This similarity is deeper than the 

similarity evinced in chapter 3 by the globally surface ambiguous languages L4, L5, and 

L6. Those languages have the same overt form for each morphological word, but the 

overall morpheme behaviors differ when structural interpretations are included. For 

paradigmatic equals, what differs are the specific input-output mappings associated with 

each behavior.  The problem for the learner using inconsistency detection now becomes 

clearer: when different input-output mappings can produce the same behavior, there will 

be no inconsistency. In short, paradigmatic equals are problematic because they exhibit 

global lexical ambiguity, defined as in (219). 

(219) Global lexical ambiguity 

Languages LA and LB are globally lexically-ambiguous if they have the same 
morpheme behaviors, including structural interpretations, but differ only by which 
underlying forms of the rich base produce which behaviors. 
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Thus, L75 and L76 are globally lexically ambiguous because, while particular inputs 

behave differently in the languages due to the differing rankings, the set of behaviors 

themselves remains the same. This characteristic distinguishes global lexical ambiguity 

as the term is applied here from other conceivable uses of the term. For comparison, 

consider a language with fully predictable stress, like L7823, which maps all inputs of the 

rich base to [(X)(sY)]. There is a sense in which the local lexical ambiguity of each word 

– the uncertainty of the word’s underlying form – is a global ambiguity, because the 

ranking permits each word to have any underlying form. L78 therefore could have a 

lexicon that reflects the rich base or a lexicon in which every input simply matches the 

surface form, or any lexicon between these extremes.  However, L78 is not globally 

lexically-ambiguous. It is the only language in which all outputs are [(X)(sY)]; there is no 

way to achieve the same neutralization behavior with the ranking from a different skeletal 

basis, regardless of the underlying forms assigned in the lexicon. The opposite is true for 

L75 and L76: the ranking of one language will produce exactly the same behaviors as the 

other language, as long as the lexicon changes also. It is this characteristic that so 

complicates learning a paradigmatic equal.  

As paradigmatic equals, L75 and L76 have a very special relationship to one another. 

To review, they are not distinguished by restrictiveness, as they have the same 

phonotactic inventory. For the same reason, they are not globally surface ambiguous: L75 

and L76 do not include different interpretations of the same overt forms, they have the 

same interpretations of the same overt forms. Yet, the simple identity of the phonotactic 

inventories does not sufficiently characterize the paradigmatic equality relationship. 

																																																													
23 L78 is discussed further in section 4.5. 
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Consider language L65 below, which like L75 and L76 has an inventory consisting of 

[(X)(sY)], [(Y)(sX)], and [(X)(Ys)]. 

(220) L65 

r1 =/ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[(Y)(sX)] [(Y)(sX)] [(X)(Ys)] [(Y)(sX)] s1 = /-s/ 
[(X)(sY)] [(Y)(sX)] [(X)(sY)] [(Y)(sX)] s2 = /-Y/ 

 

L65 has contrastive stress and distinguishes three root behaviors, illustrated in (221). 

Stress is contrastive for the initial root syllables, and contrastive for the second root 

syllable only if the first is stressed. Thus, /Ys/ and /YY/ behave alike, differently from 

both /ss/ and /sY/.  

(221) L65 – like morpheme grouped together 

r1 =/ss/ 
r2 = /Ys/ 
r4 = /YY/

r3 = /sY/  

[(Y)(sX)] [(Y)(sX)] [(X)(Ys)] s1 = /-s/ 
[(X)(sY)] [(Y)(sX)] [(X)(sY)] s2 = /-Y/ 

 

L65 therefore resembles L75 and L76 superficially, with its two suffix behaviors and 

three root behaviors, and the same phonotactic inventory. Moreover, its morphemes 

group together in just the same way as those in L75, with r2 and r4 behaving alike and r1 

and r3 each evincing a different behavior. However, L65 is not the paradigmatic equal of 

L75 or L76. Contrast the compressed morpheme behaviors of L75 and L76 repeated 

below in (222), with those of L65 in (223). Differences in the surface alternation 

behaviors, indicated by the shaded cells, clearly reveal that these languages are not 

paradigmatic equals. 
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(222) L75 and L76 compressed for r4 

/ss/ /Ys/ /sY/  
[(X)(sY)] [(Y)(sX)] [(X)(Ys)] /-s/ 
[(X)(sY)] [(X)(sY)] [(X)(sY)] /-Y/

 

(223) L65 compressed for r4 

/ss/ /Ys/ /sY/  
[(Y)(sX)] [(Y)(sX)] [(X)(Ys)] /-s/ 
[(X)(sY)] [(Y)(sX)] [(X)(sY)] /-Y/

 

In order to successfully learn either L75 or L76, the learner must set the values of all 

contrastive features in addition to deriving an appropriate ranking. The features that must 

be set for both targets include all the stress features in the suffixes and in r1. Additionally, 

learning L75 further requires distinguishing r3 from r2 and r4, such as by setting both 

features in r3 and the first syllable’s stress feature in r2 and r4 to produce the lexicon in 

(224). Similarly, learning L76 requires distinguishing r2 from r3 and r4, which can be 

accomplished by setting both features in r2 and the second syllable’s stress feature in r3 

and r4, as in (225). 

(224) Idealized lexicon for L75 

r1 r2 r3 r4 s1 s2 
/ss/ /Y?/ /sY/ /Y?/ /-s/ /-Y/

 

(225) Idealized lexicon for L76 

r1 r2 r3 r4 s1 s2 
/ss/ /Ys/ /?Y/ /?Y/ /-s/ /-Y/
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To derive rankings that will generate each target, the learner needs to determine the 

relative rankings of RMOST and IAMB, the conflict which distinguishes L75 from L76. 

The only mappings that are informative about this conflict include the input /YY-s/.  

Therefore, in order to learn the ranking, the learner must detect an error for a candidate 

with the input /YY-s/.  

This mandate seems simple enough, but for paradigmatic equals, uncertainty about 

the ranking and lexicon may not be so easily unraveled. Here the problem of global 

lexical ambiguity emerges in full force. In this example, learning that /YY-s/ is the input 

for one of the observed outputs would lead to an informative error resolving the conflict 

between RMOST and IAMB; however, the inconsistency-detection strategies for setting 

features cannot ever learn this input. Because the test candidates evaluated to set the 

remaining unset features all include the input /YY-s/, the learner needs to know the 

relative ranking of RMOST and IAMB to detect the lexically-informative inconsistency. 

Thus, the learner of this paradigmatic equal is trapped in a cycle of persistent uncertainty: 

the correct underlying form is needed in order to detect the error that will illuminate the 

missing ranking information, but that same ranking information is needed to detect the 

inconsistency that will reveal the correct underlying form.  

This cycle is a consequence of global lexical ambiguity: the data will support either 

paradigmatic equal as an explanation and therefore cannot single out just one language as 

correct. Completing learning requires that the learner commit to information that supports 

one language hypothesis over another, but what kind of commitment, and on what 

grounds? The remainder of this section works through the details of learning L75 to 
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expose where global lexical ambiguity impedes further progress by inconsistency 

detection. This section also proposes handling persistent uncertainty by using the 

procedure ERC by Consistent Mismatch (ECM) to derive ranking information that will 

make inconsistency detection again viable for learning. 

4.1.1 LEARNING	L75	

The learning data for L75 are shown below in the order the learner observes them in 

this simulation. LgHyp75 is the corresponding language hypothesis for this target. The 

support produced for LgHyp75 from the phonotactic data only is shown in (227), with the 

ranking derived by BCD given in (228). 

(226) L75 learning data 

XsY r1s1 XsY r1s2 YsX r2s1 XsY r2s2 XYs r3s1 XsY r3s2 YsX r4s1 XsY r4s2
 

(227) LgHyp75 support from phonotactics 

ERC# 
Morph. 
word Input Winner Loser P

A
R

S
Y

L
 

*L
A

P
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A
F

L
 

F
T
B
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A

X
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L
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S

T
 

R
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O
S

T
 

I A
M

B
 

F
N

F 
a. 1P r1s1 /ss-Y/ [(X)(sY)] [s(Ys)] W     L W     W L 

b. 3P r1s1 /ss-Y/ [(X)(sY)] [(sY)s] W   L L W L W   L 

c. 2P r1s1 /ss-Y/ [(X)(sY)] [(Y)(sX)]         W L W     

d. 4P r2s1 /Ys-s/ [(Y)(sX)] [(X)(sY)]         W W L     

e. 5P r3s1 /sY-s/ [(X)(Ys)] [(Y)(sX)]         W L W L W 

f. 6P r1s1 /ss-Y/ [(X)(sY)] [(Y)(Xs)]         W L W W L 

g. 7P r2s1 /Ys-s/ [(Y)(sX)] [(Y)(Xs)]               W L 

 

(228) {PARSE-σ, *LAPSE} >> {AFL, FT-BIN} >> MAXSTRESS >>  {LMOST, 
RMOST, IAMB}  >> FNF 
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With seven W-L pairs added from phonotactic information, the learner has derived 

many of the crucial ranking conditions of the target. In fact, this support enables the 

learner to set the values of seven features in LgHyp75 from single forms once the 

phonotactic learning stage ends. The resulting lexicon appears in (229). 

(229) LgHyp75 lexicon 

r1 r2 r3 r4 s1 s2 
/ss/ /Y?/ /?Y/ /Y?/ /-s/ /-Y/

 

During the process of setting features by single forms, the learner adds two new W-L 

pairs to the support, in (230). W-L pair 8 in (230)h is added after the learner sets s1 to /-s/ 

and detects an error on r1s1 /ss-s/[(X)(sY)] using the BCD ranking from (228). This W-L 

pair contributes the ranking condition RMOST >> LMOST. Then, after setting the first 

syllable of r2 to +stress, the learner detects an error on r2s2 /Ys-Y/[(X)(sY)]. This error is 

detected under the ranking derived by applying the low-markedness bias to the first eight 

W-L pairs. That low-markedness ranking appears in (231), and the resulting W-L pair 9 

is shown in (230)c. Applying BCD to the support after adding these new W-L pairs 

produces the ranking in (232). 
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(230) LgHyp75 support updated during single form learning 

ERC# 
Morph. 
word Input Winner Loser P

A
R

S
E
-σ
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a. 1P r1s1 /ss-Y/ [(X)(sY)] [s(Ys)] W     L W   W   L 

b. 3P r1s1 /ss-Y/ [(X)(sY)] [(sY)s] W   L L W W   L L 

c. 9 r2s2 /Ys-Y/ [(X)(sY)] [s(sY)] W W   L         L 

d. 2P r1s1 /ss-Y/ [(X)(sY)] [(Y)(sX)]         W W   L   

e. 4P r2s1 /Ys-s/ [(Y)(sX)] [(X)(sY)]         W L   W   

f. 5P r3s1 /sY-s/ [(X)(Ys)] [(Y)(sX)]         W W L L W 

g. 6P r1s1 /ss-Y/ [(X)(sY)] [(Y)(Xs)]         W W W L L 

h. 8 r1s1 /ss-s/ [(X)(sY)] [(Y)(sX)]           W   L   

i. 7P r2s1 /Ys-s/ [(Y)(sX)] [(Y)(Xs)]             W   L 

 

(231) Low-markedness ranking detects error on r2s2 /Ys-Y/[(X)(sY)] 

MAXSTRESS >> {PARSE-σ, *LAPSE, AFL, FT-BIN, RMOST, IAMB} >> {LMOST, 
FNF} 

 

(232) LgHyp75 updated ranking 

{PARSE-σ, *LAPSE} >> {AFL, FT-BIN} >> MAXSTRESS >> {RMOST, IAMB} >> 

{LMOST, FNF} 

 

W-L pair 9 arises from a conflict among the markedness constraints grouped together 

in the second stratum of the ranking in (231).  The mapping tested, r2s2 /Ys-Y/[(X)(sY)], 

incurs one violation of MAXSTRESS, but no other candidate incurs fewer; thus, any error 

for this candidate must be due to conflict between markedness constraints. W-L pair 9 

contributes a new disjunction – at least one of PARSE-σ and *LAPSE must dominate both 

FT-BIN and FNF – but this information does not alter the stratified hierarchy by BCD nor 

indicate a conflict involving MAXSTRESS. At the end of single-form learning, the learner 
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has acquired evidence from W-L pair 8 that RMOST must dominate LMOST, but, as 

expected, has not determined the relative ranking of RMOST and IAMB. 

The learner must still distinguish r2 and r4, which behave alike, from r3 in the 

lexicon. Only words containing s1 can be informative about alternations in these roots, as 

root stress in the target L75 is neutralized when the suffix is underlyingly stressed. The 

pertinent test candidates for r2 and r3 are shown in (233), with the syllable containing the 

unset test feature outlined.  

(233) Test candidates for unset features in r2 and r3 

a. r2s1 /Y -s/  [(Y)(sX)] 
b. r3s1 / Y-s/  [(X)(Ys)] 

 

Unfortunately, these candidates are testing which syllable of the root gets neutralized 

for the input /YY-s/, and this is the very question whose answer distinguishes L75 from 

its paradigmatic equal, L76. Neither candidate is informative. Candidate (233)a is 

consistent with L75. Given the correct ranking, the stress feature of the second syllable of 

r2 could remain unset in the lexicon of LgHyp75, as stress in the second syllable of the 

root is contrastive in the target only if the first syllable is unstressed.  

By the same reasoning, both stress features of r3 should be set in the lexicon to 

distinguish it from r1 on the one hand and r2 and r4 on the other, yet candidate (233)b is 

uninformative about r3’s remaining unset feature. Despite being inconsistent with the 

target, this candidate is consistent with the support in (230) because the ranking of 

RMOST and IAMB remains at issue. In other words, there is a language in the space of 
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possible languages that meets the ranking conditions imposed by the support and by test 

candidate (233)b; that language is L76.  It is the existence of this paradigmatic equal that 

prevents the learner from setting any of these unset features. 

Leaving the features unset in the lexicon is not an option. R2s1 and r3s1 differ in their 

surface forms, and their underlying forms must reflect that difference.  The learner 

determines that something more must be learned in this language hypothesis by 

performing error detection tests on r2s1, r3s1, and r4s1. The violation tableau below 

shows the result of error detection. While these words are different, the input that 

maximally differs from the surface form is the same for each word, /YY-s/, and each 

candidate with this input fails error detection. As shown in (234), RMOST and IAMB 

conflict in the fourth stratum, with each preferring a different structural interpretation, as 

expected.  

(234)  R2s1, r3s1, and r4s1 all fail error detection 

Input Output P
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a. /YY-s/ [(Y)(sX)] 0 0 1 1 1 2 0 0 2 
b.  [(X)(Ys)] 0 0 1 1 1 0 1 1 1 

 

The error detection test exposes the primary problem with leaving these features 

unset: what happens if the learner attempts to use the underlying form /YY-s/? The 

current ranking will yield an error if given this input. In order to distinguish these words, 

either r3 must be set to /sY/, allowing r2 and r4 to each leave one feature unset, or else 

both r2 and r4 must be fully set in the lexicon, allowing r3 to leave one feature unset. 
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The learner is at an impasse. Single-form learning cannot set a feature because the 

test candidates are either consistent with the target language or its paradigmatic equal. 

R2s1 and r3s1 form a contrast pair, but it is not informative either. Regardless of where 

the disparity is, the test candidate and its unchanged counterpart will be consistent with 

one of the targets. For example, in (235)a, r2 contains the disparity, and the resulting two 

candidates are consistent with L75. In (235)b, r3 contains the disparity, and the resulting 

candidates are consistent with L76. 

(235) Test candidates for contrast pair r2s1, r3s1 

a. r2s1 /Y -s/  [(Y)(sX)] 
r3s1 /sY-s/  [(X)(Ys)] 
 

b. r2s1 /Ys-s/  [(Y)(sX)]   
r3s1 / Y-s/   [(X)(Ys)] 
 

 It is clear that inconsistency detection can do no more to set features until the 

language hypothesis receives new information. 

4.1.2 ERC	BY	CONSISTENT	MISMATCH	

The learner has already extracted all of the ranking information available from error-

driven learning and all of the lexical information available from inconsistency detection. 

The data cannot provide any other information by these methods. This section offers 

another source of ranking information, a consistent mismatch candidate, such as those in	

(233), and introduces ERC by Consistent Mismatch (ECM) as the procedure for 

procuring this information. 
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Using the test illustrated in (234), the learner has detected errors on the mismatch 

candidates of r2s1, r3s1, and r4s1, in which the sole unset feature of each word is set to 

mismatch its surface form. These are minimal mismatch candidates, as defined below. 

(236) Minimal mismatch candidate 

A minimal mismatch candidate includes exactly one unset feature whose 
underlying value mismatches its surface value; all other unset features in the candidate 
match their underlying values to their surface values. 

 

Failing error detection indicates that the ranking must be refined, remaining unset 

features must be set in the lexicon, or both. Additionally, the learner has determined that 

these same mismatch candidates are consistent, as the candidates in (233) have failed to 

yield any inconsistency to support setting the remaining unset feature in either form. 

These facts offer a solution to the problem of persistent uncertainty. By adopting one of 

these mismatch candidates as a winner, the learner can be certain to identify new ranking 

information consistent with the current support. This information will allow the leaner to 

disambiguate the data of the paradigmatic equals enough to continue learning using the 

routine error- and inconsistency-detection procedures described in chapters 2 and 3. 

Pseudocode for the ECM procedure is given below. 
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(237) ERC by Consistent Mismatch (ECM) procedure24 

DEF ECM(lang_hyp) 
FOR each word in lang_hyp that fails error detection 

Create the minimal mismatch candidates for the word25 
FOR each minimal mismatch candidate 

       IF the minimal mismatch candidate is consistent THEN 
  IF the minimal mismatch candidate adds a new ERC THEN 
   Commit to this mapping 
   Update lang_hyp 
   BREAK 
  ENDIF 
      ENDIF 

ENDFOR 
         ENDFOR 
END 
 

In LgHyp75, the words r2s1, r3s1, and r4s1 all fail error detection. Following the 

procedure in (237), the learner determines that the mismatch candidate /YY-s/[(Y)(sX)] 

derived from r2s1 (or r4s1) is consistent. The error anticipated by the CTie in (234) now 

contributes W-L pair 10 in (238)i, which resolves the ranking of RMOST and IAMB. The 

new stratified hierarchy, (239), matches the stratified hierarchy of L75, repeated in (240). 

  

																																																													
24 This procedure is a simplification of several different methods included in the actual Ruby code given in 

Appendix B. 
25 See 4.1.3and 4.3.3 for discussion of using maximal versus minimal mismatch candidates. 
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(238) LgHyp75 support updated by consistent mismatch candidate               
/YY-s/[(Y)(sX)] 

ERC# 
Morph. 
word Input Winner Loser P
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a. 1P r1s1 /ss-Y/ [(X)(sY)] [s(Ys)] W     L W W   L   

b. 3P r1s1 /ss-Y/ [(X)(sY)] [(sY)s] W   L L W   W L L 

c. 9 r2s2 /Ys-Y/ [(X)(sY)] [s(sY)] W W   L       L   

d. 2P r1s1 /ss-Y/ [(X)(sY)] [(Y)(sX)]         W   W   L 

e. 4P r2s1 /Ys-s/ [(Y)(sX)] [(X)(sY)]         W   L   W 

f. 5P r3s1 /sY-s/ [(X)(Ys)] [(Y)(sX)]         W L W W L 

g. 6P r1s1 /ss-Y/ [(X)(sY)] [(Y)(Xs)]         W W W L L 

h. 7P r2s1 /Ys-s/ [(Y)(sX)] [(Y)(Xs)]           W   L   

i. 10 r2s1 /YY-s/ [(Y)(sX)] [(X)(Ys)]           W L L W 

j. 8 r1s1 /ss-s/ [(X)(sY)] [(Y)(sX)]             W   L 

 

 
(239) LgHyp75 

{PARSE-σ, *LAPSE} >> {AFL, FT-BIN} >> MAXSTRESS >>  IAMB  >> {RMOST, 
FNF} >> LMOST 

 

(240) L75 

{PARSE-σ, *LAPSE} >> {AFL, FT-BIN} >> MAXSTRESS >>  IAMB  >> {RMOST, 
FNF} >> LMOST 

 

This ranking allows the learner to complete the language hypothesis. The test 

candidate for r3s1, / Y-s/[(X)(Ys)], is inconsistent with the new support – in fact, it is 

the loser of W-L pair 10. The test candidates for r2s1 and r4s1 are consistent, as their 

mappings are identical to the winner of W-L pair 10. The updated lexicon, (241), now 

matches the idealized lexicon for L75 from (224), repeated below. 
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(241) LgHyp75 lexicon 

r1 r2 r3 r4 s1 s2 
/ss/ /Y?/ /sY/ /Y?/ /-s/ /-Y/

 

(242) Idealized L75 lexicon 

r1 r2 r3 r4 s1 s2 
/ss/ /Y?/ /sY/ /Y?/ /-s/ /-Y/

 

By adopting /YY-s/[(Y)(sX)] as a winner, the learner in effect resolves that the 

learning data are from target L75; however, the learner has no reason a priori to adopt 

one consistent mismatch candidate over another. These learning data are globally 

lexically-ambiguous between a solution corresponding to L75 and one corresponding to 

L76. Therefore, the learner could just as well have selected the other consistent mismatch 

candidate from (233), /YY-s/[(X)(Ys)], corresponding to r3s1. In that case, the final 

language hypothesis would correspond to L76.  

The support in (243) derives from this alternative solution. The new W-L pair in this 

support, (243)h, commits to /YY-s/[(X)(Ys)] as a winner, and from the CTie error 

illustrated in (234) adopts /YY-s/[(Y)(sX)] as its loser. This alternative W-L pair 10 

entails that RMOST must dominate IAMB. Applying BCD to the support produces a same 

stratified hierarchy, (244), for this alternative language hypothesis that matches the 

ranking of L76 given in (214). 
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(243) Alternative LgHyp75 support 

ERC# 
Morph. 
word Input Winner Loser P
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a. 1P r1s1 /ss-Y/ [(X)(sY)] [s(Ys)] W     L W   W   L 

b. 3P r1s1 /ss-Y/ [(X)(sY)] [(sY)s] W   L L W W   L L 

c. 9 r2s2 /Ys-Y/ [(X)(sY)] [s(sY)] W W   L         L 

d. 4P r2s1 /Ys-s/ [(Y)(sX)] [(X)(sY)]         W L   W   

e. 2P r1s1 /ss-Y/ [(X)(sY)] [(Y)(sX)]         W W   L   

f. 5P r3s1 /sY-s/ [(X)(Ys)] [(Y)(sX)]         W W L L W 

g. 6P r1s1 /ss-Y/ [(X)(sY)] [(Y)(Xs)]         W W W L L 

h. 10 r3s1 /YY-s/ [(X)(Ys)] [(Y)(sX)]           W L L W 

i. 8 r1s1 /ss-s/ [(X)(sY)] [(Y)(sX)]           W   L   

j. 7P r2s1 /Ys-s/ [(Y)(sX)] [(Y)(Xs)]             W   L 

 

(244) { PARSE-σ, *LAPSE} >> {FT-BIN, AFL} >> MAXSTRESS >> RMOST >> 
{IAMB, LMOST} >> FNF 
 

This alternative support leads to alternative lexical information. This time, the test 

candidates for r2s1 and r4s1, /Y -s/[(Y)(sX)], are inconsistent, enabling the learner to set 

both roots to /Ys/ in the lexicon. Now the unset feature in r3 can remain unset. The final 

lexicon appears in (245). 

(245) Alternative LgHyp75 lexicon, corresponding to L76 

r1 r2 r3 r4 s1 s2 
/ss/ /Ys/ /?Y/ /Ys/ /-s/ /-Y/

 

4.1.3 ASSESSING	ECM	

To review, the learner is unable to set all necessary features by inconsistency 

detection because the crucial ranking and lexical information each depends on knowing 

which output the input /YY-s/ maps to in the target language. By committing to either 
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consistent minimal mismatch candidate as a winner, the learner takes an uninformed 

stand on the output and forces the acquisition of new ranking information that resolves 

the conflict between RMOST and IAMB. The final lexical information follows as a result, 

regardless of which way the conflict is decided. 

ECM is successful here, but it makes a strong and potentially dangerous departure 

from other methods incorporated in the CBL by requiring that the learner commit to 

uncertain information. Consider how the CBL handles uncertainty otherwise. To resolve 

structural uncertainty, the CBL applies the Inconsistency Detection Learner, or IDL, and 

creates language hypothesis branches. Although the learner cannot be certain that a 

particular branch is correct for the target, as long as every possible interpretation is 

included among the branches the learner can be certain that some branch is correct for the 

target. To resolve lexical uncertainty, the CBL applies the Output-Driven Learner (ODL). 

The learner can be certain that a feature value set by inconsistency detection could not be 

set to any other value and remain consistent with the language hypothesis. By contrast, 

the learner cannot be certain that the consistent mismatch candidate is a winner in the 

target language. It is this very uncertainty – that the target could have a different winner 

for that mismatch input – which provokes the learner to commit to the ranking conditions 

imposed by a consistent mismatch candidate in the first place.  

The danger of making an uncertain commitment is that it could be inconsistent with 

information learned later and, lacking the insurance of branching, the learner might fail to 

derive any language hypothesis at all consistent with the observed data. The risk depends 

on the unresolved conflicts remaining when the learner selects a consistent mismatch 
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candidate for inclusion in the support. The learner adds W-L pairs to the support only as 

needed to prevent errors, and as a result the support may not include all of the ranking 

conditions entailed by its winners. Based on this incomplete information, a mismatch 

candidate could be consistent with the current support even though it is inconsistent with 

the full set of ranking conditions entailed by the other words. A later round of error-

driven learning would reveal the fatal inconsistency. 

Although the CBL avoids branching as a method of learning underlying forms, 

branching could offer a solution to the problem described above. A consistent mismatch 

candidate adds lexical information indirectly, by adding ranking information that 

contributes to lexically-informative inconsistencies. Viewed in this way, adopting a 

consistent mismatch candidate as a winner is not unlike choosing a structural 

interpretation for an overt form and adopting its identity map as a winner during 

phonotactic learning: in both cases, the learner commits to an input-output mapping 

without knowing for certain that the mapping is consistent with the target language or 

even with all the ranking conditions entailed by the other committed mappings. Yet, this 

approach to phonotactic learning is tenable because the learner simultaneously evaluates 

all possible interpretations in separate language hypotheses, and if an interpretation is 

consistent with the prior commitments, the learner will find it. Similarly, extending 

branches for each consistent mismatch winner might enable the learner to derive at least 

one consistent language hypothesis for the data. For the example described in this 
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section, by branching the learner would ultimately derive language hypotheses 

corresponding to both L75 and its paradigmatic equal, L76.26  

Setting aside this concern over making an uncertain commitment, there is also a 

question to ask about the implementation of ECM; specifically, what effect, if any, would 

choosing a maximal mismatch candidate have on learning with ECM? A maximal 

mismatch candidate is defined as in (246). 

(246) Maximal mismatch candidate 

A maximal mismatch candidate has surface-mismatched underlying values for all 
unset features. 

 

To learn L75, the learner commits to the consistent minimal mismatch candidate – 

one like a test candidate used to set a feature by inconsistency detection. In an output-

driven map, committing to a mismatch candidate entails a commitment to all mappings 

with inputs more similar to the output. Committing to a minimal mismatch candidate is 

therefore a conservative choice, while the aggressive choice is to commit to the maximal 

mismatch candidate. The advantage of the aggressive choice is that it affords the learner 

all of the ranking information of these entailed mappings, but this could be a 

disadvantage if later information should reveal that only some of those mappings should 

be consistent. 

																																																													
26 The branching procedure would need to be sensitive to the ranking information imparted by the ERCs to 

prevent the creation of identical branches. In LgHyp75, consistent mismatch candidates could be 
derived from r2s1, r3s1, and r4s1, but those derived from r2s1 and r4s1 would add identical W-L pairs 
and therefore yield identical branches. Instead of branching for each consistent mismatch candidate, 
then, the branching procedure could instead create branches for each unique ERC derived from 
consistent mismatch candidates. 
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For LgHyp75 and LgHyp76, these choices happen to be identical: the maximal 

mismatches have only the one disparity that the minimal mismatches have. However, 

there are nine pairs of paradigmatic equals generated in the Stress system, and for some 

of these, the aggressive and conservative options differ. The learner can safely commit to 

the aggressive, maximal mismatch candidate in each of these cases, but these are not 

strong evidence that the aggressive choice is always safe, nor even warranted.  

For example, consider the paradigmatic equals L39 and L51. Both languages parse 

only binary trochees, but they differ on the default alignment of the head-foot: L39 aligns 

the head-foot to the right, L51 to the left. Maps and stratified hierarchies by BCD for 

each language appear below. The shaded cells indicate the default behavior in each map. 

(247) L39 

r1 =/ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[s(Ys)] [(Ys)s] [s(Ys)] [s(Ys)] s1 = /-s/ 
[s(Ys)] [(Ys)s] [s(Ys)] [s(Ys)] s2 = /-Y/ 

 

(248) {FNF, FT-BIN} >> {IAMB, PARSE-σ} >> MAXSTRESS >> {RMOST, 
*LAPSE} >> {AFL,  LMOST} 

 

(249) L51  

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[(Ys)s] [(Ys)s] [s(Ys)] [(Ys)s] s1 = /-s/ 
[(Ys)s] [(Ys)s] [s(Ys)] [(Ys)s] s2 = /-Y/ 

 

(250) {FNF, FT-BIN} >> {IAMB, PARSE-σ} >> MAXSTRESS >> {AFL,  
LMOST}>> { RMOST, *LAPSE} 
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Suppose the learner has received the data of L39.27 After phonotactic learning, the 

support appears as in (251). At this point, the learner reaches the familiar impasse of 

paradigmatic equals. The support has an unresolved conflict among the constraints in the 

bottom stratum, but the known data cannot resolve it. The lexicon, in which all features 

are currently unset, (252), requires that both features of r2 be set to distinguish it from the 

other roots, and for the remaining roots to each set one feature to distinguish themselves 

from r2; however, the unresolved conflict in the ranking prevents the necessary lexically-

informative inconsistencies. Because neither root behavior is yet distinguished in the 

lexicon for any root, all words currently fail error detection. The learner therefore can 

now apply ECM to find additional ranking information from a consistent mismatch 

candidate. 

(251) LgHyp39 support 

ERC# 
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word Input Winner Loser F
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a. 2P r1s1 /sY-s/ [s(Ys)] [(Y)(Xs)] W W L  W L W   

b. 1P r1s1 /sY-s/ [s(Ys)] [s(sY)]  W  L W    W 

c. 3P r1s1 /sY-s/ [s(Ys)] [(Ys)s]     W L W L W 

d. 4P r2s1 /Ys-s/ [(Ys)s] [s(Ys)]     W W L W L 

 

(252) LgHyp39 lexicon 

r1 r2 r3 r4 s1 s2 
/??/ /??/ /??/ /??/ /-?/ /-?/

 

																																																													
27	Because L39 is a paradigmatic subset as well as a paradigmatic equal, it is discussed in detail in 4.3.	
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Since all words fail error detection, consider first the maximal mismatch of r1s1, /Ys-

Y/  [s(Ys)], shown as the winner in (253)c. This mapping incurs an additional violation 

of MAXSTRESS than does the loser /Ys-Y/  [(Ys)s]. As a result, the W-L pair is 

inconsistent with W-L pairs 3P and 4P, as shown in (253).  

(253) Maximal mismatch r1s1 /Ys-Y/   [s(Ys)] is inconsistent 

ERC# 
Morph. 
word Input Winner Loser F

T
-B

IN
 

F
N

F 

P
A

R
S

E
-σ

 

I A
M

B
 

M
A

X
S

T
R

   

L
M

O
S

T
 

R
M

O
S

T
   

A
F

L
 

*L
A

P
S

E
 

a. 3P r1s1 /sY-s/ [s(Ys)] [(Ys)s]      W L W L W 

b. 4P r2s1 /Ys-s/ [(Ys)s] [s(Ys)]     W W L W L 

c. test r1s1 /Ys-Y/ [s(Ys)] [(Ys)s]     L L L W W 
 

The maximal mismatch of r2s1 is /sY-Y/  [(Ys)s], and the tableau in (254) 

demonstrates that this mapping is inconsistent with the current support for the same 

reason as above.  

(254) Maximal mismatch r2s1 /sY-Y/  [(Ys)s]  is inconsistent 

ERC# 
Morph. 
word Input Winner Loser F
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a. 3P r1s1 /sY-s/ [s(Ys)] [(Ys)s]      W L W L W 

b. 4P r2s1 /Ys-s/ [(Ys)s] [s(Ys)]     W W L W L 

c. test r2s1 /sY-Y/ [(Ys)s] [s(Ys)]     L W L W L 

 

Because inconsistent W-L pairs cannot be productively added to the support, these 

maximal mismatch candidates have provided no help for learning the language, but the 

minimal mismatch candidates for these words turn out to be more informative. The 

complete lexical space for r1s1 appears below, with the minimal mismatch candidates in 
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(256) LgHyp39 support updated with minimal mismatch candidate 

ERC# 
Morph. 
word Input Winner Loser F
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a. 2P r1s1 /sY-s/ [s(Ys)] [(Y)(Xs)] W W L  W W  L  

b. 1P r1s1 /sY-s/ [s(Ys)] [s(sY)]  W  L W  W   

c. 3P r1s1 /sY-s/ [s(Ys)] [(Ys)s]     W W W L L 

d. 4P r2s1 /Ys-s/ [(Ys)s] [s(Ys)]     W L L W W 

e. 5 r1s1 /ss-s/ [s(Ys)] [(Ys)s]      W W L L 

 

(257) {FNF, FT-BIN} >> {IAMB, PARSE-σ} >> MAXSTRESS >> {RMOST, 
*LAPSE} >> {AFL,  LMOST} 
 

 
Of course, there is a solution consistent with L39’s paradigmatic equal, L51, which 

the learner could derive instead by also finding a consistent minimal mismatch candidate 

containing r2, such as r2s1 [(Ys)s]. The minimal mismatch candidates of r2s1 include the 

inputs /ss-s/, /YY-s/, and /Ys-Y/. Each of these candidates are consistent with L51, as 

illustrated by the shaded cells of the map of that language, repeated below.  

(258) L51  

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[(Ys)s] [(Ys)s] [s(Ys)] [(Ys)s] s1 = /-s/ 
[(Ys)s] [(Ys)s] [s(Ys)] [(Ys)s] s2 = /-Y/ 

 

Adopting one of these minimal mismatch candidates will therefore result in a 

language hypothesis consistent with L51. In the alternative support for LgHyp39 below, 

W-L pair 5 in (259)e includes a minimal mismatch candidate for r2s1. Committing to this 

candidate resolves the conflict among the four lowest-ranked constraints so that AFL and 



192	
	

	
	

LMOST dominate RMOST and * LAPSE. The final stratified hierarchy for this alternative 

appears in (260). 

(259) Alternative LgHyp39 updated  support 

ERC# 
Morph. 
word Input Winner Loser F

T
-B
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A
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T
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S

T
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A

P
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E
 

a. 2P r1s1 /sY-s/ [s(Ys)] [(Y)(Xs)] W W L  W  L W  

b. 1P r1s1 /sY-s/ [s(Ys)] [s(sY)]  W  L W    W 

c. 3P r1s1 /sY-s/ [s(Ys)] [(Ys)s]     W L L W W 

d. 4P r2s1 /Ys-s/ [(Ys)s] [s(Ys)]     W W W L L 

e. 5 r2s1 /ss-s/ [(Ys)s] [s(Ys)]      W W L L 

 

(260) {FNF, FT-BIN} >> {IAMB, PARSE-σ} >> MAXSTRESS >> {AFL,  
LMOST}>> { RMOST, *LAPSE} 

 

Learning L39 and L51 provides some evidence in favor of the conservative choice of 

mismatch candidates, in that only the minimal mismatch is consistent with the 

information derived from phonotactic learning. In general, a strategy that commits the 

learner to fewer entailed mappings would be safer than the alternative, and for that 

reason, pursuing ranking information from minimal mismatch candidates is preferable to 

using maximal mismatch candidates instead. However, it may be that the choice makes 

no substantive difference. Section 4.3 will continue the discussion of learning L39, which 

is a paradigmatic subset in addition to being a paradigmatic equal. As a paradigmatic 

subset, learning L39 will require the use of Fewest Set Features, a procedure explicitly 

for setting features when inconsistency detection fails. Fewest Set Features must be 

employed to fully learn the lexicon, regardless of when the complete ranking conditions 
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are learned. Section 4.3 will show that the maximal mismatch candidate by ECM can be 

informative, if the learner has first set a feature in r1, r3, or r4 using Fewest Set Features. 

This section has exposed the phenomenon of paradigmatic equality and illustrated the 

difficulties it poses for a learner that relies on the ODL’s inconsistency detection 

procedures to set features, yet much more remains to be learned. The ECM procedure 

offered here may be a reliable last-resort mechanism for adding ranking information if it 

incorporates a branching procedure also, but without knowing more about paradigmatic 

equality in general it is unclear how successful it can be overall. How paradigmatic 

equality interacts with other language relationships is another important area for future 

investigation. A language can have multiple different relationships to other languages in a 

typology, and a solution aimed at untangling the paradigmatic equality relationship may 

not fully address these others, as the following section will show. 

4.2 PARADIGMATIC	SUBSETS	

The Stress typology also contains a number of paradigmatic subset languages (Tesar, 

to appear). Like a paradigmatic equal, all of the paradigmatic subset’s morpheme 

behaviors are shared with another language in the typology; however, the paradigmatic 

subset is a proper subset, making it a special example of restrictiveness.  

The familiar “subset problem,” briefly discussed in 1.2, concerns a language whose 

forms are a subset of another language in the typology. The learner lacks the negative 

evidence that a form in the superset is not allowed in the subset, and the more restrictive 

ranking conditions of the subset language cannot be derived by error-driven learning. As 

described earlier, one solution to this problem is to apply a low-faithfulness ranking bias, 
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such as BCD, to the support. The bias maintains a more restrictive ranking until positive 

evidence supports a less restrictive one.  

The ranking bias is useful for error-driven learning of the ranking, but it cannot 

address the problem of learning the underlying forms of paradigmatic subsets. The 

Output-Driven Learner (ODL) sets a feature’s value using inconsistency detection. 

Because the support derived from the subset’s learning data is consistent with the 

superset language as well, the learner can only set features from test candidates that are 

inconsistent with both the subset target and its superset. The test candidates for other 

feature values may indeed be inconsistent with the subset target, but without more 

ranking knowledge to distinguish the subset from the superset, these features cannot be 

set by inconsistency detection. This is the problem of learning underlying forms in the 

paradigmatic subsets in Tesar’s Stress/Length typology (to appear): the existence of a 

superset language stymies the ODL from setting features by inconsistency detection. The 

paradigmatic subsets in the Stress typology further demonstrate that it may not be 

possible to set some features by inconsistency detection even if all the ranking conditions 

of the subset language were known. 

For example, L83 is a paradigmatic subset language in the Stress system whose 

features cannot all be set by inconsistency detection. The map of L83 appears in (261), 

and a stratified hierarchy derived by applying BCD to the skeletal basis of L83 is given in 

(262).  L83 has leftmost main stress and exhaustive parsing, and it is by default trochaic. 

Suffixes in L83 neutralize in all environments, as do r1, r2, and r4, due to the ranking 



195	
	

	
	

LMOST >> MAXSTRESS. Because MAXSTRESS dominates both FNF and AFL, r3 contrasts 

with the other roots and surfaces faithfully in an iambic foot at the left edge.  

(261) L83 

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[(Y)(Xs)] [(Y)(Xs)] [(sY)(X)] [(Y)(Xs)] s1 = /-s/ 
[(Y)(Xs)] [(Y)(Xs)] [(sY)(X)] [(Y)(Xs)] s2 = /-Y/ 

 

(262) {PARSE-σ, LMOST, *LAPSE} >> FT-BIN >> MAXSTRESS  >> {FNF, AFL} 

>>  {IAMB,  RMOST } 

 

L83 is a paradigmatic subset of L82, in (263). L82 includes the phonotactic inventory 

of L83 plus one additional form, for r1s2 [(X)(sY)], shaded below. This language also 

has leftmost main stress and exhaustive parsing and is by default trochaic, but it differs 

from L83 because it will allow a rightmost head-foot in order to satisfy MAXSTRESS. The 

stratified hierarchy in (264) shows that MAXSTRESS dominates LMOST, allowing the 

underlying stress of suffix s2 to surface faithfully in the context of r1, whose syllables are 

both underlyingly –stress.  As a result, r1 behaves differently from r2 and r4, which have 

underlyingly +stress first syllables, and from r3, whose first syllable is –stress also but 

whose second syllable is +stress. Thus, L82 has two suffix behaviors and three root 

behaviors. 

(263) L82 

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[(Y)(Xs)] [(Y)(Xs)] [(sY)(X)] [(Y)(Xs)] s1 = /-s/ 
[(X)(sY)] [(Y)(Xs)] [(sY)(X)] [(Y)(Xs)] s2 = /-Y/ 
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(264) {PARSE-σ, *LAPSE} >> FT-BIN  >> MAXSTRESS  >>  LMOST >> {FNF,  
AFL} >> {IAMB , RMOST } 

 

The restrictiveness relation between L83 and L82 is evident by comparison of the 

phonotactic inventories, but the paradigmatic subset relation requires consideration of the 

morpheme behaviors in each language. In L83, s1 and s2 behave alike, as shown by their 

grouping in the description of the language in (265). This suffix behavior is identical to 

the behavior of s1 in L82, indicated by the shaded cells in (266). Thus, L83 is a 

paradigmatic subset of L82. 

(265) L83 -  one suffix behavior 

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  

[(Y)(Xs)] [(Y)(Xs)] [(sY)(X)] [(Y)(Xs)]
s1 = /-s/ 
s2 = /-Y/ 

 

(266) L82 (L83 subset shaded) 

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[(Y)(Xs)] [(Y)(Xs)] [(sY)(X)] [(Y)(Xs)] s1 = /-s/ 
[(X)(sY)] [(Y)(Xs)] [(sY)(X)] [(Y)(Xs)] s2 = /-Y/ 

 
 

However, L83 can be compressed further from (265). It has only two root behaviors: 

one for r3, and one for every other root. The compression of these morpheme behaviors 

means that with the correct ranking, the stress features of the suffixes can remain unset in 

the learned lexicon and the roots r1, r2 and r4 each need only set the single feature that 

will distinguish them from r3. R3, then, must have both of its features set in the learned 

lexicon. These behaviors are shown in the compressed table below.  
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(267) L83 -  two root behaviors, one suffix behavior 

/?s/ 
/Y?/ 

/sY/  

[(Y)(Xs)] [(sY)(X)] /-?/
 

In L82, roots r2 and r4 behave alike, giving this language the three root behaviors and 

two suffix behaviors described in (268). The learner must set all the features of s1, s2, r1, 

and r3, and additionally must distinguish r2 and r4 from the other roots by setting their 

first syllables to +stress.  

(268) L82 – three root behaviors, two suffix behaviors 

/ss/ /Y?/ /sY/  
[(Y)(Xs)] [(Y)(Xs)] [(sY)(X)] /-s/ 
[(X)(sY)] [(Y)(Xs)] [(sY)(X)] /-Y/

 

Learning L82 presents no problem, as the data are sufficient to distinguish the 

language from its paradigmatic subset and all other languages in the typology. But 

learning L83 is another matter. As the remainder of this section will show, it is not just its 

paradigmatic superset, L82, which stands in the way of setting features, but the precise 

morpheme behaviors of L83 itself. 

The phonotactic information for L83 enables the learner to derive the support in (269) 

and to set both features of r3; the ranking derived by BCD for this language hypothesis, 

LgHyp83, appears in (270). The lexicon, (271), includes no other set feature at this point, 

and because r3 always surfaces faithfully, it offers no potential for learning non-

phonotactic ranking information. 
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(269) LgHyp83 support from phonotactics 

ERC# 
Morph. 
word Input Winner Loser L

M
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S
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a. 1P r1s1 /Ys-s/ [(Y)(Xs)] [s(Ys)] W W   L W   L L   

b. 3P r1s1 /Ys-s/ [(Y)(Xs)] [(sY)s]   W   L W L   L L 

c. 5P r3s1 /sY-s/ [(sY)(X)] [(Y)(Xs)]         W L L W W 

d. 4P r1s1 /Ys-s/ [(Y)(Xs)] [(Ys)(X)]           W   L   

e. 2P r1s1 /Ys-s/ [(Y)(Xs)] [(Y)(sX)]             W   L 

 

(270) {LMOST, PARSE-σ, *LAPSE} >> FT-BIN >> MAXSTRESS >> {AFL, FNF} 

>> {RMOST, IAMB} 
 

(271) LgHyp83 lexicon 

 
r1 r2 r3 r4 s1 s2 

/??/ /??/ /sY/ /??/ /-?/ /-?/
 

The suffixes are not contrastive for stress and can remain unset, but the other three 

roots each must have one syllable’s stress feature set to a value that will distinguish it 

from r3. The test candidates used for these roots to set features by inconsistency detection 

are identical because the roots behave alike in all words. Candidate (272)a attempts to set 

the stress feature of the first root syllable, candidate (272)b attempts to set the stress 

feature of the second.  

(272) Test candidates for r1, r2, and r4 

a. / s-s/  [(Y)(Xs)] 
b. /Y -s/  [(Y)(Xs)] 
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Both candidates are consistent with the support in (269) and therefore will not permit 

the learner to set any feature in the three roots. The support above is missing some of the 

ranking information of the target’s skeletal basis; in particular, in the support LMOST 

dominates MAXSTRESS only by application of BCD – there are no explicit ranking 

arguments for this relationship otherwise. However, it is important to note that the 

consistency of the test candidates is not due to inadequate ranking information, but rather 

due to each of these candidates being a mapping in the target L83. Resolving the conflict 

between LMOST and MAXSTRESS would not produce the inconsistency required to set 

features. 

To make this point more plainly, suppose the learner had access to the support for the 

skeletal basis of L83, in (273). The only mapping that distinguishes the paradigmatic 

subset L83 from its superset L82 is /ss-Y/[(Y)(Xs)]. This candidate is the winner in 

(273)b, and by transitivity this W-L pair and that in (273)d contributes the ranking LMOST 

>> MAXSTRESS .  

(273) L83 skeletal basis support 

Morph. 
word Input Winner Loser P

A
R

S
E
-σ

 

L
M

O
S

T
 

*  
L
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a. r3s1 /sY-s/ [(sY)(X)] [(sY)s] W     L   L L     

b. r1s2 /ss-Y/ [(Y)(Xs)] [(Xs)(Y)]   W     L   W   L 

c. r3s1 /sY-s/ [(sY)(X)] [(Ys)(X)]         W L   W   

d. r3s1 /sY-s/ [(sY)(X)] [(Y)(sX)]         W   L   W 

e. r1s1 /ss-s/ [(Y)(Xs)] [(Y)(sX)]           W   L   

f. r1s1 /ss-s/ [(Y)(Xs)] [(Ys)(X)]             W   L 
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Even this support would not enable the learner to set features in r1, r2, or r4. No test 

candidate based purely on phonotactic knowledge could produce the inconsistency 

necessary to set a feature in these roots. The problem is that MAXSTRESS cannot prefer 

any desired loser when the test input differs from the observed output by only one 

feature. Either the single disparity must involve setting to – a feature that is + at the 

surface, in which case no candidate will incur a MAXSTRESS violation on that feature, or 

it will involve setting a feature to + that is – on the surface, in which case every 

candidate, including the desired winner, will incur at least one MAXSTRESS violation.  

To better illustrate this point, consider [(Y)(Xs)], the output of all six words 

containing roots r1, r2, and r4. When the disparity is in the first syllable, forming the 

input / s-s/, no candidate violates MAXSTRESS at all. When the disparity is in the second 

syllable, forming /Y -s/, then every candidate must have at least one MAXSTRESS 

violation. Since [(Y)(Xs)] itself would incur just one MAXSTRESS violation for this input, 

no other competitor could do better. Therefore, MAXSTRESS cannot prefer another 

candidate over either of the test candidates from (272), even with all crucial ranking 

information known.  

Each of r1s1, r2s1, and r4s1 forms a contrast pair with r3s1, but again, the test 

candidates are not inconsistent. Because both features of r3 have already been set, there 

are three test candidates to evaluate: one for each syllable of the root and one for the 

suffix.  The test candidates for the roots are those in (272), and evaluating them as 

contrast pairs yields no new information. Because the winner of W-L pair 5P in (269)c is 

r3s1 /sY-s/[(sY)(X)], the learner has in effect been evaluating the consistency of the test 
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candidates for the roots with r3s1 all along, even during single form learning. Finally, 

suffix stress is neutralized in the target, making it unsurprising that the test candidate for 

s1 is also consistent. 

Just as with the paradigmatic equals, the learner has reached a point where 

inconsistency detection cannot set features, yet features must be set in order to distinguish 

the other roots from r3. For LgHyp83, however, even if new ranking information could 

be useful, there is no consistent mismatch winner to reveal that information. The minimal 

mismatch candidates derived from words containing r1, r2, and r4 are shown in (274), 

and they are the same candidates used to determine by inconsistency detection if a feature 

could be set in the roots. The candidates were uninformative then because they are 

consistent and they are uninformative now because the current ranking already makes 

them optimal. 

(274) Minimal mismatch candidates for r1, r2, and r4 

a. / s-s/  [(Y)(Xs)] 
b. /Y -s/  [(Y)(Xs)] 

 

The maximal mismatch candidate is also uninformative. The maximal mismatch for 

all words containing r1, r2, or r4 is /sY-Y/[(Y)(Xs)]. It is not unexpected that this 

candidate is inconsistent, given that suffix stress neutralizes in the language and the 

support already includes the winner /sY-s/[(sY)(X)], with the same root and the 

unstressed suffix. These two candidates make contradictory ranking requirements, 

demonstrated in (275); note that although the maximal mismatch test candidate is labeled 

r1s1 here, the candidate will be the same for all words containing r1, r2, and r4 . 
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(275) Maximal mismatch candidate is inconsistent 

ERC# 
Morph. 
word Input Winner Loser L
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a. 5P r3s1 /sY-s/ [(sY)(X)] [(Y)(Xs)]         W L L W W 

b. test r1s1 /sY-s/ [(Y)(Xs)] [(sY)(X)]       L W W L L 

 

The learner has exhausted the potential to set features by inconsistency detection, 

whether by single forms or contrast pairs, yet r1, r2, and r4 must each have the value of at 

least one feature set to distinguish them from r3.  The learner cannot derive new ranking 

information, as all the mismatch candidates for words containing r1, r2, and r4 are 

uninformative. Moreover, having new ranking information would not help anyway, as the 

test candidates for the roots are consistent even with the skeletal basis of the target 

language.    

Here the learner must employ the Fewest Set Features procedure, introduced by Tesar 

to complete the learning of a paradigmatic subset language. The Fewest Set Features 

procedure exploits the property of output-drivenness to determine, for a word that is 

currently failing error detection, the fewest features whose values must be set to match 

their surface correspondents’ in order to create for that word a consistent mapping that 

passes error detection. The procedure is employed only on words that continue to fail 

error detection and only after single forms and contrast pairs fail to set any features and 

no new ranking information is derived by any means, including from a consistent 

mismatch candidate.  
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In the CBL’s implementation of Fewest Set Features, the learner takes one of the 

words which has failed error detection – say, r1s1 – and systematically evaluates the 

candidates in its viable lexical subspace for consistency with the support and with the 

other words which have passed error detection. In order to set the fewest features 

possible, the learner begins by testing those candidates whose inputs contain only one 

unset feature that matches the value of its surface correspondent. If one of these is 

consistent, then the learner sets the value of that matching unset feature to its surface 

value and resumes learning as before. When more than one is consistent, the learner can 

choose either to inform the feature-setting. To learn languages in the Stress system, the 

CBL does not require Fewest Set Features to evaluate candidates containing two unset 

features, although in theory the procedure could be modified to do so if necessary. The 

pseudocode for Fewest Set Features, adapted for the CBL from the work of Tesar (to 

appear) is given below. 

(276) Fewest Set Features – CBL adaptation 

DEF Fewest_Set_Features(lang_hyp) 
FOR each word in lang_hyp that fails error detection 

Determine the feature value to pass error detection 
IF there is such a feature value THEN 

   Set the feature to this value in the lexicon 
   Check for ranking information from the set feature 

BREAK  
ENDIF 

ENDFOR 
END 
 

The lattice in (277) shows the entire lexical space for r1s1. The Fewest Set Features 

procedure works upward through this space. In effect, the procedure begins with the test 

for error detection on the input of the bottom node, containing the maximum three 
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Because these morphemes behave like r1, the process for setting the fewest features in 

words containing them is identical to that for r1s1, with a similar outcome. The learner 

sets r2 and r4 to /Y?/, producing the lexicon in (278). The support remains unchanged. 

(278) LgHyp83 lexicon – final 

r1 r2 r3 r4 s1 s2 
/Y?/ /Y?/ /sY/ /Y?/ /-?/ /-?/

 

4.2.1 FEWEST	SET	FEATURES	AND	PARADIGMATIC	EQUALS	

Fewest Set Features is also a potential solution for learning paradigmatic equals. If it 

were applied to learning L75, the final lexicon of LgHyp75 would appear as in (279). The 

features of r2, r3, and r4 which could not be set by inconsistency detection are set to 

match their surface values. 

(279) LgHyp75 lexicon learned using Fewest Set Features 

r1 r2 r3 r4 s1 s2 
/ss/ /Ys/ /sY/ /Ys/ /-s/ /-Y/

 

Using Fewest Set Features would leave the support of LgHyp75 unchanged from 

(230) in section 4.1.1, when it was updated by single-form learning, and the conflict 

between RMOST and IAMB would remain unresolved. From the perspective of the learner, 

this version of LgHyp75 is acceptable, as it fully accounts for all of the learning data. 

Yet, in another sense, this language hypothesis is unsatisfactory because it will result in 

error when applied to the rich base. The ranking derived from (230) yields a CTie 

between [(Ys)(X)] and [(X)(Ys)] for the input /YY-s/; this is the error illustrated in (234). 

Fewest Set Features allows the learner to work around incomplete ranking information by 
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fixing the lexicon to include a subset of the underlying forms in the rich base, but because 

the features it sets never alternate in L75, no new non-phonotactic ranking information is 

ever learned. For this reason, the CBL employs ECM first when confronted by a situation 

where inconsistency detection fails to set required features. 

4.2.2 CONCLUSION	

The Fewest Set Features procedure was originally proposed as a solution for learning 

paradigmatic subsets, but L83 suggests that this procedure may have wider usage. 

Although L83 is a paradigmatic subset, it is not the existence of its paradigmatic superset, 

L82, that prevents the learner from setting features in r1, r2, and r4 by inconsistency 

detection. Instead, the problem is that the root behaviors of L83 compress into two 

groups: r3, and everything else. Each time the learner attempts to set a feature of r1, r2, or 

r4, the test candidate is consistent because it is a member of the non-r3 mappings of L83 

itself. To put the matter differently, only a test candidate using /sY/ as the underlying 

form of r1, r2, or r4 could ever be inconsistent with L83, and constructing such a 

candidate would require that the learner have already set the stress feature of the first 

syllable to –stress or the second to +stress; however, this is impossible because both 

features are only ever set to match their surface correspondents’ values. The features of 

r1, r2, and r4 never alternate, leaving no way for the learner to ever set the first syllable 

of one of these roots to –stress or the second to +stress and therefore no way to construct 

a test candidate using /sY/ as the underlying form of any of these three roots. 

A procedure like Fewest Set Features is necessary for learning languages like L83, 

which cannot be fully learned by inconsistency detection alone, no matter how much 
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ranking information is known, and it also has value for learning languages like L75. 

Whether it should replace the ECM solution advocated in 4.1 for untangling global 

lexical ambiguity is unclear, as neither procedure is well understood at this point. It 

should be noted that of the nine pairs of paradigmatic equals produced in the Stress 

system, seven are also paradigmatic subsets of other languages and require the learner to 

apply Fewest Set Features regardless of learning from consistent mismatch candidates. 

Section 4.3 covers the topic of languages that are simultaneously paradigmatic equals and 

paradigmatic subsets using L39, a language first introduced in 4.1.3, to illustrate how 

Fewest Set Features and ECM can be interwoven to handle the complications of both 

relationships. Given that languages can participate in both paradigmatic relationships at 

once, the risks of committing to the ranking information of consistent mismatch 

candidates by ECM may appear too great. These relationships must be investigated 

further, along with the learning procedures described in sections 4.1 and 4.2.  

4.3 WHEN	THE	PARADIGMATIC	SUBSET	IS	A	PARADIGMATIC	EQUAL	

The paradigmatic relationships described in the preceding sections can occur in 

combination, as they do for seven pairs of languages in the Stress system. One of these 

languages is L39, which was introduced in 4.1.3 to illustrate some consequences of 

committing to minimal versus maximal mismatch candidates. Learning a language like 

L39 requires the learner to overcome the common challenge of both kind of paradigmatic 

relationships – the inability of inconsistency detection to set all required features – but it 

also requires the learner to properly handle the relationships’ unique characteristics: that 

the data for one paradigmatic equal can be inconsistent with the other given the right 
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ranking, but the data of a paradigmatic subset can never be inconsistent with its superset 

language.  

The preceding sections have described alternative procedures for managing each 

paradigmatic relationship based on these properties. Thus, ERC by Consistent Mismatch 

(ECM) exploits the paradigmatic equal’s potential for learning crucial ranking 

information by creating a consistent mismatch candidate, while Fewest Set Features 

provides a means of setting features when inconsistency detection fails – and even when 

inconsistency detection would fail with the target’s ranking conditions fully known. This 

section demonstrates how the learner weaves together these different approaches to learn 

languages like L39, which participates in both kinds of paradigmatic relationships. It will 

also provide a fuller look at the relative benefit of pursuing minimal mismatch candidates 

by ECM. 

4.3.1 THE	PARADIGMATIC	RELATIONSHIPS	OF	L39	

The map of L39 and a stratified hierarchy derived from its skeletal basis by BCD are 

repeated below, along with the map and ranking of its paradigmatic equal, L51.  These 

languages both parse binary trochees and differ only by the default alignment of the head-

foot, with L39 aligning it to the right and L51 aligning it to the left. The shaded cells 

indicate the default behavior in each map. 

(280) L39 

r1 =/ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[s(Ys)] [(Ys)s] [s(Ys)] [s(Ys)] s1 = /-s/ 
[s(Ys)] [(Ys)s] [s(Ys)] [s(Ys)] s2 = /-Y/ 
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(281) {FNF, FT-BIN} >> {IAMB, PARSE-σ} >> MAXSTRESS >> {RMOST, 
*LAPSE} >> {AFL,  LMOST} 

 

(282) L51  

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[(Ys)s] [(Ys)s] [s(Ys)] [(Ys)s] s1 = /-s/ 
[(Ys)s] [(Ys)s] [s(Ys)] [(Ys)s] s2 = /-Y/ 

 

(283) {FNF, FT-BIN} >> {IAMB, PARSE-σ} >> MAXSTRESS >> {AFL,  
LMOST}>> {RMOST, *LAPSE} 

 

Suffixes in these languages are not contrastive, and the root behaviors display the 

same pattern shown by L83 in 4.2: there is a behavior for one specific root – r2 in L39, r3 

in L51 – and then a default behavior for all the other roots. The map of L39 is shown 

compressed in (284) to highlight the single suffix behavior and two root behaviors; the 

compressed map of L51 would be similar. 

(284) L39 -  two root behaviors, one suffix behavior 

/s?/ 
/?Y/ 

/Ys/  

[s(Ys)] [(Ys)s] /-?/
 

L39 is a paradigmatic subset of five other languages in the Stress system typology, 

including L37, whose map is shown in (285) with shaded cells indicating the L39 subset. 

L37 parses trochees by default just as L39 does, but r1s2 and r2s2 show that it will also 

parse iambs. For r1s2, the ranking FT-BIN  >> {PARSE-σ, * LAPSE} forces the right-

aligned iambic head-foot even at the cost of an initial stress lapse. With two underlyingly 

stressed syllables, r2s2 must violate MAXSTRESS once. For this form, the crucial ranking 
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is RMOST >> {FNF, AFL, LMOST}, which forces s2 to surface faithfully in the iambic 

head-foot instead of preserving stress on r2 with the left-aligned trochaic output [(Ys)s]. 

The stratified hierarchy for L37 derived by applying BCD to the support of the skeletal 

basis is given in (286).  

(285) L37 (L39 subset shaded) 

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[s(Ys)] [(Ys)s] [s(Ys)] [s(Ys)] s1 = /-s/ 
[s(sY)] [s(sY)] [s(Ys)] [s(Ys)] s2 = /-Y/ 

 

(286) FT-BIN >> PARSE-σ >> MAXSTRESS >> {RMOST, *LAPSE} >> {FNF, IAMB, 
AFL,  LMOST} 

 

4.3.2 COMBINING	ECM	AND	FEWEST	SET	FEATURES	

 L37 is included here to demonstrate unequivocally that a paradigmatic equal, L39, 

can also be a paradigmatic subset of another language. However, the fundamental issue 

for this section – that there can be multiple reasons within a language for why 

inconsistency detection fails to set all necessary features – does not rely on L39 having a 

paradigmatic subset. The similarity of the chart of L39’s morpheme behaviors in (284) 

with L83’s chart in (267) makes it clear that the learner will face the same kind of 

problem learning L39 as learning L83: the test candidates for the roots with the default 

behavior will all be consistent simply because every single-disparity test will produce 

another of the default, non-r2 mappings, and not just because there is a superset language. 

What makes learning L39 different from learning L83 is that not a single feature can be 

set by standard inconsistency detection initially. Before delving into learning L39, then, a 
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question must be answered: when inconsistency detection fails, which paradigmatic 

relationship does the learner attempt to address first? 

The CBL first tackles paradigmatic equality, attempting to learn by ECM on the 

grounds that it is preferable to produce new ranking information than not. Unlike Fewest 

Set Features, the objective of ECM is to uncover ranking information. ECM forces a 

resolution to a conflict exposed during error detection by committing to an input-output 

mapping which is not explicitly produced by the current commitments of the language 

hypothesis. For example, in section 4.1 error detection reveals an unresolved conflict 

between RMOST and IAMB, but it takes a mapping from the input /YY-s/, which ECM 

finds in a consistent mismatch candidate, to resolve the conflict.  

As has been seen throughout the preceding chapters, learning more about the ranking 

can produce a range of benefits. First, the new ranking information can allow the learner 

to set features by inconsistency detection and consequently enable words to pass error 

detection. For LgHyp75 in 4.1, an ERC added by the consistent mismatch candidate 

allows for r3 to be set to /sY/ by inconsistency detection, causing r3s1 finally to pass 

error detection. Second, new ranking information can allow words which previously 

failed error detection to now pass without setting any additional features, just as in 

LgHyp75 features in r2 and r4 could remain unset once the new ERC was added. Finally, 

ranking information helps to reduce the potential for error when the ranking is applied to 

a rich base, just as adding the ERC produced by ECM to LgHyp75 expressly eliminates 

the error that otherwise would have occurred given the input /YY-s/. Section 4.1 shows 

that LgHyp75 derives all of these benefits from one application of ECM. While setting a 
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single feature can cause a word to finally pass error detection, the other benefits will not 

accrue without that feature inciting an error that leads to a ranking change.  

The objective of Fewest Set Features is simply to set the fewest features needed for a 

single word to pass error detection, and any ranking information recovered is incidental. 

Although it is at least theoretically possible for new ranking information to arise if the 

newly set feature ever surfaces unfaithfully elsewhere, Fewest Set Features does not ever 

produce new ranking information when it is implemented for languages in the Stress 

system, regardless of whether ECM is implemented first. For these reasons, the CBL 

attempts to learn from ECM before employing Fewest Set Features.  

The CBL bundles contrast pair learning, ECM, and Fewest Set Features together and 

employs them one after the other once a round of single-form learning passes without 

making any changes to a consistent but incomplete language hypothesis. As soon as one 

of these procedures sets a feature, the language hypothesis is updated and, if the 

hypothesis is not yet complete, a new round of single-form learning begins on the hope 

that this latest change will lead to more information. The pseudocode below describes the 

further learning attempts that occur. 
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(287) Further learning beyond single forms 

DEF FURTHER_LEARNING(lang_hyp) 
IF learning is complete in lang_hyp THEN 

Store lang_hyp with completed language hypotheses 
ELSE 

SET learning_change to true 
WHILE learning_change is true 
 Set learning_change to false 

IF features are set with a contrast pair THEN 
Set learning_change to true 

ELSE  
Employ ECM procedure 
IF ranking information is learned by ECM THEN 

Set learning_change to true 
ENDIF 
IF learning_change is false THEN  
 Employ Fewest Set Features 

IF a feature is set using Fewest Set Features THEN 
SET learning_change to true 

ENDIF 
ENDIF  

ENDIF //features set by contrast pair 
IF learning_change is true THEN 

IF learning is complete in lang_hyp THEN 
Store lang_hyp with completed language hypotheses 

ELSE 
Perform single-form learning 
BREAK out of WHILE loop 

ENDIF 
ELSE 

IF lang_hyp is consistent THEN 
Store lang_hyp with incomplete, consistent language hypotheses 

ELSE 
Discard lang_hyp 

ENDIF 
ENDIF 

ENDWHILE 
ENDIF 

END  
 

A complete outline of the Commitment-Based Learner, beginning with phonotactic 

learning, appears in (288). The ECM and Fewest Set Features procedures begin at step 

7.b. 
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(288) Outline of the Commitment-Based Learner 

Within each language hypothesis, beginning with Hyp0, and for each observed form, 
repeat until learning stops in all language hypotheses: 

Phonotactic Learning 

1. Check for errors 
a. If the form lacks a committed structural interpretation and yields an 

error, apply the IDL to extend branches. Repeat step 1 for each branch. 
b. If a form has a committed structural interpretation and produces an error, 

perform error-driven learning. Repeat step 1. 
c. If the form does not produce an error, process the next overt form. 

2. Phonotactic learning ends when no errors are detected on any observed forms. 

Non-phonotactic Learning – first pass through data 

3. Perform error-driven learning over all known words. 
a. Reject hypothesis if it is inconsistent 

4. Does the form have a committed interpretation? 
a. Yes – apply the ODL to set features from the single form. 

i. If features are set, seek non-phonotactic ranking information 
from unfaithful mappings using the low-markedness ranking 
bias. 

ii. If no features are set, observe the next form. 
b. No – perform error detection on the overt form. 

i. If the overt form passes error detection, observe the next form. 
Go to step	3. 

ii. If it does not pass error detection, apply the IDL to assign 
interpretations and extend branches. 

iii. Continue learning in the resulting branches, beginning with the 
first observed form in the data set. Go to step	3. 

5. Perform error detection on the list of known words. 
a. If all words pass error detection, this language hypothesis is complete. 

i. Are all consistent language hypotheses complete? 
1. Yes – stop. Learning is complete. 
2. No – continue learning in the incomplete language 

hypotheses. 
b. If some words fail error detection, go to step 6. 

Non-phonotactic Learning – after the first pass through the data 

6. Were any features set by single-form learning in the last pass through the data? 
a. Yes – repeat steps 3-5 for each word that currently fails error detection. 
b. No – apply the ODL to set features from contrast pairs in the list of 

known words. Go to step 7. 
7. Were any features set by contrast pairs in this pass? 

a. Yes – repeat steps 3-5 for each word that currently fails error detection. 
b. No – employ ECM procedure. Go to step 8. 



215	
	

	
	

8. Was any ranking information learned by ECM? 
a. Yes – repeat steps 3-5 for each word that currently fails error detection. 
b. No – employ Fewest Set Features. Go to step 9. 

9. Was a feature set by Fewest Set Features? 
a. Yes – repeat steps 3-5	for each word that currently fails error detection. 
b. No – store this language hypothesis with the incomplete, consistent 

language hypotheses. Stop. 
 

Having shown where ECM and Fewest Set Features fall with respect to single-form 

and contrast pair learning, the next section will demonstrate how both of these alternative 

procedures are implemented to learn L39. 

4.3.3 LEARNING	L39	

The map of L39 and the stratified hierarchy derived from its skeletal basis are 

repeated in (289) and (290).  

(289) L39 

r1 =/ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[s(Ys)] [(Ys)s] [s(Ys)] [s(Ys)] s1 = /-s/ 
[s(Ys)] [(Ys)s] [s(Ys)] [s(Ys)] s2 = /-Y/ 

 

(290) {FNF, FT-BIN} >> {IAMB, PARSE-σ} >> MAXSTRESS >> {RMOST, 
*LAPSE} >> {AFL,  LMOST} 

 

Suffixes in L39 are not contrastive and can remain unset in the learned lexicon. The 

two root behaviors evinced in the language require setting r2 to /Ys/ and, for the 

remaining roots, some combination of setting the first syllable to –stress or the second 

syllable to +stress. These requirements are summarized in the idealized lexicon for 

LgHyp39 below. 
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(291) LgHyp39 idealized lexicon 

r1 r2 r3 r4 s1 s2 
/s?/ or /?Y/ /Ys/ /s?/ or /?Y/ /s?/ or /?Y/ /-?/ /-?/ 

 

The support for LgHyp39 created from phonotactic learning appears in (292), with its 

ranking in (293).  

(292) LgHyp39 support from phonotactics 

ERC# 
Morph. 
word Input Winner Loser F

T
-B

IN
 

F
N

F 

P
A

R
S

E
-σ

 

I A
M

B
 

M
A

X
S

T
R

   

L
M

O
S

T
 

R
M

O
S

T
   

A
F

L
 

*L
A

P
S

E
 

a. 2P r1s1 /sY-s/ [s(Ys)] [(Y)(Xs)]  W W L  W L W   

b. 1P r1s1 /sY-s/ [s(Ys)] [s(sY)]  W  L W    W 

c. 3P r1s1 /sY-s/ [s(Ys)] [(Ys)s]      W L W L W 

d. 4P r2s1 /Ys-s/ [(Ys)s] [s(Ys)]     W W L W L 

 

(293) {FNF, FT-BIN} >> {IAMB, PARSE-σ} >> MAXSTRESS >> {LMOST, RMOST, 
AFL, *LAPSE} 
  

The unresolved conflict involves the constraints in the lowest stratum. In order to set 

all the features required to distinguish the root behaviors, the learner needs to determine 

that RMOST and *LAPSE dominate AFL and LMOST. Doing so in turn requires a 

committed mapping with an input that makes those constraints decisive in determining 

the winner, such as /ss-s/, for which no candidate will incur a MAXSTRESS violation, or 

/YY-s/, for which every candidate will incur one MAXSTRESS violation.  But L39 is a 

paradigmatic equal, and as expected, the unresolved conflict between the constraints in 

the lowest stratum means the learner will not be able to commit to these mappings using 

inconsistency detection.  
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First, for single-form learning the test candidates for the root in r1s1 are / Y-

s/[s(Ys)] and /s -s/[s(Ys)], which are both actual mappings in the target and therefore 

would be consistent even if all ranking conditions were already known.28  These 

candidates cannot produce the lexically-informative inconsistency, but neither can the 

test candidates for r2, which map the same inputs to different outputs -- /Y -s/[(Ys)s] 

and / s-s/[(Ys)s]. This time, the test candidates are consistent with the paradigmatic 

equal, L51, whose map is repeated in (294). Having the correct ranking information for 

L39 would allow the learner to detect inconsistencies and set features with these test 

candidates, but here the familiar problem of paradigmatic equals arises: the correct 

ranking is needed to set these features, and these feature values are needed to determine 

the correct ranking. 

(294) L51  

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[(Ys)s] [(Ys)s] [s(Ys)] [(Ys)s] s1 = /-s/ 
[(Ys)s] [(Ys)s] [s(Ys)] [(Ys)s] s2 = /-Y/ 

 

Contrast pairs face the same problems for setting features: the pairs are always 

consistent with one of the paradigmatic equals. The test candidates used to attempt to set 

root features in the contrast pair r1s1 and r2s1 are shown in (295). All other contrast pairs 

will use the same mappings and achieve the same uninformative outcome. 

  

																																																													
28	Because the roots r3 and r4 behave like r1, their test candidates and outcomes will be identical to those 

of r1.	
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(295) Test candidates for contrast pair r1s1, r2s1 

a. r1s1 / Y-s/  [s(Ys)]  r1 σ1: consistent with L39 
r2s1 /Ys-s/  [(Ys)s] 

b. r1s1 /s -s/  [s(Ys)]  r1 σ2: consistent with L39 
r2s1 /Ys-s/   [(Ys)s] 

c. r1s1 /sY-s/  [s(Ys)]  r2 σ1: consistent with L51 
r2s1 / s-s/  [(Ys)s] 

d. r1s1 /sY-s/  [s(Ys)]  r2 σ2: consistent with L51 
r2s1 /Y -s/   [(Ys)s] 

 

4.3.3.1 Committing	to	a	minimal	mismatch	candidate	

Single-form and contrast pair learning have both failed; this is the point at which the 

discussion of LgHyp39 in section 4.1.3 begins. Any further ranking information must 

come from committing to a consistent mismatch candidate.  As 4.1.3 explains, the 

maximal mismatch candidates for r1s1 and r2s1 are inconsistent, but each of the minimal 

mismatch candidates is consistent and informative. After committing to one of these, r1s1 

/ss-s/[s(Ys)], the learner updates the support as below, repeated from (256). The minimal 

mismatch candidate is the winner in W-L pair 5. 

(296) LgHyp39 support updated with minimal mismatch candidate 

ERC# 
Morph. 
word Input Winner Loser F
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a. 2P r1s1 /sY-s/ [s(Ys)] [(Y)(Xs)] W W L  W W  L  

b. 1P r1s1 /sY-s/ [s(Ys)] [s(sY)]  W  L W  W   

c. 3P r1s1 /sY-s/ [s(Ys)] [(Ys)s]     W W W L L 

d. 4P r2s1 /Ys-s/ [(Ys)s] [s(Ys)]     W L L W W 

e. 5 r1s1 /ss-s/ [s(Ys)] [(Ys)s]      W W L L 
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(297) {FNF, FT-BIN} >> {IAMB, PARSE-σ} >> MAXSTRESS >> {RMOST, 
*LAPSE} >> {AFL,  LMOST} 
 

The ranking in (297) is now correct and complete, as it matches the ranking for the 

target L39 given in (290). Moreover, the ERC added by committing to the minimal 

mismatch candidate /ss-s/[s(Ys)] enables the learner to set both features of r2 by 

inconsistency detection, using the candidates below.  

(298) Test candidates for r2s1 

a. r2s1 / s-s/  [(Ys)s] 
b. r2s1 /Y -s/   [(Ys)s] 

 

These test candidates have the same ranking restrictions: both require that LMOST and 

AFL dominate RMOST and *LAPSE. The tableau in (299) exposes a contradiction between 

these ranking conditions and those of the minimal mismatch candidate /ss-s/[s(Ys)]. With 

these lexically-informative inconsistencies the learner updates the lexicon,	(300). 

(299) R2 test candidates inconsistent with r1s1 maximal mismatch 

ERC# 
Morph. 
word Input Winner Loser F
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a. 5 r1s1 /ss-s/ [s(Ys)] [(Ys)s]      W W L L 

b. test r2s1 /ss-s/ [(Ys)s] [s(Ys)]      L L W W 

c. test r2s1 /YY-s/ [(Ys)s] [s(Ys)]      L L W W 
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(300) LgHy39 lexicon updated for r2 

r1 r2 r3 r4 s1 s2 
/??/ /Ys/ /??/ /??/ /-?/ /-?/

 
All that remains now is to distinguish the remaining roots from r2 by setting at least 

one feature in each. Yet, just as in L83, even with the complete ranking information, 

inconsistency detection cannot set the required features. The ERC from the consistent 

maximal mismatch candidate, represented by the W-L pair in (296)e, has only eliminated 

the interference of the paradigmatic equal, L51, but not the subset problem. That is, the 

single-disparity candidates for r1, r3 and r4 are a subset of the mappings corresponding to 

the non-r2 behavior in this language, and therefore they are necessarily consistent. The 

only recourse is the true last resort, Fewest Set Features. One feature in each of the roots 

must be set to match its surface form. In the lexicon below, the first syllable in each root 

is set to -stress. The language hypothesis is now complete. 

(301) LgHy39 lexicon – final 

r1 r2 r3 r4 s1 s2 
/s?/ /Ys/ /s?/ /s?/ /-?/ /-?/

 

4.3.3.2 	 Committing	to	a	maximal	mismatch	candidate	

Section 4.1.3 ends the discussion of the consequences of maximal versus minimal 

mismatch candidates by mentioning that under the right circumstances, r1s1 in L39 can 

contribute a consistent maximal mismatch candidate. To do so, a feature of r1 must have 

already been set in the lexicon. Further, section 4.3.3.1 above has shown that because r1, 

r3, and r4 can never be set by inconsistency detection, a procedure like Fewest Set 

Features will always be necessary to set features in these roots. The failure of 
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inconsistency detection to set these features is independent of how complete the support 

is, making the question not if, but when, Fewest Set Features must apply. This section 

briefly shows that because Fewest Set Features must occur regardless, here it is possible 

to maintain a strategy of committing only to consistent maximal mismatches in spite of 

an initial failure to find one. 

To begin, section 4.1.3 described why the phonotactic support, repeated in (302), 

originally fails to produce a consistent maximal mismatch. A strategy that would only 

allow commitments to maximal mismatches would next have to seek an alternative 

means of adding to the language hypothesis and would employ Fewest Set Features. A 

feature in r1 could be set now, as in (303). 

(302) LgHyp39 support from phonotactics 

ERC# 
Morph. 
word Input Winner Loser F
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a. 2P r1s1 /sY-s/ [s(Ys)] [(Y)(Xs)]  W W L  W L W   

b. 1P r1s1 /sY-s/ [s(Ys)] [s(sY)]  W  L W    W 

c. 3P r1s1 /sY-s/ [s(Ys)] [(Ys)s]      W L W L W 

d. 4P r2s1 /Ys-s/ [(Ys)s] [s(Ys)]     W W L W L 

 

(303) LgHy39 lexicon – updated for r1 

r1 r2 r3 r4 s1 s2 
/s?/ /??/ /??/ /??/ /-?/ /-?/

 

 This feature cannot elicit new ranking information because it never surfaces 

unfaithfully; however, the language hypothesis is far from complete: r2 must still have 

both of its features set, and r3 and r4 must each set one.  Single-form and contrast pair 
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(305) LgHyp39 support updated by maximal mismatch /ss-Y/[s(Ys)] 

ERC# 
Morph. 
word Input Winner Loser F
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a. 2P r1s1 /sY-s/ [s(Ys)] [(Y)(Xs)] W W L  W W  L  

b. 1P r1s1 /sY-s/ [s(Ys)] [s(sY)]  W  L W  W   

c. 3P r1s1 /sY-s/ [s(Ys)] [(Ys)s]     W W W L L 

d. 4P r2s1 /Ys-s/ [(Ys)s] [s(Ys)]     W L L W W 

e. 5 r1s1 /ss-Y/ [s(Ys)] [(Ys)s]      W W L L 

 

The commitment to the maximal mismatch /ss-Y/[s(Ys)], with two disparities, also 

commits the learner to the mappings containing the single-disparity inputs from (304): 

/ss-s/[s(Ys)] and /sY-Y/[s(Ys)]. The learner will only commit to a maximal mismatch 

candidate if it is consistent with the current support; thus, both of these entailed mappings 

must also be consistent with the current support. Moreover, because all three are 

mappings in the target L39, they will remain consistent with all the current commitments, 

regardless of whether the full ranking conditions of those commitments are already 

represented in the support. In this instance, the learner’s commitment to the maximal 

mismatch candidate works, and LgHyp39 will remain consistent so long as all further 

commitments are also consistent with L39.  The commitment to the mismatch candidate 

will enable the learner to set both features of r2 by inconsistency detection, as in the 

preceding section, and Fewest Set Features will apply to set one feature each in r3 and r4. 

4.3.4 CONCLUSION	

Learning a language that is both a paradigmatic equal and a paradigmatic subset 

requires separately addressing the complications of each relationship. Paradigmatic 

equality poses a ranking-based problem: an unresolved conflict in the ranking makes it 
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impossible to set some needed features by inconsistency detection. ECM offers a 

ranking-based solution: resolve the conflict by committing to a consistent mismatch 

candidate for one of the words that currently fails error detection. For paradigmatic 

subsets and languages like L39 and L83, however, the problem is that even the complete 

ranking may be insufficient to set features by inconsistency detection. Fewest Set 

Features offers a lexical solution to this problem: if all else fails, set features to match 

their surface values.  

For languages that participate in both relationships, both solutions can be employed. 

For L39, using ECM resolves a conflict that ultimately enables features in r2 to be set by 

inconsistency detection. However, because the remaining three roots all behave alike, 

inconsistency detection fails to set their features, and Fewest Set Features can be applied 

to complete the lexicon.29  

This section has also revisited the question introduced in 4.1.3: should ECM commit 

to maximal or minimal mismatch candidates? Again, LgHyp39 does not offer persuasive 

evidence for either choice. A strategy seeking only maximal mismatch candidates will 

fail to find a consistent candidate initially, but once Fewest Set Features steps in and 

assigns a value to a feature – as it must do at some point anyway – the change to the 

lexical subspace results in a new, and consistent, maximal mismatch candidate. It is 

conceivable that this process could repeat on a larger scale if necessary, with Fewest Set 

																																																													
29 In fact, it is worthwhile to recall that Fewest Set Features can be used exclusively, setting all features to 

match their surface forms as described for LgHyp75 in 4.2. The disadvantage to this method is that it 
does not resolve the ranking conflict and therefore the ranking will generate errors when applied to the 
rich base.  



225	
	

	
	

Features slowly causing the maximal mismatch candidate to have fewer and fewer 

disparities until at last the maximal mismatch is consistent.  

In general, whatever advantages or disadvantages the maximal mismatch choice 

offers are tied to the fact that in an output-driven map, a commitment to one mapping 

entails a commitment to all mappings with fewer disparities. The disadvantages are clear: 

if a later round of error-driven learning exposes ranking conditions that make the 

mismatch candidate inconsistent with prior commitments, the language hypothesis is 

inconsistent, and the target may not be learned. The advantages are less clear, however. 

In LgHyp39, the commitment to the maximal mismatch candidate does not make it 

possible to set any more features by inconsistency detection than committing to the 

minimal mismatch candidate does.  

If all paradigmatic equals are like L75 or L39, then the circumstances of learning a 

paradigmatic equal may ensure that either choice produces the same outcome, whether 

because the maximal mismatch candidate has exactly one disparity, as in LgHyp75, or 

because the maximal mismatch entails only the mappings of morphemes that behave 

alike, as in L39. The phenomenon of paradigmatic equality and the outcome of this 

particular solution could appear very different in a system with more features and more 

constraints. Determining exactly what benefit, if any, the maximal mismatch candidate 

offers will require more investigation of paradigmatic equals beyond those in the Stress 

system. 
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4.4 GLOBAL	SURFACE	AMBIGUITY	AND	THE	PARADIGMATIC	EQUAL	

The preceding section illustrates how one language can simultaneously participate in 

both kinds of paradigmatic relationships with other languages in the typology. L39 is a 

paradigmatic equal with L51 and a paradigmatic subset of L37, among others. Both 

relationships preclude setting features by inconsistency detection given the observed data, 

but the learner’s response to each relationship differs; most importantly, for paradigmatic 

equals the learner can add ranking information that makes inconsistency detection viable 

for setting features. This section similarly examines the learner’s response to languages 

that relate in multiple ways to others in the typology, but now the focus shifts from 

paradigmatic relationships to global ambiguities. What is interesting about this 

combination of relationships is not what the learner has to do to process the data, but 

what the learner ultimately learns from the data. 

4.4.1 GLOBALLY	AMBIGUOUS	LANGUAGES	AND	THE	LEARNING	DATA	

First, as explained in 4.1, paradigmatic equals exhibit global lexical ambiguity: the 

languages have identical morpheme behaviors, including structural interpretations, but 

those behaviors arise from different underlying forms. Because the languages have 

different rankings, their maps are different, too, yet the shared morpheme behaviors mean 

that, from the learner’s perspective, the data of the languages are the same. To illustrate, 

compare L75 and L76, the paradigmatic equals introduced in 4.1 and whose maps and 

rankings appear below.  
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(306) L75  

r1 =/ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[(X)(sY)] [(Y)(sX)] [(X)(Ys)] [(Y)(sX)] s1 = /-s/ 
[(X)(sY)] [(X)(sY)] [(X)(sY)] [(X)(sY)] s2 = /-Y/ 

 

(307) {PARSE-σ, *LAPSE} >> {AFL, FT-BIN} >> MAXSTRESS >>  IAMB  >> 

{RMOST, FNF} >> LMOST 

 

(308) L76  

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[(X)(sY)] [(Y)(sX)] [(X)(Ys)] [(X)(Ys)] s1 = /-s/ 
[(X)(sY)] [(X)(sY)] [(X)(sY)] [(X)(sY)] s2 = /-Y/ 

 

(309) { PARSE-σ, *LAPSE} >> {AFL, FT-BIN} >> MAXSTRESS   >> RMOST >> 
{IAMB, LMOST} >> FNF 

 

Both languages have two suffix behaviors and three root behaviors, but whereas r4 

/YY/ behaves like r2 /Ys/ in L75, it behaves like r3 /sY/ in L76. This difference is caused 

by the differing dominance relations between IAMB and RMOST. When IAMB dominates 

RMOST, the second syllable of r4 surfaces unfaithfully, producing a binary, iambic 

secondary foot at the right edge. As a result, the output looks like a faithful mapping from 

r2 /Ys/. For the opposite ranking, the second syllable of r4 surfaces faithfully instead, as 

the head of the right-aligned trochaic head-foot. This output looks like a faithful mapping 

from r3 /sY/.   

The chart in (310) compresses and overlays the morpheme behaviors of both 

languages to show that their morpheme behaviors are identical, with the only difference 

being the underlying forms producing the behaviors. L75 and L76 are therefore globally 
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lexically-ambiguous: they produce the same morpheme behaviors from different 

underlying forms. Consequently, the learning data for these languages appear identical to 

the learner. 

(310) L75 and L76 overlaid 

/ss/ 
/Ys/ 

(/YY/ L75)
/sY/ 

(/YY/ L76)
 

[(X)(sY)] [(Y)(sX)] [(X)(Ys)] /-s/ 
[(X)(sY)] [(X)(sY)] [(X)(sY)] /-Y/

 

 In addition to being globally lexically-ambiguous with L75, L76 is also globally 

surface-ambiguous with L69. The maps for these languages appear in (311) and (312). 

These languages contain the same overt forms for each morphological word, but they 

assign different interpretations to r2s1, shaded. The map-based definition of global 

surface ambiguity given in (119) of chapter 3 is repeated in (313). 

(311) L76  

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[(X)(sY)] [(Y)(sX)] [(X)(Ys)] [(X)(Ys)] s1 = /-s/ 
[(X)(sY)] [(X)(sY)] [(X)(sY)] [(X)(sY)] s2 = /-Y/ 

 

(312) L69 

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[(X)(sY)] [(Ys)(X)] [(X)(Ys)] [(X)(Ys)] s1 = /-s/ 
[(X)(sY)] [(X)(sY)] [(X)(sY)] [(X)(sY)] s2 = /-Y/ 

 

(313) Global surface ambiguity (map-based definition) 

Languages LA and LB are globally surface-ambiguous if their maps are identical 
with respect to overt forms. 
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The stratified hierarchies derived by BCD for L76 and L69, below, indicate that the 

relative rankings of AFL and RMOST are responsible for the languages’ differences. In 

L76, AFL dominates RMOST, and r2s1 is parsed with a unary head-foot, reducing the 

AFL violations incurred by the secondary foot at the cost of making the head-foot farther 

from the right edge. When RMOST dominates AFL, as in L69, the secondary stressed 

syllable in r2s1 is parsed into a unary foot so that the head-foot is only one syllable from 

the right edge. 

(314)  L76 ranking 

{PARSE-σ, *LAPSE} >> {AFL, FT-BIN} >> MAXSTRESS   >> RMOST >> {IAMB, 
LMOST} >> FNF 

 

(315) L69 ranking 

{PARSE-σ, *LAPSE} >> FT-BIN >> MAXSTRESS >> RMOST >> {IAMB, AFL, 
LMOST} >> FNF  

 

As globally surface-ambiguous counterparts, L69 and L76 produce the same learning 

data, shown in (316) grouped by morpheme behavior. Yet, because L76 is the 

paradigmatic equal of L75, L76 and L75 also produce data that appear the same to the 

learner. These data are given in (317), again grouped by morpheme behavior. 

(316) Learning data for L69 & L76 

/ss/ /Ys 
/sY/ 
/YY/

 

XsY YsX XYs /-s/ 
XsY XsY XsY /-Y/
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(317) Learning data for L75 & L76 

/ss/ 
/Ys/ 

(/YY/ L75)
/sY/ 

(/YY/ L76)
 

XsY YsX Xys /-s/ 
XsY XsY XsY /-Y/

 
 

Because L76 has the same learning data as both L69 and L75, it will appear to the 

learner that L69 and L75 have the same learning data, too.  In fact, this transitive 

outcome simply demonstrates that L69 and L75 are globally surface-ambiguous, as 

defined by reference to their morpheme behaviors. This revised definition, originally 

given in (127) of chapter 3, is repeated  in (318). For comparison, the definition of global 

lexical ambiguity given in section 4.1 is also repeated, in (319). 

(318) Global surface ambiguity (morpheme behavior definition) 

Language LA and LB are globally surface-ambiguous if they have the same 
morpheme behaviors, excluding structural interpretations. 

 

(319) Global lexical ambiguity 

Languages LA and LB are globally lexically-ambiguous if they have the same 
morpheme behaviors, including structural interpretations, but differ only by which 
underlying forms of the rich base produce which behaviors. 

 

Thus, global ambiguity can be identified through the morpheme behaviors of two 

languages. The variety of global ambiguity is then distinguished by comparing the 

structural interpretations associated with the morpheme behaviors. If two languages share 

all the same morpheme behaviors, and those behaviors yield the same structural 

interpretations, then the languages are paradigmatic equals and are globally lexically 
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ambiguous. If the languages share all the same morpheme behaviors, but those behaviors 

yield different structural interpretations, the languages are globally surface-ambiguous. 

The definition for general global ambiguity appears in (320). 

(320) Global ambiguity 

Languages LA and LB are globally ambiguous if they have the same morpheme 
behaviors. 

 

 Because the CBL has the ability to construct and retain separate language 

hypotheses, it is possible for this learner to derive language hypotheses corresponding to 

a variety of globally ambiguous languages from the same learning data. Chapter 3 and the 

preceding sections of this chapter have already illustrated this ability, but only with 

regard to one kind of global ambiguity at a time. The remainder of this section will show 

that the CBL effectively manages the learning data of targets that are globally ambiguous 

in both ways, as L75 and L76 are globally lexically ambiguous with each other and 

globally surface-ambiguous with L69. 

4.4.2 LEARNING	GLOBALLY	AMBIGUOUS	LANGUAGES	

Suppose the learner observes the data in (321).  

(321) Learning data 

XsY r1s1 XsY r1s2 YsX r2s1 XsY r2s2 XYs r3s1 XsY r3s2 YsX r4s1 XsY r4s2
 

When phonotactic learning ends, two consistent language hypotheses remain. In the 

tree in (322), language hypothesis A1B1C1 corresponds to both L75 and L76, while 

A1B2C1 corresponds to L69.  
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interpretations, and learning that requires knowing additional mappings beyond those 

observed. 

The remainder of the learner’s progress through the data is unexceptional. Repeated 

rounds of single-form and contrast pair learning will complete L69, which is merely 

globally surface-ambiguous with a paradigmatic equal and not a paradigmatic equal 

itself. Learning L75 and L76 will follow the procedure established in 4.1, committing to a 

consistent mismatch candidate to derive ranking information that the observed data 

cannot themselves produce. By committing to one consistent mismatch candidate the 

learner will derive the ranking for the corresponding paradigmatic equal, while 

implementing a branching procedure for each consistent mismatch candidate that 

produces a unique ERC, as discussed at the end of 4.1, would enable the learner to derive 

both paradigmatic equals.  

When learning terminates, the language hypothesis corresponding to L69 will have 

the support in (323), with ranking (324) and lexicon (325). 
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(323)  A1B2C1 (L69) – final support 

ERC# 
Morph. 
word Input Winner Loser P

A
R

S
E
-σ

 

*L
A

P
S

E
 

F
T
-B

IN
 

M
A

X
S

T
R

 

R
M

O
S

T
 

L
M

O
S

T
 

A
F

L
 

I A
M

B
 

F
N

F 

a. 1P r1s1 /ss-Y/ [(X)(sY)] [s(Ys)] W   L W       W L 

b. 3P r1s1 /ss-Y/ [(X)(sY)] [(sY)s] W   L W W L L   L 

c. 10 r3s2 /sY-Y/ [(X)(sY)] [s(sY)] W W L           L 

d. 2P r1s1 /ss-Y/ [(X)(sY)] [(Y)(sX)]       W W L       

e. 4P r2s1 /Ys-s/ [(Ys)(X)] [(X)(sY)]       W L W L L W 

f. 5P r2s1 /Ys-s/ [(Ys)(X)] [(X)(Ys)]       W L W L     

g. 6P r2s1 /Ys-s/ [(Ys)(X)] [(Y)(Xs)]         W   L     

h. 8P r2s1 /Ys-s/ [(Ys)(X)] [(Y)(sX)]         W   L L W 

i. 9P r3s1 /sY-s/ [(X)(Ys)] [(sY)(X)]         W L W L W 

j. 7P r1s1 /ss-Y/ [(X)(sY)] [(Xs)(Y)]           W W W L 

 

(324) {PARSE-σ, *LAPSE} >> FT-BIN >> MAXSTRESS >> RMOST >> {IAMB, AFL, 
LMOST} >> FNF  
 

(325) A1B2C1 (L69) - final lexicon 

r1 r2 r3 r4 s1 s2 
/ss/ /Ys/ /?Y/ /Ys/ /-s/ /-Y/

 

In the learned lexicon, r2 and r4 are both set to /Ys/, whereas r3 includes an unset 

feature in its first syllable as the ranking neutralizes /YY/ to /sY/. This lexicon and the 

ranking in (324) generate the map in (326) below. The shaded cells highlight the fact that 

r2s1 and r4s1 are identical, but recall that in the original map of L69, repeated in (327), r2 

and r4 behave differently from each other.  

(326) A1B2C1 map 

r1 = /ss/ r2 = /Ys/ r3 = /?Y/ r4 = /Ys/  
[(X)(sY)] [(Ys)(X)] [(X)(Ys)] [(Ys)(X)] s1 = /-s/ 
[(X)(sY)] [(X)(sY)] [(X)(sY)] [(X)(sY)] s2 = /-Y/ 
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(327) L69 – original map 

r1 = /ss/ r2 = /Ys/ r3 = /sY/ r4 = /YY/  
[(X)(sY)] [(Ys)(X)] [(X)(Ys)] [(X)(Ys)] s1 = /-s/ 
[(X)(sY)] [(X)(sY)] [(X)(sY)] [(X)(sY)] s2 = /-Y/ 

 

What should be made of this result?  It must be noted first that morpheme labels 

merely denote identity and do not affect how the learner interprets the data. The learner 

has no prior belief that different morphemes have different underlying forms, or that 

every possible underlying form will be attested in the observed data.  

Now observe that L69 has three root behaviors and two suffix behaviors, summarized 

in the chart below. This chart says nothing about the particular labels of the root 

morphemes, only what their underlying forms must be based on their behaviors in 

relation to the suffixes. 

(328) L69 morpheme behaviors – compressed 

/ss/ /Ys/ 
/sY/ 
/YY/ 

 

[(X)(sY)] [(Ys)(X)] [(X)(Ys)] s1 = /-s/ 
[(X)(sY)] [(X)(sY)] [(X)(sY)] s2 = /-Y/ 

 

Following the chart, a root which surfaces as [(Ys)(X)] in the context of the suffix s1 

but surfaces as [(X)(sY)] in the context of s2 must have the underlying form /Ys/. The 

map in (326) includes two roots which behave this way. Observe that in the learning data, 

(321), r2 and r4 do in fact behave alike. Thus, this map simply reflects the fact that the 

learner observed this particular behavior for two different roots, whose labels happened 

to be r2 and r4 in the data set. In the original map of L69 in (327), this behavior appears 
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only once, for the root labeled r2. On the other hand, the map of L69 in (327) shows that 

two other root morphemes, labeled r3 and r4, shared a different behavior, surfacing as 

[(X)(Ys)] in the context of s1 and [(X)(sY)] in the context of s2. The map of A1B2C1 in 

(326) includes just one root with this behavior, labeled r3. Again, the map is reflecting 

the fact that the learner observed this behavior only one time in the data set.  Finally, 

there is a third root behavior that appears exactly once in both L69 and A1B2C1, in 

which  the output is [(X)(sY)] regardless of suffix environment; the root with this 

behavior is labeled r1 in both maps. In short, there is no substantive difference between 

(326) and (327), only a difference in how many root morphemes evince each behavior 

and what label these morphemes are given.  

This kind of result has been seen before, in 4.1.2, where the learner commits to a 

consistent mismatch candidate to learn L75 or L76. Depending on which candidate is 

chosen, the learner derives a different ranking and winds up with one of the lexica below. 

Both reflect data in which morphemes labeled r2 and r4 behave the same, but the 

different rankings will allow for these morphemes to have different underlying forms.   

(329) A1B1C1 lexicon corresponding to L75 ranking 

r1 r2 r3 r4 s1 s2 
/ss/ /Y?/ /sY/ /Y?/ /-s/ /-Y/

 

(330) A1B1C1 lexicon corresponding to L76 ranking 

r1 r2 r3 r4 s1 s2 
/ss/ /Ys/ /?Y/ /Ys/ /-s/ /-Y/
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To complete the discussion of learning from the data in (321), by committing to one 

consistent mismatch candidate in language hypothesis A1B1C1, the learner will derive a 

ranking corresponding to L75 or L76 – see (307) and (309) – and consequently derive the 

appropriate lexicon from (329) and (330) above. Regardless, the map produced is the 

same, (331); observe that it is globally surface-ambiguous with the map produced by 

A1B2C1 (corresponding to L69) in (326). 

(331) A1B1C1 map 

r1 = /ss/ r2 = /Ys/ r3 = /?Y/ r4 = /Ys/  
[(X)(sY)] [(Y)(sX)] [(X)(Ys)] [(Y)(sX)] s1 = /-s/ 
[(X)(sY)] [(X)(sY)] [(X)(sY)] [(X)(sY)] s2 = /-Y/ 

 

The data in (321) are derived from the overt forms of the map of L75 in (306). In 

L75, r2 and r4 behave alike, and therefore the overt form YsX occurs twice in the data.  If 

the data instead consisted of the overt forms from the map of L76 in (308), XYs would 

occur twice in the data set, for r3s1 and r4s1. The outcomes of learning would be only 

superficially different, in that the lexica would be adjusted to account for a different pair 

of words matching and reflecting the fact that a different pair of morphemes behave alike. 

4.4.3 	 CONCLUSION	

The learning data in (321) evince a dual ambiguity: they derive from languages which 

are globally lexically-ambiguous – L75 and L76 – and they derive from languages which 

are globally surface-ambiguous – L69 and L76. In total, the data can derive language 

hypotheses with three different rankings. The CBL does not have any further difficulty in 

learning languages which are both paradigmatic equals and globally surface-ambiguous, 

like L76, as it does learning languages which are globally ambiguous in only one way; 
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whatever challenges one kind of ambiguity creates are neither increased nor lessened by 

the addition of a second kind. 

The interesting consequence of this dual ambiguity is the relationship it creates 

between languages like L75 and L69, which do not at first appear to be globally 

ambiguous with each other, and yet which can be learned by the same data that yields 

L76. As the paradigmatic equal of L75, L76 acts as a kind of gateway to learning L69. 

Because the data cannot distinguish L75 and L76, they cannot distinguish L75 and L69, 

either.  

These ambiguities demonstrate the value of looking at data in terms of its morpheme 

behaviors, as in (316) and (317), rather than as catalog of observed forms, as in (321). 

Morpheme behaviors matter, in that they can reveal distinctions and similarities between 

data that are obscured in a simple list of overt forms, while the frequency of a particular 

form’s occurrence in that list may not reveal anything more substantive about the 

grammar than the presence of homophones. In this example, language hypothesis 

A1B2C1 can derive the target L69 entirely from forms containing r1, r2 and r3; forms 

containing r4 contribute nothing about the grammar beyond what those containing r2 

contribute. 

Arranging the learning data for these languages according to morpheme behavior, as 

in (316) and (317), emphasize the value of characterizing global ambiguity with reference 

to morpheme behavior. Globally lexically-ambiguous languages like L75 and L76 have 

the same morpheme behaviors, including structural interpretations, whereas globally 

surface-ambiguous languages like L76 and L69 have the same morpheme behaviors, not 
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including structural interpretations. By this definition, L69 and L75 are clearly globally 

surface-ambiguous.  

From this perspective, it seems quite empirically plausible that there are languages 

like L69, L76, and L75. They instantiate a set of morpheme behaviors which could derive 

from different rankings and include different structural interpretations, but at heart, the 

data is the same.   

4.5 CHOOSING	BETWEEN	BRANCHES	

Chapter 3 and the preceding sections of this chapter have described examples in 

which the learner derives two or three consistent language hypotheses from one set of 

learning data. These examples illustrate that each language in the Stress typology can be 

learned from overt forms only, and therefore they offer a clear demonstration of the 

CBL’s success for learning; however, the question remains whether or not it benefits the 

learner to continue maintaining multiple consistent language hypotheses once learning 

ends. If all the learning data have been processed to completion, as this simulation 

assumes, then the learner could safely select just one language hypothesis to keep without 

fear that new information will render it inconsistent. In this case, the learner should select 

the language hypothesis least likely to overgenerate for a rich base of inputs. This section 

considers culling language hypotheses for this reason, using their r-measures (Tesar 

2002, Prince and Tesar 2004).  

The r-measure provides a means of evaluating the restrictiveness of a ranking. The r-

measure is calculated by counting, for each faithfulness constraint, the number of 

markedness constraints that dominate it, and then adding these separate values. For the 
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Stress system, which includes a single faithfulness constraint, the r-measure of a language 

hypothesis equals the number of markedness constraints dominating MAXSTRESS. The 

more markedness constraints dominate MAXSTRESS, the fewer the surface forms likely to 

be found in the language. 

The r-measure is especially useful for sifting out language hypotheses whose learned 

lexica do not reflect a rich base and therefore whose rankings may have unresolved 

conflicts that lead to overgeneration. In these language hypotheses, the learner derives a 

lexicon that contains only a subset of the inputs in the rich base, so that multiple 

morphemes are assigned the same underlying form.  

There are two ways for the learner to derive a lexicon that includes only a subset of 

the rich base. The first is by application of the Fewest Set Features procedure, described 

in 4.2 for learning LgHyp83. In this language hypothesis, features that cannot be set 

using inconsistency detection methods are instead set to match their surface values. As a 

result, r1, r2, and r4, which behave alike in the target L83, are set alike in the final 

lexicon of LgHyp83, repeated in (332).  

(332) LgHyp83 final lexicon 

r1 r2 r3 r4 s1 s2 
/Y?/ /Y?/ /sY/ /Y?/ /-?/ /-?/

 

The underlying form /ss/ is missing from the learned lexicon, and consequently the 

learner has not derived the ranking conditions to explicitly ensure that any input 

containing /ss/ as the root will map to an output allowed in the target language. It happens 

that this language hypothesis will not overgenerate, however, as the ranking derived by 



241	
	

	
	

BCD ensures that these inputs – /ss-s/ and /ss-Y/ – map to the same output as in the 

target. This will not always be the case, especially for language hypotheses which assign 

a subset of the rich base to their lexica in the second way: by standard application of 

inconsistency detection methods for setting features. 

The learning data for target L78 produce just such a language hypothesis. L78 has 

predictable stress: each word is [(X)(sY)]. The learning data for this language are given 

in (333).  

(333) Learning data for L78 

XsY r1s1 XsY r1s2 XsY r2s1 XsY r2s2 XsY r3s1 XsY r3s2 XsY r4s1 XsY r4s2 
 

L78 is the only language in the typology that produces this learning data – it has no 

globally ambiguous counterparts – yet the learner will pursue language hypotheses for 

each of the three interpretations of the overt form XsY in accordance with the standard 

response to error detection on an uncommitted overt form. LgHyp78, corresponding to 

the target, commits to the interpretation [(X)(sY)]. The learner derives the support in 

(334) from phonotactic information, and because stress is predictable, the lexicon, in 

(335), leaves all features unset. 

(334) LgHyp78 support 

ERC# 
Morph. 
word Input Winner Loser R

M
O

S
T
 

P
A

R
S

E
-σ

 

I A
M

B
 

*L
A

P
S

E
 

L
M

O
S

T
 

A
F

L
 

F
T
-B

IN
 

F
N

F 

M
A

X
S

T
R

 

2P r1s1 /ss-Y/ [(X)(sY)] [(Y)(sX)] W       L       W 

3P r1s1 /ss-Y/ [(X)(sY)] [(sY)s] W W     L L L L W 

1P r1s1 /ss-Y/ [(X)(sY)] [s(Ys)]   W W       L L W 
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(335) LgHyp78 final lexicon 

r1 r2 r3 r4 s1 s2 
/??/ /??/ /??/ /??/ /-?/ /-?/

 

In a second language hypothesis, LgHyp78-B, the learner commits to the 

interpretation [(Xs)(Y)] for the overt form and derives the support in (336). 

(336) LgHyp78-B support 

ERC# 
Morph. 
word Input Winner Loser R

M
O

S
T
 

P
A

R
S

E
-σ

 

*L
A
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S

E
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T
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I A
M

B
 

M
A

X
S

T
R

 

L
M

O
S

T
 

A
F

L
 

1P r1s1 /ss-Y/ [(Xs)(Y)] [s(Ys)]   W   L L   W L L 

2P r1s1 /ss-Y/ [(Xs)(Y)] [(X)(sY)]         W L   L L 

3P r1s1 /ss-Y/ [(Xs)(Y)] [(X)(Ys)]             W L L 

 

Whereas [(X)(sY)] is a potential optimum for any input, [(Xs)(Y)] is not. It is 

harmonically bounded by [(X)(Ys)] for all candidates except two: those containing the 

inputs /ss-Y/ and /Ys-Y/. Because it is impossible for every input in the rich base of the 

typology to map to [(Xs)(Y)], LgHyp78-B does not have a corresponding target language 

containing just this single output in its inventory, yet the learner can only rule out this 

language hypothesis given proof of its inconsistency. As long as it is possible to set the 

features of the morphemes to values that can map to [(Xs)(Y)], the hypothesis will 

remain consistent and it will survive. The ODL forces this outcome. 

Each root is set to /?s/ using the test candidate /s -Y/[(Xs)(Y)], which is 

harmonically bounded by /sY-Y/[(X)(Ys)]. Then, both suffixes can be set to /-Y/ by test 
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candidate /ss- / [(Xs)(Y)], which is harmonically bounded by /ss-s/[(X)(Ys)]. The final 

lexicon appears in (337).  

(337) LgHyp78-B final lexicon 

r1 r2 r3 r4 s1 s2 
/?s/ /?s/ /?s/ /?s/ /-Y/ /-Y/

 

LgHyp78-B survives because its lexicon allows for just the two inputs that can map to 

[(Xs)(Y)].  It explains all the observed learning data, and therefore is successful from the 

perspective of the learner despite the fact that it would overgenerate for a rich base. The 

table in (338) shows that there are five languages in the Stress typology that include the 

mappings /ss-Y/[(Xs)(Y)] and /Ys-Y/[(Xs)(Y)]. The ranking learned for LgHyp78-B 

corresponds to L95. 

(338) Stress system languages containing /ss-Y/[(Xs)(Y)]  and /Ys-Y/[(Xs)(Y)] 

 /ss-s/ /Ys-s/ /sY-s/ /YY-s/ /ss-Y/ /Ys-Y/ /sY-Y/ /YY-Y/ 

L35 [s(Ys)] [s(Ys)] [s(Ys)] [s(Ys)] [(Xs)(Y)] [(Xs)(Y)] [s(Ys)] [s(Ys)] 

L41 [s(Ys)] [(Ys)s] [s(Ys)] [s(Ys)] [(Xs)(Y)] [(Xs)(Y)] [s(Ys)] [s(Ys)] 

L44 [s(Ys)] [(Ys)(X)] [s(Ys)] [s(Ys)] [(Xs)(Y)] [(Xs)(Y)] [s(Ys)] [s(Ys)] 

L89 [(X)(Ys)] [(Ys)(X)] [(X)(Ys)] [(X)(Ys)] [(Xs)(Y)] [(Xs)(Y)] [(X)(Ys)] [(X)(Ys)] 

L95 [(X)(Ys)] [(X)(Ys)] [(X)(Ys)] [(X)(Ys)] [(Xs)(Y)] [(Xs)(Y)] [(X)(Ys)] [(X)(Ys)] 

 

Following Tesar (2002), the r-measure can prove useful for deciding which of the two 

language hypotheses learned from the data in (333) to keep. Both language hypotheses 

find a way to produce the observed forms, but whereas LgHyp78 uses the ranking to 

derive the observed inventory, LgHyp78-B derives the observed inventory only by 

severely limiting the underlying forms in the lexicon and learns a less-restrictive ranking 

as a result. These different explanatory strategies are reflected in the r-measures of these 
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language hypotheses. For the ranking learned in LgHyp78, in (339), the r-measure is 8, 

the highest r-measure possible for this constraint set. The less-restrictive ranking learned 

for LgHyp78-B, in (340), has an r-measure of 6.  By keeping the language hypothesis 

with the greatest r-measure, the learner keeps the one that corresponds to the intended 

target of the learning data. 

(339) LgHyp78 ranking: r-measure = 8 

{RMOST,  PARSE-σ, IAMB, *LAPSE}  >> {LMOST, AFL, FT-BIN, FNF} >> 

MAXSTRESS 

 

(340) LgHyp78-B ranking: r-measure = 6 

{RMOST,  PARSE-σ, *LAPSE}  >> {FT-BIN, FNF} >> IAMB  >>  MAXSTRESS >> 

{LMOST, AFL} 

 

The learning data of the Stress system produce 14 language hypotheses like 

LgHyp78-B from 12 different datasets. Each language hypothesis corresponds to a 

superset language in the typology. Each of these language hypotheses has a lower r-

measure than at least one sibling branch that does correspond to a true target of the 

learning data. Eliminating all branches but the one with the highest r-measure as a final 

learning step would eliminate all 14 of these language hypotheses. 

The r-measure is introduced here as a potential criterion for choosing among language 

hypotheses; however, it is not ideal, as in many cases it fails to provide a meaningful 

justification for the choice. This selection procedure would apply to language hypothesis 

branches, which account for the same data and are explicitly not related by restrictiveness 
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to each other: no branch can be a subset of another, as their grammars are responsible for 

generating the same set of overt forms.. Two language hypothesis branches may differ in 

their r-measures, therefore, yet both be as restrictive as necessary to generate all and only 

the observed forms of their corresponding target languages. 

To illustrate, compare the two language hypotheses corresponding to L76 and L69. 

The stratified hierarchy learned for LgHyp76 appears with the structural commitments in 

(341). The ranking of LgHyp69 and its structural commitments, which differ from 

LgHyp76’s, follow in (342). As these are branch hypotheses derived from the same 

learning data, the inventories of both language hypotheses are the same and include only 

XsY, YsX, and XYs.  

(341) LgHyp76: r-measure = 4 

a. {PARSE-σ, *LAPSE} >> {AFL, FT-BIN} >> MAXSTRESS >> RMOST >> 

IAMB >> {FNF, LMOST} 
b. [(X)(sY)], [(Y)(sX)], [(X)(Ys)] 

 

(342) LgHyp69: r-measure = 3 

a. {PARSE-σ, *LAPSE} >> FT-BIN  >> MAXSTRESS >> RMOST >>{LMOST, 
AFL, IAMB} >> FNF 

b. [(X)(sY)], [(Ys)(X)], [(X)(Ys)] 

 

LgHyp76’s ranking has an r-measure of 4, compared to the r-measure of 3 for 

LgHyp69’s ranking, but the values do not reflect a meaningful difference in 

restrictiveness. Given the rich base of the Stress system, both rankings yield all and only 

the committed structural interpretations of the target languages corresponding to their 
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respective language hypotheses. Random selection of a language hypothesis to keep 

would be just as valid in this case as selection based on r-measure. The same is true for 

the language hypotheses learned in chapter 3, corresponding to L4, L5, and L6. The 

rankings for these language hypotheses, repeated below, all have an r-measure of 2. 

There would be no harm in randomly keeping just one of these, as each corresponds to a 

language in the typology and none will overgenerate, but it is also not clear that there is 

anything to be gained.  

(343) LgHyp4 (15A1BC2): r-measure = 2 

FT-BIN >> PARSE-σ >> MAXSTRESS >> IAMB >> {RMOST, FNF}>> {LMOST, AFL, 
*LAPSE} 

 

(344) LgHyp5 (15A1BC1): r-measure = 2 

FT-BIN >> PARSE-σ >> MAXSTRESS >> RMOST >> {LMOST, AFL, IAMB} >> 

{FNF, *LAPSE} 

 

(345) LgHyp6 (15A1BC1): r-measure = 2 

IAMB >> FNF>> MAXSTRESS >> {RMOST, PARSE-σ, FT-BIN} >> {LMOST, AFL, 
*LAPSE} 

 

To the extent that it is worthwhile to maintain a single language hypothesis after 

learning ends, the r-measure provides a criterion – albeit an imperfect one – to distinguish 

between options. At its most useful, it will cull out explanations like LgHyp78-B, which 

fit the data by limiting the learned lexicon to a subset of the underlying forms in the rich 
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base. Otherwise, the r-measure provides no better justification than random selection for 

keeping one language hypothesis over another. 

4.6 CONCLUSION	

Evaluating the success of a learner depends in great part on understanding the 

languages for which the learner is responsible. Most languages in the Stress system are 

like L4, L5, and L6, from Chapter 3, and the Commitment-Based Learner (CBL) readily 

derives their corresponding language hypotheses using the standard procedures outlined 

in that chapter. However, a learner must be able to derive language hypotheses for all 

languages, including those whose complex relationships to one another complicate and 

interfere with the standard learning procedures. This chapter thus completes the 

illustration of the CBL that was begun in Chapter 3, by introducing the data for these 

challenging relationships and demonstrating how the CBL handles them. 

Most importantly, this chapter introduces the previously unrecognized paradigmatic 

equality relationship. Paradigmatic equals are globally lexically-ambiguous with each 

other, with the consequence that the learning data for one can yield a language hypothesis 

consistent with the other. This similarity is problematic in particular for a learner that sets 

features by inconsistency detection. The language hypotheses for paradigmatic equals 

ultimately reach a point of persistent uncertainty that can only be overcome by adding 

new information in the absence of certainty. 

The solution proposed here is to add a committed mapping, just as the learner does 

routinely during phonotactic learning, with the ERC by Consistent Mismatch (ECM) 

procedure. The mapping contributes new ranking information and disambiguates the 



248	
	

	
	

languages, enabling the learner to continue setting features. This method works 

successfully in all nine pairs of paradigmatic equals in the Stress typology; however, 

much further investigation remains about both the phenomenon of paradigmatic equality 

and the options for resolving global lexical ambiguity.  

The Stress system also contains paradigmatic subsets, which are likewise problematic 

for setting features by inconsistency detection. For the languages discussed in this 

chapter, the problem is not simply that there is a superset language which interferes with 

setting features in the subset language, but that the mappings permitted by the subset 

language itself are too broad to permit the necessary feature-setting by inconsistency 

detection. Some test candidates in the subset language are actual mappings in the 

language, and therefore they can never be inconsistent with the corresponding language 

hypothesis. The solution advocated here is Tesar’s Fewest Set Features procedure, which 

sets features one at a time to match their surface correspondents. Furthermore, the chapter 

has demonstrated that ECM and Fewest Set Features can work in combination to learn 

languages that participate in both kinds of paradigmatic relationships. 

The illustration of the CBL is not complete without understanding the products of its 

learning: namely, the consistent language hypotheses derived from a single dataset.  In 

particular, this chapter exposes the sensitivity of the CBL to the morpheme behaviors 

expressed in the learning data. From one set of data, the learner will derive all languages 

that have exactly the same morpheme behaviors, down to the same structural 

interpretations – paradigmatic equals, the globally lexically ambiguous languages – and 
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all the languages that have the same morpheme behaviors, considering only overt forms – 

the globally surface ambiguous languages.  

Finally, this chapter has shown how the CBL allows for some final branches to 

accommodate learning data by limiting the range of underlying forms in the lexicon, 

resulting in a less-restrictive ranking that overgenerates when predicted across the rich 

base. The r-measure is considered as a criterion for making a final selection between 

branches when learning concludes. 
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5 CONCLUSION	

This dissertation has introduced the Commitment-Based Learner, or CBL, which 

simultaneously learns a ranking and lexicon for a target language from its overt forms by 

making incremental commitments to structural information. The CBL commits to 

structural interpretations for overt forms, feature values in the lexicon, and input-output 

mappings as W-L pairs in a stored support. A commitment allows the learner to advance 

a language hypothesis from a position of certainty with respect to the committed 

structure, and all information entailed by that commitment becomes incorporated into the 

hypothesis for further learning. With these commitments the learner can exploit the 

mutual dependency of structural interpretations and underlying forms, using 

inconsistency detection to progressively narrow the space of possible languages 

consistent with the observed data.  

Language hypotheses for the CBL store these committed structures, but they also 

form a larger structure among themselves as branches from the initial language 

hypothesis Hyp0. This branching structure, a component of the CBL’s incorporation of 

the Inconsistency Detection Learner (IDL) is the key to managing structural ambiguity. 

Whereas the learner can make piecewise commitments to individual ranking 

requirements and single feature values within a morpheme, commitments to structural 

interpretations are made in full, not by the foot, because there is no clear way to 

determine where a foot in isolation should be placed to ultimately form the most 

harmonic interpretation.  
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Contrast this with setting features in an output-driven map by inconsistency detection. 

The relative similarity lattice for an observed form defines the range of possible 

underlying forms. Most importantly, there is a “most similar” underlying form and a 

“least similar” underlying form defined in the lattice, and while these forms are 

independent of the current ranking, they provide a structure that can be used with the 

ranking to determine which particular features must be set. There is no counterpart to the 

relative similarity lattice for learning structural interpretations, because what is optimal, 

or most harmonic, depends entirely on the ranking. 

Since the piecewise commitment approach is unavailable for structural 

interpretations, the learner must commit to an entire interpretation, but which one? 

Extending separate language hypothesis branches for each interpretation settles this 

problem. Thus, as a general strategy, the CBL makes piecewise commitments wherever 

possible; however, if a hidden structure cannot be decomposed into its component parts, 

the CBL branches to evaluate the different grammars resulting from different 

commitments for a complete structure.  

5.1 SUCCESS	AND	EFFICIENCY	OF	COMMITMENT‐BASED	LEARNING	

In computer simulations performed over a typology of the 97 languages in the Stress 

system, the Commitment-Based Learner successfully learns each language from its overt 

forms, including all globally ambiguous languages. A target is successfully learned if the 

learner derives a lexicon and restrictive ranking that generate the target’s outputs, 

including correct structural interpretations. More precisely, the learner must set in the 
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lexicon the underlying values of all contrastive features in the target and derive a 

restrictive ranking consistent with the stratified hierarchy of the target’s skeletal basis.  

It is plain that the CBL performs more efficiently than an exhaustive search. The 

Stress system contains nine constraints, giving rise to 362,880 different possible rankings. 

It contains four disyllabic roots and two monosyllabic suffixes, with each syllable bearing 

a binary stress feature, so that 1024 different lexica are possible. In all, there are 

371,589,102 different systems possible from these grammars and lexica. By comparison, 

for all the simulations performed, the maximum number of language hypothesis branches 

created for any one dataset is 13.  

Just how efficient the CBL is in relation to other learners remains an open question, 

but even without comparing figures, the CBL’s reliance on inconsistency detection with 

Multi-Recursive Constraint Demotion (MRCD) suggests that it will fare favorably 

against its competitors. Use of inconsistency detection enables the learner to eliminate 

large spaces of grammar hypotheses at once and permanently, so that new information is 

evaluated against only the grammar hypotheses that include the previously committed 

structures. The cost of the CBL using inconsistency detection and MRCD is the required 

storage structures: a support for W-L pairs and a separate lexicon; however, as the 

number of stored commitments grows, the learner’s ability to detect inconsistencies 

generally grows as well. Storing these relatively few commitments is justified by the 

work they do to pinpoint the possible grammar hypotheses for the data.  

In the learning simulations for the Stress system, the CBL stores an average of 43 W-

L pairs for all the language hypothesis branches created from a single dataset; the 
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maximum number of W-L pairs stored for any one dataset is 101. For lexical 

commitments, the CBL sets 15 features on average across all the branches created for a 

dataset; the maximum number of set features is 34. These are already low numbers 

compared to the roughly 370 million systems possible from the constraints and 

morphemes used in the Stress system, but recall that the CBL does more than learn a 

language consistent with the data: it learns all of the languages consistent with the data, 

including the globally ambiguous ones. If the CBL stopped after deriving one restrictive 

language hypothesis consistent with the data, these numbers would be reduced somewhat 

further. 

To compare the CBL with other error-driven learners, such as those based on the 

Gradual Learning Algorithm (GLA), one could ask, in the manner of Tesar (1997, 2000), 

how many iterations of Recursive Constraint Demotion (RCD) must the learner make to 

derive the ranking of the target?  Apoussidou’s GLA learner is the most relevant error-

driven example because it shares the CBL’s goal of learning both a ranking and 

underlying forms, but without the CBL’s separate support and lexicon structures. In 

simulations, this learner is given repeated exposures to data to learn the ranking and the 

underlying forms of a handful of morphemes. Unfortunately, the number of updates 

required before converging on a ranking is not stated, but extrapolating from the fact that 

1 million forms were processed in similar simulations suggests that there were many 

thousands of updates.  Although this example cannot provide a direct comparison in 

efficiency between these learners, it seems unlikely that the maximum 101 applications 

of RCD (one for each W-L pair stored) required by the CBL to learn a language in the 

Stress system could be matched by the updates required by this GLA learner.  
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Another basis for comparison is on the number of forms processed. Jarosz (to appear) 

takes this approach in order to create a baseline for efficiency using a random search 

learner. The baseline is offered for learning a ranking from structurally ambiguous data 

where underlying forms are not at issue. As explained in chapter 1, the random search 

learner is surprisingly efficient, especially as compared to exhaustive search, but 

simulations of the Inconsistency Detection Learner (IDL) over the same kind of learning 

data show that the IDL is extremely efficient, as judged by RCD applications. Again, 

extrapolating from the RCD applications given the number of unique words in the data 

suggests that the IDL requires far fewer than the 10,000 forms needed for the random 

search learner to succeed, as explained in section 1.3.4. While the simulations of the CBL 

did not keep track of how many forms were processed, the CBL’s use of inconsistency 

detection suggests that it will compare favorably to a random search learner as well, 

especially one that must learn a restrictive ranking in order to succeed. 

Finally, the CBL’s inconsistency detection strategy compares quite favorably to a 

learner that evaluates every grammar and lexicon possibility, as in the early 

implementation of the Maximal Likelihood Learning of Lexicons and Grammars, or 

MLG (Jarosz 2006). Eliminating many possibilities at the cost of stored commitments is 

surely more efficient than updating every possibility after every observed form. The later 

sampling versions of the MLG appear to be more efficient, but do not yet achieve 100% 

success in simulations (Jarosz, to appear).  

In sum, while it is not possible at this time to make a direct comparison between the 

CBL and these other learners, the simulations executed over the Stress system typology 
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suggest that the CBL is an efficient learner. However, it is true that the small size of the 

Stress system has helped to limit the number of hypotheses constructed and the numbers 

of stored ERCs and set features. Increasing the size of the system will certainly increase 

these numbers, and it will be enlightening to see in larger systems how much 

inconsistency detection serves to reduce the number of consistent, simultaneous 

hypotheses the learner must process at any given time. The answer is likely to be very 

much, as suggested by the performance of the CBL here and by the performance of the 

original IDL. 

5.2 AREAS	FOR	FURTHER	WORK	

5.2.1 GLOBAL	AMBIGUITIES	AND	PARADIGMATIC	RELATIONSHIPS	

This dissertation has also expanded the understanding of global ambiguity among 

languages by introducing paradigmatic equality, a previously unrecognized relationship 

exhibited by nine pairs of languages in the Stress system typology. Paradigmatic equality 

is a property of global lexical ambiguity, evinced by languages with different rankings 

and different input-output mappings, yet with all the same morpheme behaviors, 

including structural interpretations. In contrast, globally surface-ambiguous languages 

have the same morpheme behaviors as realized by overt forms only. Global ambiguity 

can thus be defined as the sharing of identical morpheme behaviors between two 

languages, with surface and lexical ambiguity distinguished by whether the structural 

interpretations assigned to the overt realizations of the morpheme behaviors are also 

identical in the languages. The dissertation additionally has shown that a language that is 

globally lexically ambiguous with one language may also be globally surface-ambiguous 

with another. 
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Scaling up the system for evaluation should also provide more insight into the 

paradigmatic relationships discussed in chapter 4. Do paradigmatic equals multiply or 

simply disappear as the Stress system grows?  If they disappear, what is the property of 

the Stress system as it is defined in this dissertation that enables them to exist within it? If 

they increase, and if they appear in other systems as well, then how does the ERC by 

Consistent Mismatch procedure advocated in 4.1.2 perform in learning them?   

Additionally, within the Stress system seven of the nine paradigmatic equals were 

also paradigmatic subsets of other languages. If the system were larger, could a 

paradigmatic superset itself be a paradigmatic subset of yet another language? And 

naturally, what are the consequences for the learner if paradigmatic subsets could be 

nested in this way? It should be noted that although paradigmatic equality could be 

unique to the Stress system, paradigmatic subsets were first discovered within the 

Stress/Length system by Tesar (to appear), and therefore it would not be unexpected to 

find that they exist in other systems and in larger versions of the Stress system as well.  

Finally, if paradigmatic equality turns out to exist in other systems, does the 

relationship manifest empirically, and if so, how? One possibility is that paradigmatic 

equality is the source of intra-speaker variation30, potentially identifiable through a Wug 

test (Gleason 1958). Chapter 4 discusses an implementation of ERC by Consistent 

Mismatch that branches when there is more than one informative consistent mismatch 

candidate. As a result of branching, the learner derives the two language hypotheses that 

correspond to the paradigmatic equals. Speakers who vary between two responses on a 

given Wug test could be demonstrating alternating choices between these hypotheses. 
																																																													
30 I thank Shigeto Kawahara for suggesting this possibility. 
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5.2.2 OTHER	LEARNING	ISSUES	

There are several major issues for learning that this implementation of the CBL does 

not address. First, there is the question of how to model learning stages beyond the rough 

phonotactic/ non-phonotactic divide presented in this dissertation. The CBL is capable of 

adopting learning strategies that can model stages of acquisition as long as they allow for 

piecewise, incremental commitments. For example, the Error-Selective Learner (ESL: 

Tessier 2007) models intermediate stages of phonological development by waiting for a 

critical mass of errors before triggering error-driven learning. The ESL makes use of an 

additional structure – the Error Cache, for temporary error storage – but otherwise, its use 

of a support and error-driven learning make it compatible for incorporation into the 

Commitment-Based Learner.  

Similarly, this implementation of the CBL has deferred the work of learning the 

morphological decompositions of the observed forms. In these simulations, the learner 

has access to morphological information as soon as phonotactic learning ends, but this 

information must itself be learned. It is likely, however, that the commitment-based 

approach can be extended to manage hidden morphological structure in addition to the 

hidden prosodic and lexical structures handled in this dissertation. For example, 

knowledge of morphemic alternations and contrasts is not essential for setting features, as 

the CBL can use the techniques of the Output-Driven Learner to identify what underlying 

feature values must be in some single forms. It is conceivable that features set from single 

forms could be used to identify like or unlike morphemes in other forms. 
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5.2.3 OUTPUT‐DRIVENNESS	AND	THE	CBL	

This dissertation has demonstrated the success of the CBL in learning the languages 

of a reasonably small system that nonetheless exhibits properties that learners must be 

sensitive to, such as restrictiveness relations. Applying the CBL to a scaled-up version of 

the Stress system, as well as to other systems with a wider, if not more interesting, array 

of constraints will help to support through concrete simulations the assertion here that 

this is a successful learner. Lurking behind this assertion, however, is the big question 

raised by the CBL’s exploitation of the property of output-drivenness: what does the CBL 

do when it confronts the data of a language whose map is not output-driven, such as one 

that includes chain shifts?  

What is essential to the CBL is its ability to make incremental commitments to 

ranking requirements and feature values. Incorporating the methods of the Output-Driven 

Learner (ODL) offers the CBL an efficient means of making these lexical commitments, 

but the CBL could adopt an alternative approach that achieves the same effect. The 

alternative must be able to function using only the information available within the 

CBL’s language hypotheses: the structural information provided by overt forms and the 

ranking information provided by W-L pairs in the support. For the ODL, an overt form is 

used to define the complete space of possible lexical hypotheses for a word and stored 

ranking information narrows that space through inconsistency detection, enabling 

features to be set independently. Non-output-driven maps will change the space of lexical 

hypotheses, but any alternative feature-setting component incorporated into the CBL also 

will need to be able to search this space using only partial ranking information. An 

efficient alternative to the ODL is likely to find a way to structure the space, or organize 
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the search within it, in a way that continues to allow inconsistency detection a significant 

role in identifying underlying feature values. 

5.3 FINAL	SUMMATION	

The Commitment-Based Learner introduced in this dissertation has been shown in 

simulations to successfully manage structural ambiguity while learning a lexicon and 

grammar, an accomplishment that requires the learner to simultaneously address the 

hidden structures of surface representations and the lexicon. The computer simulations 

provide a rigorous test of the CBL: the linguistic system used in the simulations generates 

languages with significant interaction between the hidden structures, and the CBL is 

tested for its ability to learn each language in the constructed Stress system typology from 

its overt forms alone. The CBL succeeds in every case.  

The key feature of the CBL is its commitment to partial information, in particular to 

the structural interpretations of overt forms, lexical feature values, and ranking 

conditions. The growth of the stores of these commitments is both a sign that a language 

hypothesis is developing and the primary means of that development: the CBL can begin 

learning without any prior commitments, but as commitments are made, they provide a 

foundation for efficiently inferring other information. At any given moment in the 

learning process, a language hypothesis can be committed to the structural interpretations 

for some overt forms but not others, the underlying values of some features but not 

others, and the ranking information that resolves some conflicts, but not others. 

Successful language hypotheses need not have commitments associated with all 

structures, as long as the stored commitments can generate all of the observed data and 
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the structural “gaps” do not allow for errors. Thus, a feature need not have a committed 

underlying value if its value always neutralizes, and a hierarchy need not be a total 

ranking as long as no conflicts remain and all observed forms can be generated without 

error. All successful language hypotheses created in learning simulations for the Stress 

system include committed interpretations for each overt form, but even these need not be 

necessary as long as the other commitments ensure that only one surface representation 

can be generated for a given form. 

Finally, the typology used to simulate the CBL has not only offered a test of the 

learner, it has exposed the phenomenon of paradigmatic equality. This dissertation has 

related paradigmatic equality to the previously-recognized paradigmatic subset 

relationship and established differences between the two. Both relationships are identified 

within the Stress system typology, in some cases within the same language, and the 

CBL’s strategies for learning these languages are analyzed and applied with successful 

outcomes. Restrictiveness is traditionally characterized by a subset relation between sets 

of outputs, but paradigmatic equals and subsets involve substantially more complex 

relationships of restrictiveness between language paradigms which any learner of 

paradigmatically structured phonological systems must address. 

. 
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APPENDIX	A	 SUPPORTS	FOR	SKELETAL	BASES	
	

The following are the supports for the skeletal bases of consistent mappings for 

tírasim and mèvugár from section 2.1. The combination labels given refer to chart (42) in 

section 2.1. 

A‐1 COMBINATION	(42)F:	/TIRAS+IM/[(TÍRA)SIM]	AND	
/MEVUGÁR/[(MÈVU)(GÁR)]	

	

Input W~L M
A

X
S

T
R

 

F
N

F 

P
A

R
S

E
-σ

 

I A
M

B
 

F
T
-B
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O
S

T
 

R
M

O
S

T
 

*L
A

P
S

E
 

/mevugár/ [(mèvu)(gár)] ~ [me(vúgar)] W L W  L L L   
/tiras+im/ [(tíra)sim] ~ [(tirá)(sìm)]  W L L W W   L 
/mevugár/ [(mèvu)(gár)] ~ [me(vugár)]   W L L L L  W 
/tiras+im/ [(tíra)sim] ~ [ti(rásim)]      W W L L 

 

A‐2 	COMBINATION	(42)I:	/TÍRAS+IM/[(TÍRA)SIM]	AND	
/MEVUGAR/[(MÈ)(VUGÁR)]	

	

Input W~L M
A

X
S

T
R

 

R
M

O
S

T
 

I A
M
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L
 

L
M
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E
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*L
A

P
S

E
 

F
N

F 

F
T
-B

IN
 

/tíras+im/ [(tíra)sim] ~ [ti(rasím)] W L L W W     W   
/tíras+im/ [(tíra)sim] ~ [(tí)rasim]   W L     W   W W 
/mevugar/ [(mè)(vugár)] ~ [(mevú)gar]   W   L L W   L L 
/mevugar/ [(mè)(vugár)] ~ [(mè)(vúgar)]     W         L   
/mevugar/ [(mè)(vugár)] ~ [me(vúgar)]     W     W   L L 
/tíras+im/ [(tíra)sim] ~ [(tirá)(sìm)]       W   L L W W 
/mevugar/ [(mè)(vugár)] ~ [me(vugár)]           W W L L 
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A‐3 COMBINATION	(42)K:	/TÍRAS+IM/[(TÍ)RASIM]	AND	
/MEVUGAR/[(MÈ)(VUGÁR)]	

	

Input W~L M
A

X
S

T
R
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S
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L
M

O
S
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A
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S
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F
N

F 

F
T
-B
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/tíras+im/ [(tí)rasim] ~ [ti(rasím)] W   L W W L     L 
/tíras+im/ [(tí)rasim] ~ [(tíra)sim]   W L     L   L L 
/mevugar/ [(mè)(vugár)] ~ [(mevú)gar]     W L L W   L L 
/tíras+im/ [(tí)rasim] ~ [(tí)(rasìm)]       W   L L W   
/mevugar/ [(mè)(vugár)] ~ [me(vugár)]           W W L L 

 

A‐4 COMBINATION	(42)M:	/TÍRAS+IM/[(TÍRA)SIM]	AND	
/MEVUGÁR/[(MÈ)(VUGÁR)]	

	

Input W~L M
A

X
S

T
R

 

A
F

L
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M
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S
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F
N

F 

F
T
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/tíras+im/ [(tíra)sim] ~ [ti(rasím)] W W W L L     W   
/mevugár/ [(mè)(vugár)] ~ [(mevú)gar] W L L W   W   L L 
/tíras+im/ [(tíra)sim] ~ [(tíra)(sìm)]   W       L L W W 
/tíras+im/ [(tíra)sim] ~ [(tí)rasim]       W L W   W W 
/mevugár/ [(mè)(vugár)] ~ [me(vugár)]           W W L L 

 

A‐5 COMBINATION	(42)N:	/TÍRAS+IM/[(TÍRA)SIM]	AND	
/MEVUGÁR/[(MÈVU)(GÁR)]	

	

Input W~L M
A

X
S

T
R

 

F
N
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M

O
S

T
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S

E
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A
F

L
 

L
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O
S
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/tíras+im/ [(tíra)sim] ~ [ti(rasím)] W W L     L   W W 
/mevugár/ [(mèvu)(gár)] ~ [me(vúgar)] W L   W     L L L 
/tíras+im/ [(tíra)sim] ~ [(tíra)(sìm)]   W   L L   W W   
/mevugár/ [(mèvu)(gár)] ~ [me(vugár)]       W W L L L L 
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A‐6 COMBINATION	(42)O:	/TÍRAS+IM/[(TÍ)RASIM]	AND	
/MEVUGÁR/[(MÈ)(VUGÁR)]	

	

Input W~L M
A

X
S

T
R
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M

B
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L
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M
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S
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N
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F
T
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/tíras+im/ [(tí)rasim] ~ [ti(rasím)] W   W W L L     L 
/mevugár/ [(mè)(vugár)] ~ [(mevú)gar] W   L L W W   L L 
/tíras+im/ [(tí)rasim] ~ [(tíra)sim]   W     L L   L L 
/tíras+im/ [(tí)rasim] ~ [(tí)(rasìm)]     W     L L W   
/mevugár/ [(mè)(vugár)] ~ [me(vugár)]           W W L L 
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APPENDIX	B	 RUBY	CODE	FOR	THE	CBL	

B‐1 STRESS_FEAT.RB	

 

# Author: Crystal Akers, based on Bruce Tesar's sl/stress_feat 

 

require 'feature' 

 

module SF 

 

  # A stress feature is a Feature of type STRESS. 

  # It has two possible feature values, represented 

  # by the constants UNSTRESSED, MAIN_STRESS. 

  class Stress_feat < Feature 

    #-- Symbols are used as lightweight, readable constants ++ 

 

    # Feature type stress 

    STRESS = :stress 

    # Feature value unstressed syllable 

    UNSTRESSED = :unstressed 

    # Feature value main stress syllable 

    MAIN_STRESS = :main_stress 
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    # Returns a new stress feature, with the feature value unset. 

    def initialize 

      super(STRESS) # Pass the feature type to Feature#initialize. 

    end 

 

    # Returns true if the feature instance is unstressed; false otherwise. 

    def unstressed? 

      self.value == UNSTRESSED 

    end 

 

    # Returns true if the feature instance is main_stress; false otherwise. 

    def main_stress? 

      self.value == MAIN_STRESS 

    end 

 

    # Sets the feature to the value UNSTRESSED. 

    def set_unstressed 

      self.value = UNSTRESSED 

      self 

    end 
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   # Sets the feature to the value MAIN_STRESS. 

    def set_main_stress 

      self.value = MAIN_STRESS 

      self 

    end 

 

    # Returns a string representation of the feature: 

    # "stress=<value>" 

    def to_s 

      return "stress=unset" if unset? 

      return "stress=unstressed" if unstressed? 

      return "stress=main_stress" if main_stress? 

    end 
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  #-- Generic interface ++ 

 

    # Passes each possible value for this feature to the given code block, 

    # one at a time (iterator style). This generic interface should be 

    # used by all feature types. 

    def each_value 

      yield UNSTRESSED 

      yield MAIN_STRESS 

    end 

 

  end # class Stress_feat 

  

end # module SF 
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B‐2 SYLLABLE.RB	

 

 # encoding: UTF-8 

#  

# Author: Crystal Akers, based on Bruce Tesar's sl/syllable 

# 

 

require 'sf/stress_feat' 

 

module SF 

 

  # A syllable for the SF system has one feature, stress. It also can have an 

  # affiliated morpheme. 

  # 

  # Learning algorithms are expected to use the "generic" interface, consisting 

  # of the methods #each_feature() and #get_feature(). The method #each_feature() 

  # is an iterator that yields each feature of the syllable in turn, 

  # allowing other routines to work with syllables without knowing in advance 

  # how many or what types of features they have. 

  class Syllable 
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    # Returns a syllable, initialized to the parameters if provided. Otherwise, 

    # returns a syllable with unset features, and an empty string for the 

    # morpheme. 

    def initialize(stress=Stress_feat.new, morph="") 

      @stress = stress 

      @morpheme = morph # label of the morpheme this syllable is affiliated with. 

    end 

 

    # A duplicate makes copies of the features, so that they may be altered 

    # independently of the original's features. 

    def dup 

      self.class.new(@stress.dup, @morpheme) 

    end 
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    # Protected accessors, only used for #==() 

    attr_reader :stress # :nodoc: 

    protected :stress # :nodoc: 

 

    # Returns true if this syllable matches _other_, a syllable, in the value of 

    # the stress feature and morpheme identity. 

    def ==(other) 

      return false unless other.class == self.class 

      return false unless @stress==other.stress 

      return false unless @morpheme==other.morpheme 

      return true 

    end 

 

    # The same as ==(other). 

    def eql?(other) 

      self==other 

    end 

 

    # Returns true if the syllable's stress feature has the value main_stress. 

    def main_stress? 

      @stress.main_stress? 

    end 
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    # Returns true if the syllable's stress feature has the value unstressed. 

    def unstressed? 

      @stress.unstressed? 

    end 

 

    # Returns true is the stress feature is unset. 

    def stress_unset? 

      @stress.unset? 

    end 

 

    # Returns the morpheme that this syllable is affiliated with. 

    def morpheme 

      @morpheme 

    end 

 

    # Sets the syllable's stress feature to the value main_stress. 

    def set_main_stress 

      @stress.set_main_stress 

      self 

    end 
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 # Sets the syllable's stress feature to the value unstressed. 

    def set_unstressed 

      @stress.set_unstressed 

      self 

    end 

 

    # Set the morpheme that this syllable is affiliated with to _m_. 

    def set_morpheme(m) 

      @morpheme = m 

      self 

    end 

 

    # Returns the number of syllables in this "word element". 

    # A syllable always contains 1 syllable. This allows us to 

    # easily add up the number of syllables in a word, without 

    # having to worry about whether each element of the word is 

    # an unfooted syllable or a foot: each element knows how 

    # to answer the question "how many syllables do you have?" 

    def syllable_count 

      return 1 

    end 
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# Iterates over the single syllable. 
    def each_syllable 

      yield self 

    end 

 
    # Returns a string representation of the syllable, consisting of one 

    # character, denoting the stress feature: 

    # 

    # unstressed:: [s] 

    # main stress:: [Y] 

    # unset:: [?] 

    def to_s 

      stress_s = case 

      when main_stress? then "Y" 

      when unstressed? then "s" 

      when stress_unset? then "?" 

      end 

      return stress_s 

    end 
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def to_gv 

      base = "morpheme_type_not_defined" 

      if morpheme.root? then 

        base = "p" 

      elsif morpheme.suffix? then 

        base = "k" 

      elsif morpheme.prefix? then 

        base = "t" 

      end 

      stress_s = case 

      when main_stress? then "á" 

      when unstressed? then "a" 

      when stress_unset? then "?" 

      end 

      return base + stress_s 

    end 

 

    # Iterator over the features of the syllable. 

    def each_feature() # :yields: feature 

      yield @stress 

    end 
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# Returns the syllable's _type_ feature. Raises an exception if the 

    # syllable does not have a feature of type _type_. 

    def get_feature(type) 

      each_feature{|f| return f if f.type==type} 

      raise "SF::Syllable#get_feature(): parameter #{type.to_s} is not a valid feature type." 

    end 

 
 # Sets the syllable's _feat_type_ to _value_. 

    def set_feature(feat_type,val) 

      f = get_feature(feat_type) 

      f.value = val 

    end 

 

  end # class Syllable 

 

end # module SF 
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B‐3 OUTPUT_SYLLABLE.RB	

 

# encoding: UTF-8 

# 

# Author: Crystal Akers, based on Bruce Tesar's sl/syllable 

# 

 

require 'sf/syllable' 

 

module SF 

 

  # An output syllable for the SF system has one feature, stress. The stress feature 

  # can have the value primary stress or unstressed. Secondary stress is assigned 

  # with a T/F parameter. The combinations of stress feature and secondary stress 

  # create the following output syllables: 

  #   Primary stress and false for sec stress = primary stress syllable 

  #   Unstressed and false for sec stress = unstressed syllable 

  #   Unstressed and true for sec stress = secondary stress syllable 

  #   (Primary stress and true for sec stress is not allowed) 

  # Output syllable also can have an affiliated morpheme. 

 

  class Output_Syllable < Syllable 
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    # Returns a syllable, initialized to the parameters if provided. Otherwise, 

    # returns a syllable with unset features, an empty string for the 

    # morpheme, and does not have secondary stress. 

    def initialize(stress=Stress_feat.new,sec_stress =false, morph="" ) 

      @stress = stress 

      @sec_stress = sec_stress 

      @morpheme = morph # label of the morpheme this syllable is affiliated with 

      if @stress.main_stress? and @sec_stress==true then 

        raise "Cannot have both primary and secondary stress" 

      end 

    end 

 

    # A duplicate makes copies of the features, so that they may be altered 

    # independently of the original's features. 

    def dup 

      self.class.new(@stress.dup, @sec_stress, @morpheme) 

    end 
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    # Protected accessors, only used for #==() 

    attr_reader :stress # :nodoc: 

    protected :stress # :nodoc: 

 
    # Returns true if this syllable matches _other_, a syllable, in the values 

    # the stress feature, and morpheme identity. 

    def ==(other) 

      return false unless other.class == self.class 

      return false unless @stress==other.stress 

      return false unless @sec_stress == other.sec_stress? 

      return false unless @morpheme==other.morpheme 

      return true 

    end 

 

    # The same as ==(other). 

    def eql?(other) 

      self==other 

    end 

 

    # Returns true if the syllable's stress feature has the value 

    # main_stress. 

    def main_stress? 

      @stress.main_stress? 

    end 
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   # Returns true if the syllable's stress feature has the value 

    # unstressed and  the sec_stress parameter is true. 

    def sec_stress? 

      !@stress.main_stress? and @sec_stress == true 

    end 

 

    # Returns true if the syllable's stress feature has the value 

    # main_stress or the sec_stress is true. 

    def stressed? 

      @stress.main_stress? or @sec_stress == true 

    end 

 

    # Returns true if the syllable's stress feature has the value 

    # unstressed. 

    def unstressed? 

      @sec_stress == false and super 

    end 

 

    # Returns true is the stress feature is unset. 

    def stress_unset? 

      @stress.unset? and @sec_stress == false 

    end 
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    # Returns the morpheme that this syllable is affiliated with. 

    def morpheme 

      @morpheme 

    end 

 

    # Sets the syllable's stress feature to the value main_stress. 

    def set_main_stress 

      @stress.set_main_stress 

      self 

    end 

 

    # Sets the syllable's sec_stress parameter to true and the stress feature value 

    # to unstressed. 

    def set_sec_stress 

      @stress.set_unstressed 

      @sec_stress = true 

      self 

    end 
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 # Sets the syllable's stress feature to the value unstressed and sets 

    # the sec_stress parameter to false. 

    def set_unstressed 

      @stress.set_unstressed 

      @sec_stress = false 

      self 

    end 

 

    # Set the morpheme that this syllable is affiliated with to _m_. 

    def set_morpheme(m) 

      @morpheme = m 

      self 

    end 

 

    # Returns the number of syllables in this "word element". 

    # A syllable always contains 1 syllable. This allows us to 

    # easily add up the number of syllables in a word, without 

    # having to worry about whether each element of the word is 

    # an unfooted syllable or a foot: each element knows how 

    # to answer the question "how many syllables do you have?" 

    def syllable_count 

      return 1 

    end 
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    # Iterates over the single syllable. 

    def each_syllable 

      yield self 

    end 

 

    # Returns a string representation of the syllable, consisting of one 

    # character, denoting the stress feature: 

    # 

    # unstressed:: [s] 

    # main stress:: [Y] 

    # sec_stress:: [X] 

    # unset:: [?] 

    def to_s 

      stress_s = case 

      when main_stress? then "Y" 

      when sec_stress? then "X" 

      when unstressed? then "s" 

      when stress_unset? then "?" 

      end 

      return stress_s 

    end 
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    def to_gv 

      base = "morpheme_type_not_defined" 

      if morpheme.root? then 

        base = "p" 

      elsif morpheme.suffix? then 

        base = "k" 

      elsif morpheme.prefix? then 

        base = "t" 

      end 

      stress_s = case 

      when main_stress? then "á" 

      when sec_stress? then "à" 

      when unstressed? then "a" 

      when stress_unset? then "?" 

      end 

      return base + stress_s 

    end 

 

    # Iterator over the features of the syllable. 

    def each_feature() 

      yield @stress 

    end 
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    # Returns the syllable's _type_ feature. Raises an exception if the 

    # syllable does not have a feature of type _type_. 

    def get_feature(type) 

      each_feature{|f| return f if f.type==type} 

      raise "SF::Syllable#get_feature(): parameter #{type.to_s} is not a valid feature type." 

    end 

 

  end # class Output_Syllable 

 

end # module SF 
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B‐4 FOOT.RB	

 

# Author: Crystal Akers, based on Bruce Tesar's Ruby_on_RORG foot.rb 

 

require 'sf/syllable' 

 

module SF 

 

# A foot consists of one or two syllables. 

class Foot 
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 # A complete foot must be created at once, with the 

  # syllables being provided as arguments to #new(). 

  # The '*' operator in front of the parameter args 

  # stores the parameters passed into the method in 

  # an array, referenced by args. This allows the method 

  # to accommodate a variable number of passed 

  # parameters; in this case, one or two syllables. 

  def initialize(*args) 

    raise "No empty feet!" if args.empty? 

    raise "No suprabinary feet!" if args.size > 2 

    raise "One syllable must be stressed" if args.all? {|syl| syl.unstressed?} 

    raise "Only one syllable may be stressed" if args.size == 2 and !args.any? {|syl| 

syl.unstressed?} 

    @syllables = args 

  end 

 

 

  # Returns the number of syllables in the foot. 

  def syllable_count 

    return @syllables.size 

  end 
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 # Returns the first syllable in the foot. 

  def first_syl 

    return @syllables[0] 

  end 

 

  # Returns the second syllable in the foot. Returns nil if the 

  # foot only has one syllable. 

  def second_syl 

    return @syllables[1] 

  end 

 
  # Returns the last syllable in the foot, whether it is the first syllable 

  # or the second. 

  def last_syl 

    if @syllables.size == 1 

      return @syllables[0] 

    else return @syllables[1] 

    end 

  end 
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 # Iterator over each syllable in a foot 

  def each_syllable 

    yield self.first_syl 

    yield self.second_syl if @syllables.size == 2 

  end 

 

  # Returns true if the stress feature of any syllable in the foot has the value 

  # main_stress. 

  def main_stress? 

    @syllables.any? { |syl| syl.main_stress?  } 

  end 

 

  



289	
	

	
	

  # Returns true if this foot and _other_ foot have the same number of syllables and the 

  # syllables themselves are equivalent. 

  def ==(other) 

    val = false 

    if self.class == other.class then 

      if self.syllable_count == other.syllable_count then 

        val = true if self.first_syl == other.first_syl && self.second_syl == other.second_syl 

      end 

    end 

    return val 

  end 

 

  # Equivalent to ==(). 

  def eql?(other) 

    self==other 

  end 
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 #  A duplicate makes copies of the syllables, so that their features may be altered 

  #  independently of the original syllables' features. 

    def dup 

      if self.syllable_count == 2 then 

        return Foot.new(self.first_syl.dup, self.second_syl.dup) 

      else return Foot.new(self.first_syl.dup) 

      end 

    end 

 

  # Represents a foot as a pair of parentheses containing 

  # the to_s representation of each syllable in the foot, 

  # without separators. 

  def to_s 

    outstr = "(" 

    @syllables.each {|syl| outstr += syl.to_s} 

    return outstr += ")" 

  end 

 

end # class Foot 

 

end # module SF 
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B‐5 SF_OUTPUT.RB	

 

# Author: Crystal Akers 

# 

 

require 'output' 

require 'sf/foot' 

require 'sf/output_syllable' 

 

module SF 

 

  class SF::Sf_output < Output 

 

    # A newly created output is empty, with no morphological word, so that 

    # it can be built up piece by piece. 

    def initialize 

      @morphword = nil 

    end 
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  # Returns the number of syllables in the output, by adding up the number of 

    # syllables in each element of the word. 

    def syllable_count 

      return inject(0){|total,element| total + element.syllable_count} 

    end 

 

    # Iterator over the elements of the output (unparsed syllables or feet) 

    def each_element() 

      self.each { |el| yield el } 

    end 

 

    # Iterator over each syllable in an output element 

    # (unparsed syllable or foot) 

    def each_syllable() 

      self.each do |el| 

        el.each_syllable { |syl| yield syl } 

      end 

    end 
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 # Creates an array containing each syllable in the output in order. 

    def syl_list 

      list = Sf_output.new 

      self.each_syllable { |syl| list << syl } 

      return list 

    end 

 

  # Returns a copy of the output as an overt form, containing a duplicate 

  # of each syllable and a duplicate of the morphological word. 

  def overt 

    overt_copy = Sf_output.new 

    self.each_syllable {|syl| overt_copy << syl } 

    overt_copy.morphword = @morphword.dup unless @morphword.nil? 

    return overt_copy 

  end 

 

    



294	
	

	
	

# Returns a copy of the output, containing a duplicate of each 

  # correspondence element and a duplicate of the morphological word. 

  def dup 

    # Call Array#map to get an array of dups of the elements, and add 

    # them to a new Output. 

    copy = Sf_output.new.concat(super.map { |el| el.dup }) 

    copy.morphword = @morphword.dup unless @morphword.nil? 

    return copy 

  end 

 

  end # class SF::Sf_output 

 

end # module SF 
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B‐6 SF_WORD.RB	

 

# Author: Crystal Akers 

# 

 

require 'rubot' 

require 'candidate' 

require 'input' 

require 'output' 

require 'io_correspondence' 

require 'word' 

require 'sf/sf_output' 

 

module SF 

   

  # An Sf_word is a Word with an Sf_output. 

  class SF::Sf_word < Word 
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    # A word starts out with an empty input and empty sf_output by default, 

    # but input and output can be optionally passed as parameters. 

    # The linguistic system is a mandatory parameter, and 

    # the correspondence relation is initially empty; 

    # correspondences must be added after the word is created. 

    def initialize(system, input=Input.new, output=Sf_output.new) 

      super(system, input, output) 

    end 

 

  



297	
	

	
	

    # Returns a deep copy of the word, with distinct input syllables and features, 

    # distinct output elements and features, and appropriately revises UI and 

    # IO correspondences. 

    def dup 

      copy = Sf_word.new(@system) 

      copy.label = self.label 

      copy.opt=self.opt? 

      # Make local references to reduce number of method calls 

      c_input = copy.input 

      c_output = copy.output 

      c_io_corr = copy.io_corr 

      # dup the morphological word for the copy's input and output 

      unless input.morphword.nil? 

        c_morphword = input.morphword.dup 

        c_input.morphword = c_morphword 

        c_output.morphword = c_morphword 

      end 

      # Make a copy of the input, constructing updated versions of the UI 

      # and IO correspondences using the new copies of the input syllables. 

      input.each do |old_in_syl| 

        new_in_syl = old_in_syl.dup # duplicate the old input syllable 

        c_input << new_in_syl # add the dup to the copy 

        # Get the corresponding underlying syllable in the original's UI correspondence. 
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        # If it exists, add a correspondence to the copy between this underlying 

        # syllable and the duplicated input syllable in the copy. 

        under_syl = input.ui_corr.under_corr(old_in_syl) 

        c_input.ui_corr << [under_syl,new_in_syl] unless under_syl.nil? 

        # get the corresponding output syllable in the original word's IO corresp. 

        out_syl = @io_corr.out_corr(old_in_syl) 

        c_io_corr << [new_in_syl,out_syl] unless out_syl.nil? 

      end 

      # Make a copy of the output, adjusting the O part of IO correspondence. 

      output.each do |old_out_el| 

        new_out_el = old_out_el.dup # duplicate the old output element (foot or unparsed 

syllable) 

        c_output << new_out_el # add the dup to the copy 

        # find the IO pair. 

        new_out = []; old_out = [] 

        new_out_el.each_syllable {|syl| new_out << syl} 

        old_out_el.each_syllable {|syl| old_out << syl} 

        gen = SyncEnumerator.new(new_out,old_out) 

        gen.each do |new_out_syl,old_out_syl| 

          corr_pair = c_io_corr.find{|p| p[1].equal?(old_out_syl)} 

          corr_pair[1] = new_out_syl unless corr_pair.nil? # replace old with new output syl. 

        end 

      end 
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      copy.eval # set the constraint violations 

      return copy 

    end 

 

    # Returns the overt form of the word. 

    def overt() 

      return self.output.overt 

    end 

 

  end # class Sf_word 

     

 end # module SF 
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B‐7 DATA.RB	

 

# Author: Crystal Akers, based on Bruce Tesar's sl/data 

# 

# This adds, to the module SF, routines for generating data of various types 

# within the SF (stress-feet) linguistic system. 

 

require 'sf/system' 

require 'sf/grammar' 

require 'sf/syllable' 

require 'morpheme' 

require 'morph_word' 

require 'underlying' 

require 'lexical_entry' 

require 'most_harmonic' 

require 'rubot' 

require 'competition' 

require 'competition_list' 

require 'hypothesis' 

require 'otlearn/data_manip' 

require 'facets/array/product' # Adds cartesian product to class Array. 

 

module SF 
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  # Returns a list of lexical entries for the possible morphemes 

  # of morphological type _type_ with underlying form length 

  # _uf_length_ (measured in syllables). Each morpheme is assigned 

  # a label with a distinct number, with _id_number_ providing 

  # the base (the first generated morpheme gets number _id_number_ + 1, 

  # the next generated gets number _id_number_ + 2, etc.). 

  # If a code block is given, each generated lexical entry is passed to it. 

  def SF.generate_morphemes(uf_length, type, id_number) 

    if type==Morpheme::ROOT then label_pref = "r" 

    elsif type==Morpheme::PREFIX then label_pref = "p" 

    elsif type==Morpheme::SUFFIX then label_pref = "s" 

    else raise "Unrecognized morpheme type." 

    end 

    lexical_entry_list = [] 

    SF.generate_underlying_forms(uf_length) do |uf| 

      id_number += 1 

      morph = Morpheme.new("#{label_pref}#{id_number.to_s}", type) 

      uf.each {|s| s.set_morpheme(morph)} 

      lexical_entry_list << Lexical_Entry.new(morph,uf) 

    end 

    # If a code block was given, run it on each lexical entry. 

    lexical_entry_list.each {|le| yield le} if block_given? 
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    return lexical_entry_list 

  end 
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  # Generates all possible underlying forms with _uf_length_ syllables. 

  # If _uf_length_ == 0, a list with a single empty UF is returned. 

  # If a code block is given, each UF is passed to it. Note: Syllables in 

  # underlying forms can only be unstressed or have main stress. 

  def SF.generate_underlying_forms(uf_length) 

    raise "UF length cannot be <0!" if uf_length<0 

    uf_list = [Underlying.new] 

    uf_length.times do 

      new_uf_list = [] 

      SF.generate_syllables do |s| 

        uf_list.each do |uf| 

            new_uf = (uf.dup << s.dup) 

            new_uf_list << new_uf 

        end 

      end 

      uf_list = new_uf_list 

    end 

    # If a code block was given, run it on each underlying form. 

    uf_list.each {|uf| yield uf} if block_given? 

    return uf_list 

  end 
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 # Generate all possible syllables (possible combinations of feature values). 

  # Note that the sf system include secondary stress as a property of output syllables, 

  # not as a feature; therefore, none of the syllables generated will have secondary stress. 

  # If a code block is given, each syllable is passed to the code block. 

  # Returns a list of the possible syllables. 

  def SF.generate_syllables 

    syl_list = [] << Syllable.new 

    base_syl = Syllable.new 

    base_syl.each_feature do |f| 

      fresh_syl_list = [] 

      f.each_value do |v| 

        syl_list.each do |s| 

          syl = s.dup 

          syl.get_feature(f.type).value = v 

          fresh_syl_list << syl 

        end 

      end 

      syl_list = fresh_syl_list 

    end 

    # If a code block was given, run it on each syllable. 

    syl_list.each {|s| yield s} if block_given? 

    return syl_list 

  end 
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  # Generates the optimal candidates with respect to constraint 

  # hierarchy _hier_ for each input in _inputs_, using the lexicon 

  # in grammar _gram_. The hierarchy in _gram_ is set to _hier_. 

  # _gram_ needs to already contain a lexicon with entries for all 

  # of the morphemes appearing in the inputs. 

  # Returns a list of the optimal candidates of the language. 

  def SF.generate_language(hier, inputs, gram) 

    competitions = inputs.map{|i| SYSTEM.gen(i)} 

    comp_list = Competition_list.new.concat(competitions) 

    gram.hierarchy = hier 

    comp_mh = comp_list.map{|comp| MostHarmonic.new(comp,gram.hierarchy)} 

    # each competition returns a list of winners; collapse to one-level list. 

    lang = comp_mh.inject([]){|winners, mh_list| winners.concat(mh_list) } 

    lang.each{|winner| winner.opt=true} 

    return lang 

  end 
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def SF.competitions_from_morphwords(words, gram) 

    # Generate the corresponding input for each morphological word 

    inputs = words.map{|mw| SYSTEM.input_from_morphword(mw,gram)} 

    # Generate the corresponding competition for each input 

    competitions = inputs.map{|i| SYSTEM.gen(i)} 

    # Convert the array of competitions into a proper Competition_list. 

    comp_list = Competition_list.new.concat(competitions) 

    comp_list.label = "SF" 

    return comp_list 

  end 
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  def SF.generate_competitions_2r1s 

    # Generate the morphemes 

    roots = SF.generate_morphemes(2, Morpheme::ROOT, 0) 

    suffixes = SF.generate_morphemes(1, Morpheme::SUFFIX, 0) 

    # Create a new grammar, and add all of the morphemes to the lexicon. 

    gram = Grammar.new 

    roots.each{|root_le| gram.lexicon.add(root_le)} 

    suffixes.each{|suf_le| gram.lexicon.add(suf_le)} 

    # Morphology: create all combinations of one root and one suffix 

    word_parts = roots.product(suffixes) 

    words = word_parts.map do |parts| 

      # Add the morphemes of the combination to a new morphological word. 

      parts.inject(MorphWord.new){|w,le| w.add(le.morpheme); w} 

    end 

    # Generate the competition for each morphword 

    comp_list = competitions_from_morphwords(words, gram) 

    return comp_list, gram 

  end 
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  def SF.generate_default_inputs 

    gram = Grammar.new 

    # Generate the possible monosyllabic roots and suffixes 

    roots = SF.generate_morphemes(1, Morpheme::ROOT, 0) 

    suffixes = SF.generate_morphemes(1, Morpheme::SUFFIX, 0) 

    # Create all combinations of root-suffix 

    # Make sure the roots are first in the cartesian product, because they 

    # must be added first when constructing MorphWords. 

    word_parts = roots.product(suffixes) 

    # 

    # Next line: how to include free roots as (monomorphemic) words 

    # word_parts += roots.product() 

    # 

    # Convert each morpheme-tuple into a MorphWord 

    words = word_parts.map{|t| t.inject(MorphWord.new){|w,le| w.add(le.morpheme); 

w}} 

    # Add the morphemes to the lexicon 

    roots.each{|root_le| gram.lexicon.add(root_le)} 

    suffixes.each{|suf_le| gram.lexicon.add(suf_le)} 

    # Generate the input for each morph_word. 

    inputs = words.map{|mw| SYSTEM.input_from_morphword(mw,gram)} 

    return inputs, gram 

  end 
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  #-- 

  # Data for testing purposes. 

  #++ 

 

  def SF.generate_words_lang_a 

    inputs, gram = SF.generate_default_inputs 

    competitions = inputs.map{|i| SYSTEM.gen(i)} 

    comp_list = Competition_list.new.concat(competitions) 

    winner_list, hyp = OTLearn::generate_learning_data_from_competitions(comp_list, 

SF.hier_3,Grammar) 

    return winner_list, hyp 

  end 

 

  def SF.generate_outputs_lang_a 

    inputs, gram = SF.generate_default_inputs 

    lang = SF.generate_language(SF.hier_2a, inputs, gram) 

    outputs = lang.map{|w| w.output} 

    return outputs 

  end 
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#-- 

# Hierarchies 

#++ 

 

 # Constraints: Lmost Rmost AFL ParSyl FtBin FNF Iamb Lapse MaxStress 

 

    # This is the hierarchy for language 2 in the 2r1s typology 

  def SF.hier_2 

    hier = Hierarchy.new 

    hier << [SYSTEM.iamb] << [SYSTEM.ftbin] << [SYSTEM.fnf] << 

[SYSTEM.parsyl] << [SYSTEM.maxstress] << [SYSTEM.rmost] << [SYSTEM.afl] << 

[SYSTEM.lmost] << [SYSTEM.lapse] 

    return hier 

  end 

 

     # This is the hierarchy for language 3 in the 2r1s typology 

  def SF.hier_3 

    hier = Hierarchy.new 

    hier << [SYSTEM.rmost] << [SYSTEM.ftbin] << [SYSTEM.afl] << [SYSTEM.lmost] 

<<   [SYSTEM.parsyl] << [SYSTEM.maxstress] << [SYSTEM.iamb] << [SYSTEM.fnf] 

<< [SYSTEM.lapse] 

    return hier 

  end 
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  # This is the hierarchy for language 6 in the 2r1s typology 

  def SF.hier_6 

    hier = Hierarchy.new 

    hier << [SYSTEM.iamb] << [SYSTEM.fnf] << [SYSTEM.maxstress] << 

[SYSTEM.ftbin] <<  [SYSTEM.rmost] << [SYSTEM.parsyl] << [SYSTEM.afl] << 

[SYSTEM.lmost] << [SYSTEM.lapse] 

    return hier 

  end 

 

  # This is the hierarchy for language 13 in the 2r1s typology 

  def SF.hier_13 

    hier = Hierarchy.new 

    hier  << [SYSTEM.maxstress] << [SYSTEM.lmost] << [SYSTEM.afl] << 

[SYSTEM.ftbin] << [SYSTEM.rmost] << [SYSTEM.parsyl] << [SYSTEM.lapse] << 

[SYSTEM.fnf] << [SYSTEM.iamb] 

    return hier 

  end 
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 # This is the hierarchy for language 37 in the 2r1s typology 

  def SF.hier_37 

    hier = Hierarchy.new 

    hier  << [SYSTEM.maxstress] << [SYSTEM.ftbin] << [SYSTEM.parsyl] << 

[SYSTEM.lapse] <<  [SYSTEM.rmost] << [SYSTEM.fnf] << [SYSTEM.iamb] << 

[SYSTEM.afl] << [SYSTEM.lmost] 

    return hier 

  end 

  

 # This is the hierarchy for language 39 in the 2r1s typology (2A1B1) 

  def SF.hier_39 

    hier = Hierarchy.new 

    hier  << [SYSTEM.fnf] << [SYSTEM.ftbin] << [SYSTEM.maxstress] << 

      [SYSTEM.iamb] << [SYSTEM.parsyl] << [SYSTEM.rmost] << [SYSTEM.lapse] << 

      [SYSTEM.afl] << [SYSTEM.lmost] 

    return hier 

  end 
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   # This is the hierarchy for language 55 in the 2r1s typology 

  def SF.hier_55 

    hier = Hierarchy.new 

    hier << [SYSTEM.lapse] << [SYSTEM.maxstress] << [SYSTEM.lmost] <<  

[SYSTEM.fnf] <<  [SYSTEM.rmost] << [SYSTEM.parsyl] << [SYSTEM.iamb] << 

[SYSTEM.ftbin] << [SYSTEM.afl] 

    return hier 

  end 

 

  # This is the hierarchy for language 58 in the 2r1s typology 

  def SF.hier_58 

    hier = Hierarchy.new 

    hier << [SYSTEM.lapse] << [SYSTEM.parsyl] << [SYSTEM.lmost] << 

[SYSTEM.ftbin] << [SYSTEM.fnf] << [SYSTEM.rmost] << [SYSTEM.maxstress] << 

[SYSTEM.iamb] << [SYSTEM.afl] 

    return hier 

  end 
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  # This is the hierarchy for language 66 in the 2r1s typology 

  def SF.hier_66 

    hier = Hierarchy.new 

    hier << [SYSTEM.maxstress] << [SYSTEM.iamb] << [SYSTEM.rmost] << 

[SYSTEM.lmost] <<  [SYSTEM.afl] << [SYSTEM.parsyl]  << [SYSTEM.lapse] << 

[SYSTEM.fnf] << [SYSTEM.ftbin] 

    return hier 

  end 

 

   # This is the hierarchy for language 69 in the 2r1s typology (37A1B2C1) 

  def SF.hier_69 

    hier = Hierarchy.new 

    hier  << [SYSTEM.maxstress] << [SYSTEM.parsyl] << [SYSTEM.lapse] << 

      [SYSTEM.ftbin] << [SYSTEM.rmost] << [SYSTEM.iamb] << [SYSTEM.afl] << 

      [SYSTEM.lmost] << [SYSTEM.fnf] 

    return hier 

  end 
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# This is the hierarchy for language 75 in the 2r1s typology 

  def SF.hier_75 

    hier = Hierarchy.new 

    hier << [SYSTEM.maxstress] << [SYSTEM.parsyl] << [SYSTEM.lapse] << 

[SYSTEM.ftbin] <<  [SYSTEM.afl] << [SYSTEM.iamb] << [SYSTEM.fnf] << [ 

SYSTEM.rmost] << [SYSTEM.lmost] 

    return hier 

  end 

 

  # This is the hierarchy for language 80 in the 2r1s typology 

  def SF.hier_80 

    hier = Hierarchy.new 

    hier  << [SYSTEM.maxstress] << [SYSTEM.lapse] << [SYSTEM.lmost] << 

[SYSTEM.fnf] <<  [SYSTEM.parsyl] << [SYSTEM.iamb] << [SYSTEM.ftbin] << 

[SYSTEM.afl] << [SYSTEM.rmost] 

    return hier 

  end 
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# This is the hierarchy for language 87 in the 2r1s typology. Corresponds to 

  # Set 17, Lang A1B1. 

  def SF.hier_87 

    hier = Hierarchy.new 

    hier  << [SYSTEM.parsyl] << [SYSTEM.lapse] << [SYSTEM.fnf] << 

      [SYSTEM.ftbin] << [SYSTEM.afl] << [SYSTEM.maxstress] << [SYSTEM.iamb] 

<<  [SYSTEM.lmost] << [SYSTEM.rmost] 

    return hier 

  end 

 

  # This is the hierarchy for language 88 in the 2r1s typology 

  def SF.hier_88 

    hier = Hierarchy.new 

    hier  << [SYSTEM.maxstress] << [SYSTEM.rmost] << [SYSTEM.lmost] << 

[SYSTEM.afl] << [SYSTEM.lapse] << [SYSTEM.parsyl] << [SYSTEM.ftbin] << 

[SYSTEM.fnf] << [SYSTEM.iamb] 

    return hier 

  end 
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    # This is the hierarchy for language 94 in the 2r1s typology 

  def SF.hier_94 

    hier = Hierarchy.new 

    hier << [SYSTEM.parsyl] << [SYSTEM.lapse] << [SYSTEM.fnf] << 

[SYSTEM.ftbin] << [SYSTEM.afl] << [SYSTEM.maxstress] <<  [SYSTEM.iamb] << 

[SYSTEM.rmost] << [SYSTEM.lmost] 

    return hier 

  end 

 

 

end # module SF 



318	
	

	
	

B‐8 GRAMMAR.RB	

# Author: Crystal Akers, based on Bruce Tesar's sl/grammar 

# 

 

require 'rubot' 

require 'rcd' 

require 'comparative_tableau' 

require 'sf/system' 

require 'lexicon' 

 

module SF 

 

  # A grammar for the SF linguistic system consists of a reference to 

  # the SF::System linguistic system, a constraint hierarchy, and a lexicon. 

  class Grammar 

    attr_accessor :hierarchy, :lexicon 

 

    # Stores the linguistic system associated with this grammar. 

    # In this case, the SF (stress-feet) linguistic system. 

    @@system = System.instance 
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   # Returns a new grammar. If a hierarchy or a lexicon are not provided 

    # as parameters, default initial values are used: 

    # * the default initial lexicon is empty 

    # * the default initial hierarchy results from applying RCD to an empty 

    #   comparative tableau. 

    def initialize(hier=default_initial_hierarchy, lex=default_initial_lexicon) 

      @hierarchy = hier 

      @lexicon = lex 

    end 

 

    # Returns a reference to the linguistic system associated with this grammar. 

    def system 

      @@system 

    end 
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  # Returns a copy of the grammar, with duplicates of the hierarchy and 

    # the lexicon. 

    # The duplicate of the hierarchy contains references to the same constraint 

    # objects, but duplicated strata. 

    # The duplicate of the lexicon contains duplicates of the lexical entries, 

    # and the duplicate lexical entries contain duplicates of the underlying 

    # forms but references to the very same morpheme objects. 

    def dup 

      return self.class.new(@hierarchy.dup, @lexicon.dup) 

    end 

 

    # Returns a copy of the grammar, with a duplicate of the hierarchy, but 

    # a reference to the very same lexicon object. 

    # The duplicate of the hierarchy contains references to the same constraint 

    # objects, but duplicated strata. 

    def dup_hier_only 

      return self.class.new(@hierarchy.dup, @lexicon) 

    end 
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 # Returns the underlying form for the given morpheme, as stored in 

    # the grammar's lexicon. Returns nil if the morpheme does not appear 

    # in the lexicon. 

    def get_uf(morph) 

      lex_entry = @lexicon.find{|entry| entry.morpheme==morph} # get the lexical entry 

      return nil if lex_entry.nil? 

      return lex_entry.uf  # return the underlying form 

    end 

 

    private 

 

    # The default initial hierarchy is the one resulting from applying RCD 

    # to an empty comparative tableau. 

    def default_initial_hierarchy 

      Rcd.new(Comparative_tableau.new('empty',system.constraints)).hierarchy 

    end 
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# The default lexicon is simply a new (empty) lexicon. 

    def default_initial_lexicon 

      Lexicon.new 

    end 

 

  end # class Grammar 

 

end # module SF 
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B‐9 SYSTEM.RB	

# Author: Crystal Akers, from Bruce Tesar's sl/system 

# 

 

require 'singleton' 

require 'constraint_eval' 

require 'ui_correspondence' 

require 'rubot' 

require 'competition' 

require 'sf/sf_word' 

require 'sf/foot' 

require 'sf/output_syllable' 

require 'sf/sf_output' 

 

# For SyncEnumerator 

if RUBY_VERSION =~ /^1\.9/ then 

  require 'generator19'  # Tesar's ruby 1.9 version 

else 

  require 'generator'    # the ruby 1.8 version 

end 

 

module SF 
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  # Contains the core elements of the SF (stress-feet) linguistic system. 

  # It defines the constraints of the system, provides the #gen(_input_) method 

  # generating the candidates for _input_, provides a method for 

  # constructing the phonological input corresponding to a morphological 

  # word with respect to a given grammar, and provides a method for parsing 

  # a phonological output for a morphological word into a full structural 

  # description with respect to a given grammar. 

  # 

  # This is a singleton class. 

  class System 

    include Singleton 

 

    # Create local references to the constraint type constants. 

    # This is strictly for convenience, so that the "Constraint_eval::" 

    # prefix doesn't have to appear in the constraint definitions below. 

    # Note: done this way because constants cannot be aliased. 

 

    # Indicates that a constraint is a markedness constraint. 

    MARK = Constraint_eval::MARK 

    # Indicates that a constraint is a faithfulness constraint. 

    FAITH = Constraint_eval::FAITH 
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# Creates the constraint list and freezes it, as well as freezing 

    # each of the constraints. Creation of <em>constraint_list</em> 

    # also initializes the constraint attributes (nolong(), etc.). 

    def initialize 

      initialize_eval_procs 

      @constraints = constraint_list # private method creating the list 

      @constraints.each {|con| con.freeze} # freeze the constraints 

      @constraints.freeze # freeze the constraint list 

    end 

 

    # Returns the list of constraints (each constraint is a Constraint object). 

    # Note that the returned list is frozen, as are the constraints that 

    # it contains. 

    def constraints() return @constraints end 

 

    # Returns the markedness constraint lmost. 

    def lmost() return @lmost end 

 

    # Returns the markedness constraint rmost. 

    def rmost() return @rmost end 

 

    # Returns the markedness constraint afl. 

    def afl() return @afl end 
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    # Returns the markedness constraint parsyl. 

    def parsyl() return @parsyl end 

 

    # Returns the markedness constraint ftbin. 

    def ftbin() return @ftbin end 

 

    # Returns the markedness constraint fnf. 

    def fnf() return @fnf end 

 

    # Returns the markedness constraint iamb. 

    def iamb() return @iamb end 

 

    # Returns the markedness constraint lapse. 

    def lapse() return @lapse end 

 

    # Returns the faithfulness constraint maxstress. 

    def maxstress() return @maxstress end 
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# Accepts parameters of a morph_word and a grammar. It builds an input form 

    # by concatenating the syllables of the underlying forms of each of the 

    # morphemes in the morph_word, in order. It also constructs the correspondence 

    # relation for the input, with an entry for each corresponding pair of 

    # underlying/input syllables. 

    def input_from_morphword(mw, gram) 

      input = Input.new 

      input.morphword = mw 

      mw.each do |m| # for each morpheme in the morph_word, in order 

        uf = gram.get_uf(m) 

        raise "Morpheme #{m.label} has no entry in the lexicon." if uf.nil? 

        uf.each do |syl| # for each syllable of the underlying form 

          in_syl = syl.dup 

          input.push(in_syl) # add a duplicate of the underlying syllable to input. 

          input.ui_corr << [syl,in_syl] # create a correspondence between underlying and 

input syllables. 

        end 

      end 

      return input 

    end 
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  # gen takes an input, generates all candidate words for that input, and returns 

    # them in the form of a Competition. All candidates are marked 

    # as not optimal. 

    # All candidates in the competition share the same input object. The outputs 

    # for candidates may also share some of their syllable objects. 

    def gen(input) 

      #Creates all of the outputs equal in length to the input, then creates new 

      #words with each of these outputs. 

      start_rep = SF::Sf_output.new 

      # create a list of partial outputs 

      not_long_enough = [start_rep] 

      final_output_list = [] #List of complete outputs, each containing main stress 

 

      # Create the list of all syllables and feet that can appear in a word. 

      element_list = [] 

      element_list << Output_Syllable.new.set_unstressed #unstressed element 

      # degenerate feet 

      element_list << Foot.new(Output_Syllable.new.set_main_stress) 

      element_list << Foot.new(Output_Syllable.new.set_sec_stress) 

      # trochaic and iambic primary feet 

      element_list << 

Foot.new(Output_Syllable.new.set_main_stress,Output_Syllable.new.set_unstressed) 



329	
	

	
	

      element_list << 

Foot.new(Output_Syllable.new.set_unstressed,Output_Syllable.new.set_main_stress) 

      # trochaic and iambic secondary feet 

      element_list << 

Foot.new(Output_Syllable.new.set_sec_stress,Output_Syllable.new.set_unstressed) 

      element_list << 

Foot.new(Output_Syllable.new.set_unstressed,Output_Syllable.new.set_sec_stress) 

 

      # Set the word length in syllables 

      word_length = input.length 

 

      # Keep processing not_long_enough until no structures remain that need adding 

      # on to (that is, have fewer than the required number of syllables). 

      until not_long_enough.empty? 

        base = not_long_enough.shift # take the first output in the queue 

        # Separately extend copies of the base output with each possible word element. 

        element_list.each do |el| 

          next_output = base # Copy the partial output 

          # Extends next_output with the word element el unless both already include 

          # main stress. 

          # If the newly extended output is long enough and contains main stress, 

          # it is moved to the final_output_list. Otherwise, if it is not yet long enough, 

          # then it is added to the back of not_long_enough to be extended further. 
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          unless (next_output.any? {|element| element.main_stress?}) and el.main_stress? 

then 

            extended_out = extend_output(next_output, el) 

            if extended_out.syllable_count == word_length and (extended_out.any? 

{|element| element.main_stress?}) then 

              final_output_list << extended_out 

            elsif extended_out.syllable_count < word_length then 

              not_long_enough << extended_out 

            end 

          end 

        end 

      end 

 

      # Create a new word for each of the completed outputs 

      final_word_list = [] 

      final_output_list.each do |output| 

        #Creates a new word with full input, but empty output, io_corr 

        new_word = Sf_word.new(SYSTEM,input,output) 

        new_word.output.morphword = input.morphword 

        # Sets the morpheme of the output syllable equal to the morpheme of the input 

syllable 

        # Also sets the io_corr pairs for the input and output syllables 

        g = SyncEnumerator.new(input,output.syl_list) 
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        g.each do |in_syl,out_syl| 

          out_syl.set_morpheme(in_syl.morpheme) 

          new_word.io_corr << [in_syl,out_syl] 

        end 

        final_word_list << new_word 

      end 

 

      # Put actual candidates into competition, calling eval on each to set 

      # the constraint violations. 

      competition = Competition.new 

      final_word_list.each{|c| c.eval; competition.push(c)} 

      return competition 

    end 
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  # Constructs a full structural description for the given output using the 

    # lexicon of the given grammar. The constructed input will stand in 

    # 1-to-1 IO correspondence with the output; an exception is thrown if 

    # the number of syllables in the lexical entry of each morpheme doesn't 

    # match the number of syllables for that morpheme in the output. 

    def parse_output(output, gram) 

      mw = output.morphword 

      # If any morphemes aren't currently in the lexicon, create new entries, with 

      # the same number of syllables as in the output, and all features unset. 

      mw.each do |m| 

        unless gram.lexicon.any?{|entry| entry.morpheme==m} then 

          under = Underlying.new 

          output.each_syllable do |syl| 

            if syl.morpheme == m then 

              under << SF::Syllable.new.set_morpheme(m) 

            end 

          end 

          gram.lexicon << Lexical_Entry.new(m,under) 

        end 

      end 

      # Construct the input form 

      input = input_from_morphword(mw, gram) 

      word = Sf_word.new(SYSTEM,input,output) 
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      # create 1-to-1 IO correspondence 

      if input.size != output.syllable_count then 

        raise "Input size #{input.size} not equal to output size #{output.syllable_count}." 

      end 

      gen = SyncEnumerator.new(input, output.syl_list) 

      gen.each do |in_syl,out_syl| 

        word.io_corr << [in_syl,out_syl] 

        if in_syl.morpheme != out_syl.morpheme then 

          raise "Input syllable morph #{in_syl.morpheme.label} != " + 

            "output syllable morph #{out_syl.morpheme.label}" 

        end 

      end 

      word.eval 

      return word 

    end 
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   # Constructs a list containing all the outputs that correspond to the given overt form. 

    def parse_overt(overt, gram) 

      # Construct the structural interpretations by creating two lists of partial 

      # interpretations. Interpretations in openft are incomplete: each ends with 

      #  a syllable that could be parsed into a foot. Interpretations in closedft 

      # are complete: they end with either a foot or an unparsed syllable that will remain 

      # unparsed. 

      closedft =[]; openft =[] 

      overt.each do |syl| 

        # copy the partial interpretation lists to old_*, and reset the lists to empty. 

        old_clft = closedft; old_opft = openft 

        closedft =[]; openft =[] 

        # If old_opft is empty and syl is unstressed, add an interpretation with 

        # syl as the first syllable of an incomplete foot 

        if old_opft.empty? and syl.unstressed? then 

          interp = Sf_output.new 

          interp << syl 

          openft << interp.dup 

        else 

          # Otherwise, for each interpretation, check that the last syllable of the 

          # interpretation and syl are not both stressed or unstressed. If they have different 

          # stress feature values, extended the interpretation with a binary foot 

          # using last_syllable and syl. If they have the same stress values, do nothing 
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          # (eliminate this partial interpretation, because it will be a duplicate 

          # of a partial interpretation in the closedft list). 

          until old_opft.empty? 

            interp = Sf_output.new 

            i = old_opft.shift 

            last_syllable = i.pop 

            unless syl.stressed? == last_syllable.stressed? then 

              # Copy each remaining element in i and add to interp. Also complete the binary  

# foot by extending the last syllable with syl. 

              unless i.empty? 

                i.each { |el| interp << el } 

              end 

              interp << Foot.new(last_syllable, syl) 

              # With the completed foot, the interpretation is added to the closedft list 

              closedft << interp.dup 

            end 

          end 

        end 

        # If old_clft is empty, add an interpretation with syl as the first closed element -- 

        # either an unparsed syllable or a unary foot. 

        if old_clft.empty? then 

          interp = Sf_output.new 

          if syl.stressed? then 
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            open_interp = Sf_output.new 

            open_interp << syl 

            openft << open_interp.dup 

            interp << Foot.new(syl) 

            closedft << interp.dup 

          else 

            interp << syl 

            closedft <<  interp.dup 

          end 

        else 

          # Extend each old closed interpretation with another closed element (either an 

          # unparsed syllable or a binary foot. Also extend with an open element (either 

          # the beginning of an iamb or a trochee, depending on syl. 

          until old_clft.empty? 

            i = old_clft.shift 

            interp = Sf_output.new 

            # copy each element in i and add to interp. Also copy and add syl to begin the 

            # potential binary foot. 

            i.each do |el| 

              interp << el 

            end 

            open_interp = Sf_output.new 

            open_interp = interp.dup << syl 
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            openft << open_interp.dup 

            if syl.stressed? then 

              interp << Foot.new(syl) 

            else 

              interp << syl 

            end 

            closedft << interp.dup 

          end 

        end 

      end 

      # Closedft will contain all completely parsed interpretations. Each of these 

      # must have the same morphword as the overt form. 

      closedft.each do |i| 

        i.morphword = overt.morphword 

      end 

      # If a code block was given, run it on each interpretation given. 

      closedft.each {|interp| yield interp} if block_given? 

      return closedft 

    end 
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# Returns a list of the words whose outputs are structural interpretations 

    # of the given overt form. 

    def get_interpretations(overt,gram) 

      output_list = parse_overt(overt,gram) 

      list = [] 

      output_list.each do |output| 

        list << parse_output(output,gram) 

      end 

      return list 

    end 

 

    # The constraint evaluation procedure declarations. 

    # 

    def lmost_eval() return @lmost_eval end 

    def rmost_eval() return @rmost_eval end 

    def afl_eval() return @afl_eval end 

    def parsyl_eval() return @parsyl_eval end 

    def ftbin_eval() return @ftbin_eval end 

    def fnf_eval() return @fnf_eval end 

    def iamb_eval() return @iamb_eval end 

    def lapse_eval() return @lapse_eval end 

    def maxstress_eval() return @maxstress_eval end 
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    private 

 

 

    def initialize_eval_procs 

      # Lmost 

      @lmost_eval = lambda do |cand| 

        viol_count = 0 

        cand.output.each_element do |el| 

          break if el.main_stress? 

          viol_count += el.syllable_count 

        end 

        viol_count 

      end 

      # RMost 

      @rmost_eval = lambda do |cand| 

        viol_count = 0 

        stress_found = false 

        cand.output.each_element do |el| 

          viol_count += el.syllable_count if stress_found 

          stress_found = true if el.main_stress? 

        end 

        viol_count 

      end 
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      # AFL 

      @afl_eval = lambda do |cand| 

        viol_count = 0 

        cand.output.each_index do |ind| 

          # For each foot, add up the number of syllables in the slice of output 

          # to the left of the foot 

          if ind > 0 and cand.output[ind].class == Foot then 

            output_slice = cand.output.slice(0..ind-1) 

            output_slice.each { |el| viol_count += el.syllable_count } 

          end 

        end 

        viol_count 

      end 

      # ParSyl 

      @parsyl_eval = lambda do |cand| 

        viol_count = 0 

        cand.output.each_element do |el| 

          viol_count += 1 if el.class != Foot 

        end 

        viol_count 

      end 

      # FtBin 

      @ftbin_eval = lambda do |cand| 
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        viol_count = 0 

        cand.output.each_element do |el| 

          viol_count += 1 if el.class == Foot and el.syllable_count ==1 

        end 

        viol_count 

      end 

      # FNF 

      @fnf_eval = lambda do |cand| 

        viol_count = 0 

        cand.output.each_element do |el| 

          viol_count +=1 if el.class == Foot and el.last_syl.stressed? 

        end 

        viol_count 

      end 

      # Iamb 

      @iamb_eval = lambda do |cand| 

        viol_count = 0 

        cand.output.each_element do |el| 

          viol_count += 1 if el.class == Foot and !el.last_syl.stressed? 

        end 

        viol_count 

      end 

      # Lapse 
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      @lapse_eval = lambda do |cand| 

        viol_count = 0 

        cand.output.syl_list.each_index do |ind| 

          unless cand.output.syl_list[ind].equal?cand.output.syl_list[-1] 

            viol_count += 1 if cand.output.syl_list[ind].unstressed? and 

!cand.output.syl_list[ind+1].stressed? 

          end 

        end 

        viol_count 

      end 

      # MaxStress 

      @maxstress_eval = lambda do |cand| 

        cand.io_corr.inject(0) do |sum, pair| 

          if pair[0].stress_unset? then sum 

          elsif pair[0].main_stress? & !pair[1].main_stress? then sum+1 

          else sum 

          end 

        end 

      end 

    end 
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   # Takes a partial output, along with 

    # a reference to the next word element (syllable or foot) to be added 

    # to the output. A copy of the new output, containing the new output syllable(s) 

    #is returned. 

    def extend_output(output, el) 

      new_output = output.dup 

      new_output << el.dup 

      return new_output 

    end 
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 # Define the constraint list. 

    # Each constraint has a label, a number, and a string defining the 

    # violation evaluation procedure. Passing the eval string as an argument 

    # to #eval will return a reference to a Proc, itself the actual violation 

    # evaluation procedure. Calling that Proc with a candidate will 

    # return the number of violations of that constraint in the candidate. 

    def constraint_list 

      list = [] 

      list << @lmost = Constraint_eval.new("Lmost", 1, MARK, 

"SF::System.instance.lmost_eval") 

      list << @rmost = Constraint_eval.new("RMost", 2, MARK, 

"SF::System.instance.rmost_eval") 

      list << @afl = Constraint_eval.new("AFL", 3, MARK, 

"SF::System.instance.afl_eval") 

      list << @parsyl = Constraint_eval.new("ParSyl", 4, MARK, 

"SF::System.instance.parsyl_eval") 

      list << @ftbin = Constraint_eval.new("FtBin", 5, MARK, 

"SF::System.instance.ftbin_eval") 

      list << @fnf = Constraint_eval.new("FNF", 6, MARK, 

"SF::System.instance.fnf_eval") 

      list << @iamb = Constraint_eval.new("Iamb", 7, MARK, 

"SF::System.instance.iamb_eval") 
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      list << @lapse = Constraint_eval.new("Lapse", 8, MARK, 

"SF::System.instance.lapse_eval") 

      list << @maxstress = Constraint_eval.new("MaxStress", 9, FAITH, 

"SF::System.instance.maxstress_eval") 

      return list 

    end 

 

  end # class SF::System 

 

  # The system object for the linguistic system SF (stress-feet). 

  SYSTEM = System.instance 

 

end # module SF 



346	
	

	
	

B‐10 OVERT_LANGUAGE_LEARNING.RB	

 

# Author: Crystal Akers 

# 

 

# For Generator 

if RUBY_VERSION =~ /^1\.9/ then 

  require 'generator19'  # Tesar's home-cooked ruby 1.9 version 

else 

  require 'generator'    # the ruby 1.8 version 

end 

 

require 'otlearn/contrast_pair' 

require 'otlearn/ranking_learning' 

require 'otlearn/grammar_test' 

require 'otlearn/rcd_bias_low' 

require 'otlearn/uf_learning' 

require 'overt_otlearn/overt_grammar_test' 

require 'overt_otlearn/label_set' 

require 'overt_otlearn/language_hypothesis' 

require 'facets/array/product' # Adds cartesian product to class Array. 

require 'set' 

require 'morph_word' 

require 'otlearn/mrcd' 
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module Overt_OTLearn 

 

  # A  OvertLanguageLearning object instantiates a particular instance of 

  # language learning. An instance is created with a set of overt forms 

  # (the data to be learned from), and a starting language hypothesis (which 

  # will likely be altered and branched during the course of learning). 

  # 

  # The learning proceeds in the following stages, in order: 

  # * Phonotactic learning. 

  # * Single form learning (one word at a time until no more can be learned). 

  # * Repeat until the language is learned or no more progress is made. 

  #   * Try a contrast pair. 

  #   * If no contrast pair succeeds, look for an error on a consistent, 

  #     mismatch candidate. 

  #   * If no consistent mismatch candidate is informative, t 

  #     try minimum uf setting. 

  #   * If any of these is successful, and the language is not yet learned, 

  #     run another round of single form learning. 

  # After each stage in which hypothesis change occurs, the state of 

  # the learner is stored and evaluated in an OvertGrammarTest object. These 

  # objects are stored in a list, obtainable via #results_list(). 

  # 

  # Learning is initiated upon construction of the object. 

  class OvertLanguageLearning 

 

    attr_reader :labels, :letter, :lang_hyp_list, :discards, :results_list 
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    # Executes learning on _overt_forms_ with respect to _language_hypothesis_, and 

    # stores the results in the returned OvertLanguageLearning object. 

    def initialize(overt_forms, language_hypothesis) 

      # List of overt forms provided as data to the learner 

      @overt_forms = overt_forms 

      # List of consistent language hypotheses 

      @lang_hyp_list = [] 

      @lang_hyp_list << language_hypothesis 

      # List of discarded, inconsistent language hypotheses 

      @discards = [] 

      # Stores the results for learning across all language hypotheses. 

      @results_list = [] 

      # Stores the label hashes associated with the overt forms. 

      @labels = Label_set.new 

      # Stores the letter to be associated with the next new label hash 

      @letter = "A" 

      @learning_successful = execute_learning 

    end 

 

    # Returns the overt forms that were the data for learning. 

    def data_overt_forms() return @overt_forms end 

 

    # Returns the list of language hypotheses that are the result of learning. 

    def lang_hyp_list() return @lang_hyp_list end 
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    # Returns the list of grammar_test objects generated at various stages 

    # of learning. 

    def results_list()  @results_list end 

 

    # Returns a boolean indicating if learning was successful. 

    def learning_successful?() return @learning_successful end 

 

    #Returns the list of discarded language hypotheses. 

    def discards() @discards end 

 

    # The main, top-level method for executing learning. This method is 

    # protected, and called by the constructor #initialize, so learning 

    # is automatically executed whenever an  OvertLanguageLearning object is 

    # created. 

    # Returns true if learning was successful, false otherwise. 

    def execute_learning 

      # Phonotactic learning 

      puts "Phonotactic learning" 

      phonotactic_learning(@overt_forms, @lang_hyp_list) 

      @results_list << ["Phonotactic Learning - #{lang_sim_results(@lang_hyp_list)}", 

learning_completed?] 

      return true if learning_completed? == true 

      # Single form UF learning 

      puts "single form learning" 

      run_single_forms_until_no_change(@lang_hyp_list) 
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      @results_list << ["Single Form Learning - #{lang_sim_results(@lang_hyp_list)}", 

learning_completed?] 

      return true if learning_completed? == true 

      # Pursue further learning until the language is learned, or no 

      # further improvement is made. 

      puts "Further learning" 

      further_learning() 

      @results_list << ["Further Learning - #{lang_sim_results(@lang_hyp_list)}", 

learning_completed?] 

      return true if learning_completed? == true 

      # Consider learning successful if at least one consistent hypothesis 

      # has learned the language. This partial success will allow for 

      # comparing the expected simulation outcome with the actual outcome, in 

      # case more than one language hypothesis was expected to succeed. 

      return true if @lang_hyp_list.any? {|lang_hyp| lang_hyp.results_list.last.all_correct?} 

      # Return boolean indicating if learning was successful. 

      # This should be false, because a "true" would have triggered an earlier 

      # return from this method. 

      fail if learning_completed? == true 

      return learning_completed? 

    end 
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   # This method returns true if learning is complete; that is, if the 

    # last grammar test for each language hypothesis is all correct. 

    def learning_completed?() 

      @lang_hyp_list.each do |lang_hyp| 

        # Return false unless the last grammar test for the language 

        # hypothesis is all correct. 

        return false unless lang_hyp.results_list.last.all_correct? 

      end 

      return true 

    end 

 

 

    # Reports on the number of successful and discarded hypotheses, along with 

    # their labels. Used in the Typ Summary Excel worksheet. 

    def lang_sim_results(successful_hyps) 

      results = String.new 

      results += "#{successful_hyps.size} consistent hyps: " 

      successful_hyps.each {|hyp| results += hyp.lang_hyp_label.to_s + " - " } 

      results += " #{@discards.size} inconsistent hyps: " 

      @discards.each {|hyp| results += hyp.lang_hyp_label.to_s + " - "} 

      return results 

    end 
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   # Tests each overt form against each language hypothesis until all 

    # language hypotheses cycle through all overt forms without making 

    # any learning changes. 

    def phonotactic_learning(overt_forms, lang_hyp_list) 

      ranking_bias = nil   # FaithLow ranking bias 

      l_hyp_list = lang_hyp_list 

 

      while l_hyp_list.any? {|l_hyp| l_hyp.learning_change == true} 

        # _changed_hyps_: hyps that changed in the last pass are re-tested 

        # _@lang_hyp_list_: hyps that did not change in the last pass are stored 

        changed_hyps, @lang_hyp_list = l_hyp_list.partition do 

          |l_hyp| l_hyp.learning_change 

        end 

        overt_forms.each do |overt| 

          l_hyp_list = changed_hyps 

          changed_hyps = [] 

          until l_hyp_list.empty? do 

            lang_hyp = l_hyp_list.shift 

            # Add the complete list of overt forms to _lang_hyp_. The overt 

            # forms are used by OvertGrammarTest to determine whether anything 

            # can be learned from overt forms without committed outputs. 

            @overt_forms.each { |o| lang_hyp.overt_forms << o } if lang_hyp.overt_forms.empty? 

            # Reset _lang_hyp_ to unchanged during learning 

            lang_hyp.hyp_change(false) 

            input = OTLearn::input_from_overt(overt) 

            competition = lang_hyp.system.gen(input) 
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            # Find the most harmonic candidates 

            mh = MostHarmonic.new(competition, lang_hyp.grammar.hierarchy) 

            commitment = lang_hyp.commitments.existing_commitment_pair(overt) 

 

            if commitment then 

              # If any optimum has an *output* distinct from the 

              # committed output, perform ranking learning. 

              if mh.any? {|cand| !lang_hyp.commitments.forms_match?(cand.output, commitment)} 

then 

                OTLearn::ranking_learning(lang_hyp.winner_list, lang_hyp, ranking_bias) 

                lang_hyp.hyp_change(true) 

              end 

              # Add _lang_hyp_ to _changed_hyps_ list to be tested against 

              # the next overt form if it's consistent; otherwise, discard. 

              if lang_hyp.consistent? then 

                changed_hyps << lang_hyp 

              else 

                @discards << lang_hyp 

              end 

            else # No existing commitment 

              # If there is only one optimum and its overt form matches 

              # _overt_form,add the language hypothesis to _changed_hyps_ 

              # to be tested against the next overt form. 

              # Otherwise, extend new language hypothesis branches and 

              # add the returned, consistent branches to _changed_hyps_ 

              # (inconsistent branches go directly to @discards). 
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              # Otherwise,  

              # to be tested against the next overt form. 

              if mh.size ==1 && mh[0].overt.to_s==overt.to_s then 

                changed_hyps << lang_hyp 

              else 

                branch_list = extend_branches(lang_hyp, overt) 

                branch_list.each {|branch| changed_hyps << branch} 

                add_branch_info_to_sim_results(changed_hyps, l_hyp_list, lang_hyp, overt) 

              end 

            end 

           

          end #until 

        end # 

        l_hyp_list << changed_hyps.shift until changed_hyps.empty? 

      end #while 

      # Phonotactic learning has ended. 

      # For each lang hyp, store the number of ERCs created during phonotactic 

      # learning. For the consistent lang hyps only, populate the lexicon with  

      # all the morphemes before beginning single form learning. 

      l_hyp_list.each do |l_hyp| 

        l_hyp.store_phonotactic_erc_size(l_hyp.erc_list.size) 

        overt_forms.each { |overt| add_morphemes_to_lexicon(l_hyp, overt) } 

        l_hyp.results_list << Overt_OTLearn::OvertGrammarTest.new(l_hyp, "Phonotactic 

Learning") 

        @lang_hyp_list << l_hyp 

      end 
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      @discards.each do |discard_hyp| 

        # Store the number of ERCs created during phonotactic learning 

        discard_hyp.store_phonotactic_erc_size(discard_hyp.erc_list.size) 

      end 

      return 

    end 
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   # Calls the branch method for language hypotheses to extend 

    # branches from _lang_hyp_ for _overt_ form. Updates branch labels 

    # to indicate the overt form (by letter) and structural 

    # interpretation (by number). 

    # Example: 

    #   A1B1 = This hypothesis has branched from A1 and committed to 

    #          interpretation 1 for overt form B. 

    def extend_branches(lang_hyp, overt) 

      br_list, discards = lang_hyp.branch(overt, ranking_bias=nil) 

      hyp_list = [] 

      br_list.each {|hyp| hyp_list << hyp} 

      discards.each {|hyp| hyp_list << hyp} 

      # Update label for each hyp 

      hyp_list.each do |hyp| 

        @letter = @labels.update_lang_hyp_label(overt, hyp, @letter) 

      end 

      # Add all inconsistent branches to _@discards_ 

      discards.each {|hyp| @discards << hyp} 

      # Return the list of consistent branches 

      return br_list 

    end 
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   # This method processes all of the overt forms in _overt_forms_, one 

    # at a time in order, with respect to each language hypothesis 

    # in _untested_hyps_. Each overt form is processed as follows: 

    #   * Attempt to find new ranking info 

    #     - If there's an existing commitment but no winner, 

    #       create a new winner. 

    #     - Check if the winner is optimal when unset input features 

    #       are matched to the output, and if not, find more ranking info. 

    #     - If there's no existing commitment, check if any optimum differs 

    #       from _overt_form_ in string representation. Branch as required. 

    #   * If a winner exists, attempt to set any of its unset underlying features. 

    #   * For each newly set feature, check for new ranking information. 

    # The method passes repeatedly through the list of overt forms until 

    # a pass is made with no learning changes to the language hypothesis. 

    # The language hypothesis's constraint hierarchy is updated with the 

    # Faith-Low version of RCD. If the language hypothesis is consistent, 

    # it is ultimately added back to @lang_hyp_list; otherwise, it is added 

    # to @discards. 

    def run_single_forms_until_no_change(untested_hyps) 

      tested_hyps = [] 

 

      until untested_hyps.empty? do 

        lang_hyp = untested_hyps.shift 

        lang_hyp.hyp_change(true) 

        skip_lang_hyp = false 
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        while lang_hyp.learning_change == true do 

          # Skip single-form learning if _lang_hyp_ is already complete 

          if lang_hyp.results_list.last.all_correct? then 

            tested_hyps << lang_hyp 

            skip_lang_hyp = true 

          end 

          break if skip_lang_hyp 

          lang_hyp.hyp_change(false) 

          set_feature_list = [] 

          # Tests lang_hyp_ with each overt form. First checks for 

          # errors, then tries to set unset features in the form. 

          @overt_forms.each do |overt| 

            break if skip_lang_hyp 

            commitment = lang_hyp.commitments.existing_commitment_pair(overt) 

 

            if commitment then 

              # Check for a winner (full structural description, though the  

              # input may include unset features) associated with the overt 

              # form, and create a new winner if one does not already exist. 

              winner = lang_hyp.existing_winner(overt) 

              if winner.nil? then 

                # Add a new winner to lang_hyp 

                winner = lang_hyp.add_winner(overt, commitment) 

              end 

              # Check for new ranking information 
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              lang_hyp.hyp_change(true) if 

OTLearn::ranking_learning_faith_low(lang_hyp.winner_list, lang_hyp) 

              # If lang_hyp is consistent, attempt to set the unset features 

              # _winner_. Otherwise, add lang_hyp to @discards. 

              if lang_hyp.consistent? then 

                new_set_features = OTLearn.set_uf_values([winner], lang_hyp) 

                set_feature_list.concat(new_set_features) 

                unless new_set_features.empty? then 

                  lang_hyp.hyp_change(true) 

                  set_f_string = String.new 

                  new_set_features.each do |f| 

                    set_f_string << " - " <<  f.morpheme.to_s << " " << f.element.to_s 

                  end 

                  lang_hyp.results_list << Overt_OTLearn::OvertGrammarTest.new(lang_hyp, "Single 

Form Learning: #{overt.morphword.to_s}. Set #{set_f_string}") 

                  # Add the number features just set to the lang hyp's 

                  # current number of set Fs 

                  lang_hyp.store_num_set_features(new_set_features.size) 

                end 

              else 

                lang_hyp.results_list << Overt_OTLearn::OvertGrammarTest.new(lang_hyp, "Single 

Form Learning") 

                @discards << lang_hyp 

                skip_lang_hyp = true 

                break 

              end 
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            else # No existing commitment 

              input = OTLearn::input_from_lexicon_and_overt(overt, lang_hyp.grammar) 

              competition = lang_hyp.system.gen(input) 

              # Check for an error on _overt_. 

              skip_lang_hyp = error_test_overt_form(overt, competition, lang_hyp, tested_hyps, 

untested_hyps) 

              break if skip_lang_hyp 

              # Check for an error on the maximimal mismatch of _overt_. 

              # An error indicates that the features have the potential 

              # to be set; lang_hyp branches for interpretations of _overt_ 

              OTLearn::mismatches_input_to_overt(lang_hyp.grammar, overt) do |mismatched_input| 

                competition = lang_hyp.system.gen(mismatched_input) 

                skip_lang_hyp = error_test_overt_form(overt, competition, lang_hyp, tested_hyps, 

untested_hyps) 

                break if skip_lang_hyp 

              end 

            end # if commitment then 

 

            # For each newly set feature, check winners in _lang_hyp_ that unfaithfully 

            # map that feature for new ranking information. 

            set_feature_list.each do |set_f| 

              # Skips features set to -stress, as they do not violate MaxStress 

              unless set_f.feature.unstressed? then 

                if OTLearn::new_rank_info_from_feature(lang_hyp, lang_hyp.winner_list, set_f) then 
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                  lang_hyp.results_list << Overt_OTLearn::OvertGrammarTest.new(lang_hyp, "New 

ranking info from set feature (Single Form #{set_f.morpheme})") 

                  lang_hyp.hyp_change(true) 

                end 

              end 

            end 

            set_feature_list = [] 

          end # overt_forms.each 

          break if skip_lang_hyp 

        end # while 

 

        # If there are no learning changes in _lang_hyp_, add it to _tested_hyps_ 

        # if it is still consistent; otherwise, discard it. 

        unless skip_lang_hyp 

          lang_hyp.update_grammar {|ercs| OTLearn::RcdFaithLow.new(ercs)} 

          lang_hyp.results_list << Overt_OTLearn::OvertGrammarTest.new(lang_hyp, "End of 

Single Form Learning") 

          tested_hyps << lang_hyp if lang_hyp.consistent? 

          @discards << lang_hyp unless lang_hyp.consistent? 

        end 

      end #until 

      @lang_hyp_list << tested_hyps.shift until tested_hyps.empty? 

     end 
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  # If there is a tie or any optimum has an *overt* form distinct 

    # from _overt_, extend new language hypothesis branches. 

    # Returns true if _lang_hyp_ branches; false otherwise. 

    def error_test_overt_form(overt, competition, lang_hyp, tested_hyps, untested_hyps) 

      mh = MostHarmonic.new(competition, lang_hyp.grammar.hierarchy) 

      if mh.any? {|cand| cand.overt.to_s != overt.to_s} then 

        branch_list = extend_branches(lang_hyp, overt) 

        branch_list.each {|branch| @lang_hyp_list << branch} 

        add_branch_info_to_sim_results(tested_hyps, untested_hyps, lang_hyp, overt) 

        return true 

      end 

      return false 

    end 
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# For any morphemes not currently in the lexicon, create new entries, 

    # with the same number of syllables as in the output, 

    # and all features unset. 

    def add_morphemes_to_lexicon(lang_hyp, overt) 

      mw = overt.morphword 

      mw.each do |m| 

        unless lang_hyp.grammar.lexicon.any?{|entry| entry.morpheme==m} then 

          under = Underlying.new 

          overt.each_syllable do |syl| 

            under << SF::Syllable.new.set_morpheme(m)if syl.morpheme == m 

          end 

          lang_hyp.grammar.lexicon << Lexical_Entry.new(m,under) 

        end 

      end 

    end 

 

    # Adds to the simulation's results list an entry recording the 

    # creation of a new branch. 

    def add_branch_info_to_sim_results(hyp_list1, hyp_list2, lang_hyp, overt) 

      simultaneous_hyps = [] 

      hyp_list1.each {|h| simultaneous_hyps << h} 

      hyp_list2.each {|h| simultaneous_hyps << h} 

      label = lang_hyp.lang_hyp_label 

      @results_list << ["#{label.to_s} branches for #{overt.to_s}: 

#{lang_sim_results(simultaneous_hyps)}"] 

    end 
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    # Pursues further learning until each language hypothesis 

    # has learned the language or until no further improvements 

    # can be made in any language hypothesis. 

    def further_learning() 

      hyp_list = [] 

      until @lang_hyp_list.empty? do 

        lang_hyp = @lang_hyp_list.shift 

        # Only pursue further learning on incomplete language hypotheses 

        if lang_hyp.results_list.last.all_correct? then 

          hyp_list << lang_hyp if lang_hyp.consistent? 

        else 

          fw_list = [] 

          lang_hyp.results_list.last.failed_winners.each { |fw| fw_list << fw.morphword.to_s } 

          learning_change = true 

          while learning_change==true 

            learning_change=false 

            # First, try to learn from a contrast pair 

            contrast_pair = run_contrast_pair(lang_hyp.winner_list, lang_hyp, 

lang_hyp.results_list.last, strict=true) 

            # These lines will enable a wider range of contrast pairs to 

            # be considered. Useful for some languages in the 2r1s Stress system 

            # typology. 

            if contrast_pair.nil? then 

              contrast_pair = run_contrast_pair(lang_hyp.winner_list, lang_hyp, 

lang_hyp.results_list.last, strict=false) 

            end 
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            unless contrast_pair.nil? 

              cp0 = contrast_pair[0].morphword.to_s 

              cp1 = contrast_pair[1].morphword.to_s 

              lang_hyp.results_list << Overt_OTLearn::OvertGrammarTest.new(lang_hyp, "Contrast 

Pair Learning - #{cp0}-#{cp1}") 

              learning_change = true 

            else 

              # No suitable contrast pair, so pursure learning by minimal mismatch 

              mismatch_winners = failed_winner_mismatch_consistency_check(lang_hyp) 

              if mismatch_winners then 

                until mismatch_winners.empty? do 

                  mismatch_winner = mismatch_winners.shift 

                  # Check for new ranking info from mismatch_winner. 

                  # Break for first error found. 

                  mrcd_result = OTLearn::MrcdFaithLow.new([mismatch_winner], lang_hyp) 

                  if mrcd_result.any_change? == true then 

                    learning_change = true 

                    lang_hyp.results_list << Overt_OTLearn::OvertGrammarTest.new(lang_hyp, "New 

ranking info from failed winner mismatch") 

                    break 

                  end 

                end 

              end 

              # No ranking information from consistent mismatches, so pursue 

              # minimal UF learning 
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              if learning_change == false 

                set_feature = run_minimal_uf_for_failed_winner(lang_hyp.winner_list, lang_hyp, 

lang_hyp.results_list.last) 

                unless set_feature.nil? 

                    # Increment num_set_features to add this newly 

                    # set feature - used in Excel performance summary 

                    lang_hyp.store_num_set_features(1) 

                    lang_hyp.results_list << Overt_OTLearn::OvertGrammarTest.new(lang_hyp, 

"Minimal UF Learning: #{set_feature.to_s}") 

                    learning_change = true 

                end 

              end 

            end  #unless 

            # If a learning change occured, check to see if the change 

            # completed learning. If not,follow up with another round of 

            # single form learning. (Any consistent language hypotheses 

            # remaining after single form learning will be added to 

            # _@lang_hyp_list_. 

            # If no change resulted, no further learning is currently possible; 

            # cease learning attempts on this language hypothesis. 

              if learning_change == true then 

                if lang_hyp.results_list.last.all_correct? 

                  hyp_list << lang_hyp 

                else 

                 run_single_forms_until_no_change([lang_hyp]) 

                end 



367	
	

	
	

                break 

              else 

                hyp_list << lang_hyp if lang_hyp.consistent? 

                @discards << lang_hyp unless lang_hyp.consistent? 

              end 

          end #while 

        end #if 

      end #until 

      @lang_hyp_list << hyp_list.shift until hyp_list.empty? 

      return 

    end 
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# Returns the list of consistent minimal mismatch words 

    def failed_winner_mismatch_consistency_check(main_lang_hyp) 

      consistent_mismatch_list = [] 

      prior_results = main_lang_hyp.results_list.last 

      return nil if prior_results.failed_winners.empty? 

      prior_results.failed_winners.each do |fw_orig| 

        # Check if there is a failed winner whose minimal mismatch is consistent 

        # Dup hypothesis and words, so originals aren't modified. 

        hyp = main_lang_hyp.dup 

        fw = fw_orig.dup.sync_with_hypothesis!(main_lang_hyp) 

        # Set fw's input so that features unset in the hypothesis lexicon 

        # mismatch their output correspondents. 

        mismatch_list = OTLearn::minimal_mismatches_input_to_output(fw) 

        mismatch_list.each do |mismatch| 

         # Run MRCD to see if the mismatched FW is consistent. 

          mrcd_result = OTLearn::Mrcd.new([mismatch], hyp) 

         # Add each consistent mismatched failed winner 

          consistent_mismatch_list << mismatch if mrcd_result.hypothesis.consistent? 

        end 

      end 

      return consistent_mismatch_list 

    end 
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   # Select a contrast pair, and process it, attempting to set underlying 

    # features. If any features are set, check for any newly available 

    # ranking information. 

    # 

    # This method returns the first contrast pair that was able to set 

    # at least one underlying feature. If none of the constructed 

    # contrast pairs is able to set any features, nil is returned. 

    # 

    # *Note* This method is adapted with few changes from Tesar's method 

    # of the same name. The key difference is the "strict" parameter, which 

    # determines whether to search for strict contrast pairs -- in which 

    # the pair members have alternating values for unset features 

    # (using Tesar's generate_contrast_pair method) -- or to search for all contrast 

   #  pairs, including those with non-alternating values of unset features. 

    def run_contrast_pair(winner_list, hyp, prior_result, strict) 

      # Create an external iterator which calls generate_contrast_pair() 

      # to generate contrast pairs. 

      cp_gen = Generator.new do |result| 

        if strict then 

          OTLearn::generate_contrast_pair(result, winner_list, hyp, prior_result) 

        else 

          generate_all_contrast_pairs(result, winner_list, hyp, prior_result) 

        end 

      end 

      # Process contrast pairs until one is found that sets an underlying 

      # feature, or until all contrast pairs have been processed. 
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      while cp_gen.next? do 

        contrast_pair = cp_gen.next 

        # Process the contrast pair, and return a list of any features 

        # that were newly set during the processing. 

        set_feature_list = OTLearn::set_uf_values(contrast_pair, hyp) 

        # Increment num_set_features to add these newly set features 

        hyp.store_num_set_features(set_feature_list.size) 

        # For each newly set feature, see if any new ranking information 

        # is now available. 

        set_feature_list.each do |set_f| 

          # Does not check for new rank info from features set to -stress, 

          # as they do not violate MaxStress. 

          unless set_f.feature.unstressed? then 

            if OTLearn::new_rank_info_from_feature(hyp, winner_list, set_f) then 

              hyp.results_list << Overt_OTLearn::OvertGrammarTest.new(hyp, "New rank info from 

set feature (CP #{set_f.morpheme})") 

            end 

          end 

        end 

        # If an underlying feature was set, return the contrast pair. 

        # Otherwise, keep processing contrast pairs. 

        return contrast_pair unless set_feature_list.empty? 

      end 

      # No contrast pairs were able to set any features; return nil. 

      return nil 

    end 
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    # *Note* This method is adapted with few changes from Tesar's method 

    # of the same name. The key difference is that this method generates all 

    # contrast pairs, and not just those that have a conflicting value 

    # for an unset feature in the lexicon. 

  def generate_all_contrast_pairs(cp_return, winners, hyp, test_result=nil) 

    test_result ||= GrammarTest.new(winners, hyp) 

    # The failed winners of the test are connected to a different 

    # lexicon. Make duplicates of the failed winners, and synchronize 

    # them with _hyp_. 

    f_winners = test_result.failed_winners.map do |winner| 

      winner.dup.sync_with_hypothesis!(hyp) 

    end 

    # For each failed winner, look for all contrast pairs 

    f_winners.each do |failed_winner| 

      OTLearn::match_input_to_uf!(failed_winner) 

      failed_winner.morphword.each do |morph| 

        if OTLearn::find_unset_features([morph], hyp)then 

          all_containing_words = [] 

          c_words = OTLearn::find_morphemes_in_words(winners)[morph] 

          c_words = c_words.delete_if do |cword| 

          cword.morphword == failed_winner.morphword 

          cword.output == failed_winner.output 

          end 

          c_words.each {|cw| all_containing_words << cw} 

          all_containing_words.each do |word| 
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            cp = OTLearn::ContrastSet.new([failed_winner,word]) 

            cp_return.yield cp 

          end 

        end 

      end 

    end 

  end 
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    # *Note* This method is adapted with few changes from Tesar's method  

    # of the same name. 

    # 

    # Given the result of error-testing, find a previously unset feature 

    # for one of the failed winners such that setting it to match its 

    # surface correspondent in the failed winner results in the winner 

    # succeeding (consistent with all of the winners that passed 

    # error-testing). This method is expected to be invoked only when 

    # single-word and contrast-pair inconsistency detection has failed 

    # to completely learn the language, suggesting that a paradigmatic 

    # subset relation is present. The goal is to find the smallest set 

    # of feature values that will allow learning to continue (fewer set 

    # features corresponds to greater restrictiveness). 

    # Each failed winner is checked in turn until one is found that can 

    # succeed on the basis of one newly set feature, returning that instance 

    # without checking to see if there are other possibilities. 

    # 

    # Returns the feature instance of the newly set feature, or nil if no feature was set. 

    # 

    # At present, #select_most_restrictive_uf checks each unset feature of 

    # a failed winner in isolation, and returns a feature value allowing 

    # that winner to succeed if there is exactly one. 

    # In principle, if there is no single feature leading to success for 

    # a previously failed winner, this method should try combinations 

    # of two unset features (and larger, if necessary) to find the minimum 

    # set of additional feature value commitments resulting in the success 
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    # of a failed winner. Future work will be needed to determine if 

    # the learner should evaluate each failed winner, and then select 

    # the failed winner requiring the minimal number of set features. 

    def run_minimal_uf_for_failed_winner(winner_list, hyp, prior_result) 

      fw_list = prior_result.failed_winners 

      set_feature = nil 

      fw_list.each do |failed_winner| 

        # Get the FeatureValuePair of the feature and its succeeding value. 

          fv_pair = select_most_restrictive_uf(failed_winner, hyp, prior_result) 

        unless fv_pair.nil? 

          fv_pair.set_to_alt_value  # Set the feature permanently in the lexicon. 

          set_feature = fv_pair.feature_instance 

          # Check for any new ranking information based on the newly set feature. 

          # Does not check for new rank info from features set to -stress, 

          # as they will not incur MaxStress violations 

          unless set_feature.feature.unstressed? then 

            if OTLearn::new_rank_info_from_feature(hyp, winner_list, set_feature) then 

              hyp.results_list << Overt_OTLearn::OvertGrammarTest.new(hyp, "New ranking info 

from set feature (Min UF #{set_feature.morpheme})") 

            end 

          end 

          break # Stop looking once the first successful feature is found. 

        end 

      end 

      return set_feature 

    end 
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    # *Note* This method is adapted with few changes from Tesar's method 

    # of the same name. 

    # 

    # 

    # Finds the unset underlying form feature of _failed_winner_ that, 

    # when assigned a value matching its output correspondent, 

    # makes _failed_winner_ consistent with the success winners. Consistency 

    # is evaluated with respect to the parameter _main_hypothesis_ with its 

    # lexicon augmented to include the tested underlying feature value, and with 

    # the other unset features given input values opposite of their output values). 

    # 

    # Returns nil if none of the features succeeds. 

    # If more than one underlying feature succeeds, returns the first found. 

    # Returns the successful underlying feature (and value) if exactly one of them succeeds. 

    # The return value is a _FeatureValuePair_: the underlying feature instance and 

    # its successful value (the one matching its output correspondent in the 

    # previously failed winner). 

    def select_most_restrictive_uf(failed_winner_orig, main_hypothesis, prior_result) 

      failed_winner = failed_winner_orig.dup.sync_with_hypothesis!(main_hypothesis) 

      # Find the unset underlying feature instances 

      unset_uf_features = 

OTLearn::find_unset_features_in_words([failed_winner],main_hypothesis) 

      # Set, in turn, each unset feature to match its output correspondent. 

      # For each case, test the success winners and the current failed winner 

      # for collective consistency with the hypothesis. 
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      consistent_feature_val_list = [] 

      unset_uf_features.each do |ufeat| 

        # set the tested underlying feature to the output value 

        out_feat_inst = failed_winner.out_feat_corr_of_uf(ufeat) 

        ufeat.value = out_feat_inst.value 

        # Add the failed winner to (a dup of) the list of success winners. 

        word_list = prior_result.success_winners.dup 

        word_list << failed_winner 

        # Check the list of words for consistency, using the main hypothesis, 

        # with each word's unset features mismatching their output correspondents. 

        mrcd_result = mismatch_consistency_check(main_hypothesis, word_list) 

        # If result is consistent, add the UF value to the list. 

        if mrcd_result.hypothesis.consistent? then 

          ufeat_val_pair = FeatureValuePair.new(ufeat, ufeat.value) 

          consistent_feature_val_list << ufeat_val_pair 

        end 

          # Unset the tested feature in any event. 

        ufeat.value = nil 

      end 

      # Return the first consistent tested feature found. 

      return nil if consistent_feature_val_list.empty? 

      return consistent_feature_val_list[0] 

    end 
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# Given a list of words and a hypothesis, check the word list for 

    # consistency with the hypothesis using MRCD. Any features unset 

    # in the lexicon of the hypothesis are set in the input of a word 

    # to the value opposite its output correspondent in the word. 

    # The mismatching is done separately for each word (the same unset feature 

    # for a morpheme might be assigned different values in the inputs of 

    # different words containing that morpheme, depending on what the outputs 

    # of those words are). 

    # Returns the Mrcd object containing the results. 

    # To find out if the word list is consistent with the hypothesis, call 

    # result.hypothesis.consistent? (where result is the Mrcd object returned 

    # by #mismatch_consistency_check). 

    def mismatch_consistency_check(hypothesis, word_list) 

      # Dup hypothesis and words, so originals aren't modified. 

      hyp = hypothesis.dup 

      w_list = word_list.map { |winner| winner.dup.sync_with_hypothesis!(hyp) } 

      # Set each word's input so that features unset in the hypothesis lexicon 

      # mismatch their output correspondents. A given output could appear 

      # more than once in the mismatch list ONLY if there are suprabinary 

      # features (a suprabinary feature can mismatch in more than one way). 

      mismatch_list = [] 

      w_list.map do |word| 

        OTLearn::mismatches_input_to_output(word) { |mismatched_word| mismatch_list << 

mismatched_word } 

      end 

      # Run MRCD to see if the mismatched candidates are consistent. 
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      return OTLearn::Mrcd.new(mismatch_list, hyp) 

    end 

 

    protected :execute_learning, :run_single_forms_until_no_change, 

      :run_contrast_pair, :run_minimal_uf_for_failed_winner, 

      :select_most_restrictive_uf 

 

  end # class OvertLanguageLearning 

 

end # module Overt_OTLearn 
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B‐11 OVERT_GRAMMAR_TEST.RB	

# Author: Crystal  Akers 

# 

 

require 'otlearn/grammar_test' 

require 'otlearn/uf_learning' 

require 'otlearn/data_manip' 

require 'overt_otlearn/commitment_list' 

require 'sf/sf_output' 

require 'morph_word' 

 

module Overt_OTLearn 

 

  # An OvertGrammarTest object holds the results of the evaluation of a set 

  # of winners with respect to a hypothesis. The tests are initiated by 

  # creating an OvertGrammarTest; the constructor takes a list of winners and 

  # a hypothesis as parameters. 

  # 

  # Each winner is a Word, possibly with unset features in the input. 

  class OvertGrammarTest < OTLearn::GrammarTest 
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 # Returns a new OvertGrammarTest, for the provided _winners_, and with 

    # respect to the provided _lang_hyp_. 

    def initialize(lang_hyp, label="NoLabel") 

      super(lang_hyp.winner_list, lang_hyp, label) 

      # Dup the commitments 

      @commitments = lang_hyp.commitments.dup 

#      # Dup the set of overt forms 

      @overt_forms = lang_hyp.overt_forms.dup 

      # Freeze the test results, so they cannot be accidentally altered later. 

#      @l_hyp.freeze 

      @commitments.each {|c_pair| c_pair.freeze} 

      @commitments.freeze 

      @overt_forms.each {|overt| overt.freeze} 

      @overt_forms.freeze 

    end 
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# Returns true if 

    #   - all winners in the winner list are the sole optima for inputs with all 

    #     unset features set to mismatch the surface of the winner. 

    #   - no new ranking or lexical information can be learned from the remaining 

    #     overt forms without committed outputs 

    def all_correct? 

      return false unless @failed_winner_info_list.empty? 

      return false unless check_overt_forms_for_ranking_and_lexical_info(uncommitted_overts) 

      return true 

    end 

 

    # Returns a list of overt forms which do not have committed output interpretations 

    def uncommitted_overts 

      uncommitted_forms = Array.new 

      @overt_forms.each do |overt| 

        uncommitted_forms << overt unless @commitments.any? {|c_pair| 

@commitments.forms_match?(overt, c_pair)} 

      end 

      return uncommitted_forms 

    end 
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def check_overt_forms_for_ranking_and_lexical_info(overt_forms) 

      overt_forms.each do |overt_form| 

        input = OTLearn::input_from_lexicon_and_overt(overt_form, @hypothesis.grammar) 

        competition = @hypothesis.system.gen(input) 

        # Find the most harmonic candidates 

        mh = MostHarmonic.new(competition, @hypothesis.grammar.hierarchy) 

        # Return if new ranking info is available (if there is a CTie or if 

        # the optimum does not have the same overt form) 

        return false if mh.size > 1 

        return false if mh.any? {|cand| cand.overt.to_s != overt_form.to_s} 

        ranking_info_test_optimum = mh[0].to_s 

         # Check that no new lexical information is available 

        OTLearn::mismatches_input_to_overt(@hypothesis.grammar, overt_form) do 

|mismatched_input| 

            competition2 = @hypothesis.system.gen(mismatched_input) 

            mh2 = MostHarmonic.new(competition2, @hypothesis.grammar.hierarchy) 

            # Return false if there is more than one optimum, if the optimum has 

            # an *overt* form distinct from _overt_, or if the optimum differs 

            # from the ranking test optimum. 

            return false if mh2.size > 1 

            return false if mh2.any? {|cand| cand.overt.to_s != overt_form.to_s} 

            return false unless mh2[0].to_s == ranking_info_test_optimum 

          end 

      end 

      return true 

    end 
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  end # class OvertGrammarTest 

 

end # module Overt_OTLearn  
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B‐12 DATA_MANIP.RB	

 

# Author: Crystal Akers 

# 

# This file contains a collection of methods for generating and 

# manipulating data. 

 

require 'hypothesis' 

require 'otlearn' 

require 'morph_word' 

require 'input' 

require 'sf/syllable' 

require 'io_correspondence' 

 

 

module OTLearn 

 

  



385	
	

	
	

  # Creates and returns an input given an overt form, useful in 

  # identity maps. This input has an empty UI correspondence. 

  def OTLearn::input_from_overt(overt_form) 

    input =  Input.new 

    overt_form.each do |syl| 

      in_syl = SF::Syllable.new 

      in_syl.set_morpheme(syl.morpheme) 

      syl.each_feature do |f| 

        val = f.value 

        in_syl.set_feature(f.type,val) 

      end 

      input.push(in_syl) 

      input.morphword = overt_form.morphword 

    end 

    return input 

  end 

 

  # Performs ranking learning using the given ranking bias. 

  def OTLearn::ranking_learning(winner_list, lang_hyp, ranking_bias_flag) 

    if ranking_bias_flag == nil then 

      OTLearn::ranking_learning_faith_low(winner_list,lang_hyp) 

    else 

      OTLearn::ranking_learning_mark_low(winner_list,lang_hyp) 

    end 

  end 
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  # Creates and returns an input. The input contains all features set 

  # in _gram_; any features unset in the lexicon are set in the input 

  # to match those in the _overt_ form. This input has an empty 

  # UI correspondence. 

  def OTLearn::input_from_lexicon_and_overt(overt, gram) 

    input = Input.new 

    input.morphword = overt.morphword 

    mw = input.morphword 

    mw.each do |m| # for each morpheme in the morph_word, in order 

      uf = gram.get_uf(m) 

      # If the morpheme is in the lexicon, add a duplicate of each 

      # underlying syllable to input. Otherwise, for each syllable 

      # of the morpheme, add a new syllable to the input. 

      if uf then 

        uf.each { |syl| input.push(syl.dup) } 

      else 

        m_syls = overt.find_all {|syl| syl.morpheme == m} 

        m_syls.each { |syl| input.push(SF::Syllable.new.set_morpheme(m)) } 

      end 

    end 

    # Match any unset features of the input syllables to the values 

    # of the corresponding _overt_ syllables. 

    gen_syl = SyncEnumerator.new(input, overt) 

    gen_syl.each do |in_syl, o_syl| 

      in_syl.each_feature do |f| 

        if f.unset? then 
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          o_feat = o_syl.get_feature(f.type) 

          in_syl.set_feature(f.type, o_feat.value) 

        end 

      end 

    end 

    return input 

  end 
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  # For the given overt form, test the *unset* features by examining 

  # each combination of values such that each unset feature does *not* 

  # match its output correspondent. 

  # For each combination, the code block is run. 

  # 

  # If all features are strictly binary, then there is only one input that 

  # maximally mismatches the output with respect to the unset features. 

  # If one or more features is suprabinary, then the 

  # different possible combinations of non-surface-matching values are 

  # all tried. 

  def OTLearn::mismatches_input_to_overt(gram, overt_form, &block) 

    input = Input.new 

    input.morphword = overt_form.morphword 

    mw = input.morphword 

    mw.each do |m| # for each morpheme in the morph_word, in order 

      uf = gram.get_uf(m) 

      # If the morpheme is in the lexicon, add a duplicate of each underlying 

      # syllable to input. Otherwise, for each syllable of the morpheme, add a 

      # new syllable to the input. 

      if uf then 

        uf.each { |syl| input.push(syl.dup) } 

      else 

        m_syls = overt_form.find_all {|syl| syl.morpheme == m} 

        m_syls.each { |syl| input.push(SF::Syllable.new.set_morpheme(m)) } 

      end 

    end 
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    # Create an IO correspondence between the input and the overt form. 

    io_corr = IOCorrespondence.new 

    gen = SyncEnumerator.new(input, overt_form) 

    gen.each do |in_syl,overt_syl| 

      io_corr << [in_syl,overt_syl] 

      if in_syl.morpheme != overt_syl.morpheme then 

        raise "Input syllable morph #{in_syl.morpheme.label} != " + 

          "overt syllable morph #{overt_syl.morpheme.label}" 

      end 

    end 

    # Construct a list of the unset features in _input_ 

    unset_features = [] 

    input.each do |in_el| 

      in_el.each_feature do |f| 

        unset_features << FeatureInstance.new(in_el,f) if f.unset? 

      end 

    end 

    # Invoke the block on each combination of mismatched values, by 

    # passing the block as a procedure object. 

    OTLearn::test_each_overt_mismatch_value(input, io_corr, unset_features, block) 

  end 
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  # Used for creating minimal mismatch candidates for failed winners. 

  # For the given word, create each minimal mismatch candidate by setting one 

  #  *unset* feature at a time to a value that does *not* match its output 

  # correspondent.  

  # 

  # If all features are strictly binary, then there is only one input that 

  # maximally mismatches the output with respect to the unset features. 

  # If one or more features is suprabinary, then the 

  # different possible combinations of non-surface-matching values are 

  # all tried. 

  def OTLearn::minimal_mismatches_input_to_output(word_param) 

    word = word_param.dup 

    OTLearn::match_input_to_uf!(word) 

    # Construct a list of the unset features in the word 

    unset_features = [] 

    input = word.input 

    input.each do |in_el| 

      in_el.each_feature do |f| 

        unset_features << FeatureInstance.new(in_el,f) if f.unset? 

      end 

    end 

    mismatch_words = [] 

    unset_features.each do |unset_f_inst| 

      # Obtain the value of the unset feature's corresponding instance 

      # in the output. 

      out_f_inst = word.out_feat_corr_of_in(unset_f_inst) 
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      out_f_val = out_f_inst.value 

      # Obtain the unset feature itself. 

      unset_f = unset_f_inst.feature 

      # For each value of the unset feature type that does not match the 

      # value in the output correspondent, assign that value to the 

      # unset feature *in the input* (i.e., not in the lexicon). 

      unset_f.each_value do |val| 

        if val!=out_f_val then 

          OTLearn::match_input_to_output!(word) 

          # Set the value of _unset_f_ to the value that mismatches the output 

          unset_f.value = val 

          mismatch_words << word.dup 

          #reset the value of this unset feature for the next test 

          unset_f.value = out_f_inst.value 

        end 

      end 

    end 

    return mismatch_words 

  end 
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# Run the provided procedure object _block_proc_ on variations of _input_. 

  # The variations are all possible combinations of values for the input 

  # features in _unset_features_ such that all of those input features do 

  # not match their output correspondent values in a previously given overt form. 

  # 

  # _block_proc_ is a procedure object version of the code block to be 

  # called on each combination of output-mismatched feature values. 

  def OTLearn::test_each_overt_mismatch_value(input, io_corr, unset_features, 

block_proc) 

    # Base case: if no unset features remain, call the block on a duplicate 

    # of the input, and return. 

    if unset_features.empty? then 

      block_proc.call(input.dup) 

      return 

    end 

    # Get the first unset feature instance on the list, and make a copy list of 

    # the rest of the unset features (that way, the original list is unchanged 

    # when referenced by other recursive calls). 

    unset_f_inst = unset_features[0] 

    rest_unset_features = unset_features.slice(1..-1) # list with first element removed 

    # Obtain the value of the unset feature's corresponding instance in the overt form. 

    overt_f_inst = OTLearn::overt_feat_corr_of_in(unset_f_inst, io_corr) 

    overt_f_val = overt_f_inst.value 

    # Obtain the unset feature itself. 

    unset_f = unset_f_inst.feature 

    # For each value of the unset feature type that does not match the 
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    # value in the overt correspondent, assign that value to the 

    # unset feature *in the input* (i.e., not in the lexicon). 

    unset_f.each_value do |val| 

      if val!=overt_f_val then 

        unset_f.value = val 

        OTLearn::test_each_overt_mismatch_value(input,io_corr, rest_unset_features, block_proc) 

      end 

    end 

end 
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# Returns the corresponding overt feature instance for the given _in_feat_inst_. 

# This method assumes that the corresponding overt feature instance of 

# _in_feat_inst_ simply the corresponding output feature instance. 

def OTLearn::overt_feat_corr_of_in(in_feat_inst, io_corr) 

    # Get the corresponding overt element and feature for the input element. 

    overt_corr_element = io_corr.out_corr(in_feat_inst.element) 

    return nil if overt_corr_element.nil? 

    overt_corr_feat = overt_corr_element.get_feature(in_feat_inst.feature.type) 

    return FeatureInstance.new(overt_corr_element, overt_corr_feat) 

end 

 

 

end # module OTLearn 
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B‐13 EXCEL_FOR_OVERT_OTLEARN.RB	

 

# Author: Crystal Akers, based on Tesar’s Excel_for_OTLearn.rb 

# 

# This file contains revisions to the Excel interface for RUBOT for use in 

# learning multiple simulataneous language hypotheses. 

 

require 'otlearn' 

require 'overt_otlearn/language_hypothesis' 

require 'overt_otlearn/overt_language_learning' 

require 'excel' 

 

module Overt_OTLearn 

 

# A session for interacting with Excel, specifically for the 

# overt_otlearn simulations. 
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 class Excel_session_for_overt_otlearn < Excel_session 

    # Excel Constants 

    # Load built-in Excel constants (Xl*); for a list, see 

    # http://msdn.microsoft.com/en-us/library/aa221100(office.11).aspx 

    # The constants of the variety Xl* can be obtained from WIN32OLE. 

    # const_load(<excel object>, Excel_session) obtains the 

    # defined Excel constaints and makes them constants of the class Excel_session. 

    # That way, they can be used in the methods of this class, which makes it 

    # much easier to use the MSDN Reference Library for the Excel VBA calls. 

    # Reference: http://msdn.microsoft.com/en-us/library/aa220733(office.11).aspx 

    begin 

      WIN32OLE.const_load(WIN32OLE.connect("excel.application"), 

Excel_session_for_overt_otlearn) # Load excel constants 

    rescue WIN32OLERuntimeError # error exception thrown if Excel isn't running. 

      # Create a temporary excel app, so that constants can be loaded from it. 

      excel_temp = WIN32OLE.new("excel.application") 

      WIN32OLE.const_load(excel_temp, Excel_session_for_overt_otlearn) # Load excel 

constants 

      excel_temp.ole_free # Terminate the temporary excel app 

    end 
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# The color index constants aren't defined as colors in Excel, because they 

    # actually point to positions in the default color palette, which can be 

    # dynamically changed by the user. The color assignments given below 

    # as constants reflect the Excel defaults: the colors that by default are 

    # in the numbered positions in the color palette. 

    # Color index constant usage: obj.colorindex = CONST 

    RED = 3 #:nodoc: 

    BRIGHTGREEN = 4 #:nodoc: 

    BLUE = 5 #:nodoc: 

    PALEYELLOW = 19 #:nodoc: 

    LIGHTGREEN = 35 #:nodoc: 

    MIDYELLOW = 36 #:nodoc: 

    MAGENTA = 38 #:nodoc: 

 

    def initialize 

      super 

    end 
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   def put_learning_results(hyp, success) 

      @excel.screenUpdating=false # turn off updating while writing to a worksheet 

      ws = @excel.sheets.add('After'=>@excel.activesheet) 

      if success == true then 

        if hyp.results_list.last.all_correct? then 

          ws.name = name_sheet(hyp.lang_hyp_label) 

        else 

          ws.name = name_sheet("(" + "*" + hyp.lang_hyp_label + ")") 

        end 

      else 

        ws.name = name_sheet("(" + hyp.lang_hyp_label+ ")") 

      end 

      range(ws,1,1,1,1).value = hyp.label 

      row = 1; col = 1 

      # 

      row +=2 

      range(ws,2,1,2,3).merge 

      range(ws,2,1,2,1).value = "Commitments" 

      hyp.commitments.each  do |c_pair| 

        row += 1 

        range(ws, row, 1, row, 1). value = "#{c_pair[0].to_s}" 

        range(ws, row, 2, row, 2).value = "#{c_pair[1].to_s}" 

      end 

      row+= 2 

      range(ws,row, 1, row, 10).merge 

      hyp_dup = hyp.dup 
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      rcd_result = hyp_dup.update_grammar{|ercs| OTLearn::RcdFaithLow.new(ercs)} 

      range(ws, row, 1, row, 1). value = "#{hyp_dup.grammar.hierarchy.to_s}" 

      hyp.results_list.each do |entry| 

        row += 3 

        range(ws,row,1,row,14).merge 

        range(ws,row,1,row,1).value = "#{entry.label}:" 

        row, col = learning_result_to_ws(ws, entry, row+1, 1) 

      end 

      # 

    ensure # make sure screen updating is turned back on, even if an exception is raised. 

      @excel.screenUpdating=true 

    end 
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 # Modified from the method in the superclass Excel.rb file to include 

    # a column in the comparative tableau output that includes, for each ERC, 

    # the order in which that ERC was added to the CT. 

    def learning_result_to_ws(ws, gram_test_result, row_first, col_first) 

      # Test result components are frozen, so dup before updating. 

      hyp = gram_test_result.hypothesis.dup 

      rcd_result = hyp.update_grammar{|ercs| OTLearn::RcdFaithLow.new(ercs)} 

      # Add the unranked constraints as a "final stratum" to the hierarchy. 

      hier_with_unranked = Hierarchy.new 

      hier_with_unranked.concat(rcd_result.hierarchy) 

      hier_with_unranked << rcd_result.unranked unless rcd_result.unranked.empty? 

      sorted_cons = hier_with_unranked.flatten 

      # sort the ercs with respect to the RCD constraint hierarchy 

      sorted_ercs, ercs_by_stratum, explained_ercs = sort_rcd_results(rcd_result) 

      # write the main CT to the new worksheet 

      wl_pairs_to_ws(ws,gram_test_result.hypothesis.erc_list,sorted_cons, 

sorted_ercs,row_first,col_first) 

      # Set some table index values 

      pre_con_columns = 5 

      col_count = pre_con_columns + sorted_cons.size 

      pre_erc_rows = 1 

      last_ex_row = pre_erc_rows + explained_ercs.size # row of last explained erc 

      row_count = last_ex_row + rcd_result.unex_ercs.size 

 

      # put vertical lines between the strata 

      vl_col_count = pre_con_columns 
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      hier_with_unranked.each do |stratum| 

        vl_col_count += stratum.size 

        vl_row_last = row_first-1+row_count 

        vl_col_last = col_first-1+vl_col_count 

        range(ws,row_first,vl_col_last,vl_row_last,vl_col_last).borders(XlEdgeRight).weight = 

          XlMedium # vertical line between strata 

      end 

      # put horizontal lines between the "stratified" clusters of ercs 

      hl_row_count = pre_erc_rows 

      ercs_by_stratum.each do |ercs| 

        hl_row_count += ercs.size 

        hl_row_last = row_first-1+hl_row_count 

        hl_col_last = col_first-1+vl_col_count 

        range(ws,hl_row_last,col_first,hl_row_last,hl_col_last).borders(XlEdgeBottom).weight = 

          XlMedium 

      end 

      # Flag any unexplained ercs with color 

      range(ws,row_first+last_ex_row,1,row_first-1+row_count,1).interior.colorindex = RED 

unless row_count == last_ex_row 

      # Extra formatting if the data were inconsistent 

      range(ws,row_first+row_count,1,row_first+row_count,1).value = "FAIL!" unless 

rcd_result.consistent? 

 

      # Put the lexicon to the worksheet 

      first_lex_row = row_first-1 + row_count + 2 

      lex = hyp.grammar.lexicon 



402	
	

	
	

      r_row = first_lex_row-1 

      r_row, r_col = morphs_to_ws(ws, lex.get_prefixes, r_row+1, col_first) unless 

lex.get_prefixes.empty? 

      r_row, r_col = morphs_to_ws(ws, lex.get_roots, r_row+1, col_first) 

      r_row, r_col = morphs_to_ws(ws, lex.get_suffixes, r_row+1, col_first) unless 

lex.get_suffixes.empty? 

 

      test_row = r_row + 2 

      range(ws,test_row,col_first,test_row,col_first+2).merge 

      range(ws,test_row,col_first,test_row,col_first).value = "Learned: 

#{gram_test_result.all_correct?}" 

      return test_row, col_first-1+col_count 

    end 
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 # Format a comparative tableau, and write it to the specified section of the worksheet. 

 

    def wl_pairs_to_ws(ws, unsorted_ct, sorted_cons, sorted_ercs, row_first, col_first) 

      # first row contains the column headers 

      sheet_image = [] << (row_image = []) 

      row_image.concat(["#", "ERC\#", "Input", "Winner", "Loser"]) 

      pre_con_columns = 5 

      row_image.concat(sorted_cons.map{|con| con.to_s}) 

      # add the erc rows to the sheet image 

      sorted_ercs.each do |erc| 

        sheet_image << (row_image = []) # elements of the eventual output row 

        row_image << unsorted_ct.get_erc_index(erc).to_s 

        row_image << erc.label 

        if erc.respond_to?(:winner) then # pair contains a winner and a loser 

          row_image << erc.winner.input.to_s << erc.winner.merged_outputs_to_s 

          row_image <<  erc.loser.output.to_s 

        else 

          3.times{row_image << nil} # base ercs don't have winner or loser 

        end 

        add_prefs_to_row(erc, sorted_cons, row_image) 

      end 

      # write the sheet_image array to the worksheet 

      row_last = row_first + sheet_image.size - 1 

      col_last = col_first + pre_con_columns + sorted_cons.size - 1 

      range(ws,row_first,col_first,row_last,col_last).value = sheet_image 

      ct_borders(ws,row_first,col_first,row_last,col_last,pre_con_columns) 
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      return row_last, col_last 

    end 
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def put_learning_results_of_sim(lang_sim) 

      @excel.screenUpdating=false # turn off updating while writing to a worksheet 

      ws = @excel.activesheet 

      ws.name = name_sheet("Sim Results") 

      row = 1; col = 1 

      range(ws,1,1,1,1).value = "Results of Language Learning Simulation" 

      lang_sim.results_list.each do |entry| 

        row += 2 

        range(ws,row,1,row,8).merge 

        range(ws, row, 1, row, 1).value = entry 

      end 

      # 

    ensure # make sure screen updating is turned back on, even if an exception is raised. 

      @excel.screenUpdating=true 

    end 
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 def put_typ_results_to_ws(overt_forms_list, overt_forms_set_label, learned_lgs, 

failed_consis_lgs, discards, row_first) 

      ws = @excel.activesheet 

      # first row contains a header for overt forms set 

      sheet_image = [] << (row_image = []) 

      row_image << overt_forms_set_label 

      until overt_forms_list.empty? do 

        sheet_image << (row_image = []) 

        4.times do 

          row_image << overt_forms_list.shift 

        end 

      end 

      # second row contains the column headers 

      sheet_image << (row_image = []) # elements of the eventual output row 

      row_image.concat(["Learned Lgs", "Fail - Consis.", "Fail - Inconsis."]) 

      # Create the entries for the Learned Lgs column 

      learned_col = [] 

      learned_lgs.each do |hyp| 

        summary = String.new 

        summary << hyp.lang_hyp_label << "; " << hyp.erc_list.size.to_s 

        hyp.commitments.each  do |c_pair| 

          summary << " " << c_pair[1].to_s 

        end 

        learned_col << summary 

      end 

      # Create entries for the Fail-Consist. lgs column 



407	
	

	
	

      failed_consis_col = [] 

      failed_consis_lgs.each do |hyp| 

        summary = String.new 

        summary << hyp.lang_hyp_label << "; " << hyp.erc_list.size.to_s 

        hyp.commitments.each  do |c_pair| 

          summary << " " << c_pair[1].to_s 

        end 

        failed_consis_col << summary 

      end 

      # Create entries for the Discard column 

      discard_col = [] 

      discards.each do |hyp| 

        summary = String.new 

        summary << hyp.lang_hyp_label << "; " << hyp.erc_list.size.to_s 

        hyp.commitments.each  do |c_pair| 

          summary << " " << c_pair[1].to_s 

        end 

        discard_col << summary 

      end 

      # Create row images. 

      max_rows = learned_lgs.size 

      if failed_consis_lgs.size > max_rows then 

        max_rows = failed_consis_lgs.size 

      elsif discards.size > max_rows then 

        max_rows = discards.size 

      end 
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      curr_row = 0 

      until curr_row == max_rows do 

        sheet_image << (row_image = []) # elements of the eventual output row 

        col1 = learned_col[curr_row] 

        col2 = failed_consis_col[curr_row] 

        col3 = discard_col[curr_row] 

        row_image << col1 << col2 << col3 

        curr_row +=1 

      end 

      # write the sheet_image array to the worksheet 

      row_last = row_first + sheet_image.size - 1 

      range(ws,row_first,1,row_last,4).value = sheet_image 

      # autosize the columns 

      range(ws,row_first,1,row_last,4).entirecolumn.autofit 

      # 

      return row_last +=2 

      # 

    end 
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   def put_perf_results_to_ws(overt_forms_set_label, learned_lgs, discards, row_first) 

      ws = @excel.activesheet 

      # first row contains a header for overt forms set 

      sheet_image = [] << (row_image = []) 

      row_image.concat(["Set #", "LgHyp", "Consistent?", "Phonotactic ERCS", "Total ERCs", 

"Set Fs" ]) 

      # Create the entries for the Learned Lgs 

      learned_lgs.each do |hyp| 

        sheet_image << (row_image = []) 

        row_image.concat([overt_forms_set_label, hyp.lang_hyp_label, "Yes" , 

hyp.num_phonotactic_ercs, hyp.erc_list.size, hyp.num_set_features]) 

      end 

      # Create the entries for the inconsistent languages 

      discards.each do |hyp| 

        sheet_image << (row_image = []) 

        row_image.concat([overt_forms_set_label, hyp.lang_hyp_label, "No" , 

hyp.num_phonotactic_ercs, hyp.erc_list.size, hyp.num_set_features]) 

      end 

      # write the sheet_image array to the worksheet 

      row_last = row_first + sheet_image.size - 1 

      range(ws,row_first,1,row_last,6).value = sheet_image 

      # autosize the columns 

      range(ws,row_first,1,row_last,6).entirecolumn.autofit 

      # 

      return row_last +=2 

      end 
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    # Saves the active workbook as the given filename, then closes that workbook. Leaves 

    # a new output workbook open in the current Excel session. 

    def close(filename) 

      wb = @excel.activeworkbook 

      wb.saveas(filename) 

      wb.close 

      add_output_workbook('New') 

    end 

 

  end #class Excel_for_overt_otlearn 

end #module Overt_OTLearn 
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B‐14 LABEL_SET.RB	

 

# Author: Crystal Akers 

 

require 'sf/sf_word' 

require 'sf/system' 

require 'set' 

 

module Overt_OTLearn 

  class Label_set < Set 

 

    # Create a new, blank label set. The label set is composed of individual label hashes. 

    def initialize 

      super 

    end 
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  # Creates a new label and adds it to the label set. Each label consists of a hash. 

    # The first hash key is the string representation of _overt_form_ and is given the 

    # value of _letter_. The following keys are for structural interpretations, 

    # with one key for each string representation of a structural interpretation of 

    #  _overt_form_, and number values for each key. Returns the label. 

    # Label:  [overt_form => letter, output1 => 1, output2 => 2, ...] 

    def create_new_label_hash(overt_form, lang_hyp, letter) 

      label= Hash.new 

      overt = overt_form.dup 

      # Add the string rep. of the overt form and letter value to the hash 

      label[overt.to_s] = letter.dup 

      # Create keys and values for string reps. of structural interpretations 

      num = "0" 

      interpretations = lang_hyp.system.get_interpretations(overt_form, lang_hyp.grammar) 

      interpretations.each do |word| 

        output = word.output.dup 

        num = num.succ 

        label[output.to_s] = num 

      end 

      # Add the new label to the label set 

      self << label 

      return label 

    end 
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    # Updates the label of _lang_hyp_ with the label associated with _overt_form_. 

    # Unless some label hash already contains _overt_form_, a new one is created. 

    def update_lang_hyp_label(overt, lang_hyp, letter) 

      overt_hash = find_label_hash(overt) 

      if overt_hash ==  nil then 

        overt_hash = create_new_label_hash(overt, lang_hyp, letter) 

        letter = letter.succ 

      end 

      # Break if the _lang_hyp_ label already includes the label for this overt form 

      unless lang_hyp.lang_hyp_label.empty? then 

        return letter if lang_hyp.lang_hyp_label.include?(overt_hash[overt.to_s]) 

      end 

      # Get the output commitment for this overt form in _lang_hyp_ 

      output = lang_hyp.commitments.existing_commitment_pair(overt)[1] 

      raise "Cannot create new label without a committed output" if output == nil 

      # Append the values of the keys matching _overt_ and _output_ in string representation. 

      lang_hyp.lang_hyp_label << overt_hash[overt.to_s] << overt_hash[output.to_s] 

      # Return the letter to be used for the next new label hash 

      return letter 

    end 
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 # Searches through the label set to find the label containing the given form _f_. 

    # Returns that label. 

    def find_label_hash(f) 

      form = f.to_s 

      matching_hashes = self.find_all {|label| label.any? {|el| el.include?(form)}} 

      if matching_hashes.size >1 then 

        raise "Error - more than one label hash exists for the form #{f.to_s}" 

      else 

        return matching_hashes[0] 

      end 

      return nil 

    end 

 

  end # class Label_set 

end #module Overt_OTLearn 
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B‐15 LANGUAGE_HYPOTHESIS.RB	

 

# Author: Crystal Akers 

# 

 

require 'hypothesis' 

require 'otlearn' 

require 'overt_otlearn/data_manip' 

require 'overt_otlearn/commitment_list' 

require 'overt_otlearn/label_set' 

require 'overt_otlearn/overt_grammar_test' 

require 'sf/sf_word' 

require 'sf/system' 

 

module Overt_OTLearn 
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  # A language hypothesis is a grammar hypothesis plus a list of paired 

  # overt forms and outputs comprising the committed structural 

  # interpretations for the language. 

  # Each hypothesis also contains a list of winners, a list of 

  # OvertGrammarTest results, and a boolean record of whether the 

  # hypothesis has been changed during learning. 

 

  class Language_Hypothesis < Hypothesis 

 

    attr_reader :commitments, :overt_forms, :results_list, :winner_list, :learning_change 
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  # Creates a new language hypothesis. If they are not provided as 

    # parameters, the lists of commitment pairs, winners, and results 

    # are created as empty initial lists. 

    #   @commitments stores commitment pairs: [overt form, output]. 

    #   @winner_list stores full structural descriptions whose outputs 

    #    are included in _@commitments_ 

    #   @results_list stores a history of the language hypothesis' 

    #   results on Grammar Tests. The results list is duplicated and 

    #   extended if the hypothesis branches. 

    #   @learning_change stores a boolean for indicating whether the 

    #   hypothesis has changed during (some period of) learning. 

    # 

    # The following store measures for evaluating efficiency. 

    #   num_phonotactic_ercs stores the number of ERCs created during 

    #   phonotactic learning 

    #   num_set_features stores the number of features set 

    def initialize(gram, erc_list=nil, commitments=nil, overt_forms = nil, 

        winner_list=nil, results_list = nil, learning_change = nil, 

        lang_hyp_label = nil, num_phonotactic_ercs = nil, num_set_features=nil) 

      super(gram, erc_list) 

      if commitments.nil? then 

        @commitments = Commitment_List.new 

      else 

        @commitments = commitments 

      end 

      if overt_forms.nil? then 
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        @overt_forms = Array.new 

      else 

        @overt_forms = overt_forms 

      end 

      if winner_list.nil? then 

        @winner_list = [] 

      else @winner_list = winner_list 

      end 

      if results_list.nil? then 

        @results_list = [] 

      else 

        @results_list = results_list 

      end 

      if learning_change.nil? then 

        @learning_change = true 

      end 

      if lang_hyp_label.nil? then 

        @lang_hyp_label = String.new 

      end 

      if num_phonotactic_ercs.nil? then 

        @num_phonotactic_ercs = 0 

      else 

        @num_phonotactic_ercs = num_phonotactic_ercs 

      end 

      if num_set_features.nil? then 

        @num_set_features = 0 
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      else 

        @num_set_features = num_set_features 

      end 

    end 

 

    # Returns the commitments for the language hypothesis. 

    def commitments() @commitments end 

 

    # Returns the list of winners for the language hypothesis. 

    def winner_list() @winner_list end 

 

    # Returns the results list for the language hypothesis. 

    def results_list() @results_list end 

 

    # Returns a boolean representing the learning change for the language hypothesis. 

    def learning_change() @learning_change end 

 

    # These values are output in the Excel learning summary spreadsheets 

    # Returns the number of ERCs created during phonotactic learning 

    def num_phonotactic_ercs() @num_phonotactic_ercs end 

 

    # Returns the number of features set in the language hypothesis 

    def num_set_features() @num_set_features end 
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    # Sets the value of @learning_change to a boolean 

    def hyp_change(boolean) 

       @learning_change = boolean 

    end 

 

    # Returns the set of overt forms used in commitment pairs 

    # in the language hypothesis. 

    def overt_forms() @overt_forms end 

 

    # Return the label of the language hypothesis 

    def lang_hyp_label() @lang_hyp_label end 
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   # Returns a copy of the language hypothesis, with a duplicated 

    # grammar, erc_list,commitment_pair list, overt_forms list, 

    # winner list, and results list, num phonotactic ercs, 

    # num set features, and label. 

    def dup 

      hyp_dup = super 

      winners = [] 

      @winner_list.each do |win| 

        w =  win.dup 

        w.sync_with_hypothesis!(hyp_dup) 

        winners << w 

      end 

      label = String.new 

      label = @lang_hyp_label.dup 

      lang_hyp = Language_Hypothesis.new(hyp_dup.grammar, hyp_dup.erc_list, 

        @commitments.dup,@overt_forms.dup, winners, @results_list.dup) 

      lang_hyp.lang_hyp_label << label 

      lang_hyp.store_phonotactic_erc_size(@num_phonotactic_ercs) 

      lang_hyp.store_num_set_features(@num_set_features) 

      return lang_hyp 

    end 
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   # Given a language hypothesis and an overt form, returns a list of 

    # all consistent branches from that hypothesis. Each branch begins 

    # as a copy of the given language hypothesis, to which a new 

    # commitment_pair and winner are added if necessary. 

    # The ranking bias flag determines which ranking bias to use: 

    # if the flag is nil, the FaithLow bias is used, otherwise the MarkLow 

    # bias is used. The flag should be nil except when the Branch method is 

    # called after setting a feature. 

    def branch(overt_form, ranking_bias_flag) 

      branch_list = [] 

      discards = [] 

      interpretations = [] 

      interpretations = system.get_interpretations(overt_form,grammar) 

      interpretations.each do |word| 

        lang_hyp = self.dup 

        # Add a new commitment pair and winner to the branch 

        commit_pair = lang_hyp.commitments.add_commitment_pair(word.output) 

        lang_hyp.add_winner(word.overt, commit_pair) 

        OTLearn::ranking_learning(lang_hyp.winner_list, lang_hyp, ranking_bias_flag) 

        lang_hyp.results_list << 

            Overt_OTLearn::OvertGrammarTest.new(lang_hyp, "Branch committed to 

#{word.output.to_s} ") 

        if lang_hyp.consistent? then 

          lang_hyp.hyp_change(true) 

          branch_list << lang_hyp 

        else 
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          discards << lang_hyp 

        end 

      end 

      return branch_list, discards 

    end 
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 # Updates the constraint hierarchy in the grammar, regardless of whether the 

  # hypothesis is consistent. This update ensures that inconsistent language 

  # hypotheses will show which ERCs lead to the inconsistency. 

  # An optional block provides the code for generating the updated 

  # grammar (some variation of Rcd). If no block is provided, then 

  # regular RCD is used (all constraints has high as possible). 

  def update_grammar 

    if block_given? 

      rcd_result = yield(@erc_list) 

    else 

      rcd_result = Rcd.new(@erc_list) 

    end 

    @consistent = rcd_result.consistent? 

    @grammar.hierarchy = rcd_result.hierarchy 

    return rcd_result 

  end 
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# This method creates a new winner having the same morphword 

    # as _overt_form_ and the output from the given 

    # _commitment_pair_, then adds the winner to the winner list. 

    # The method returns the winner. 

    def add_winner(overt_form, commitment_pair) 

        prior_winner = existing_winner(overt_form) 

        raise "Prior winner exists: #{prior_winner.to_s}" unless prior_winner.nil? 

        output = commitment_pair[1].dup 

        # Syllables in _output_ are set to the same morpheme as the corresponding 

        # syllables in _overt_form_ 

        gen = SyncEnumerator.new(overt_form, output.syl_list) 

        gen.each do |overt_syl,output_syl| 

          output_syl.set_morpheme(overt_syl.morpheme) 

        end 

        output.morphword = overt_form.morphword 

        winner = self.system.parse_output(output, grammar) 

        self.winner_list << winner 

        return winner 

    end 
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   # This method returns the winner (full structural description,  

    # though the input may include unset features)whose morphword 

    # matches _overt_form_, if such a winner exists in the language 

    # hypothesis; it returns nil otherwise. 

    def existing_winner(overt_form) 

      match = self.winner_list.find {|winner| winner.morphword == overt_form.morphword} 

      if match then 

        if match.overt != overt_form then 

          raise "Overt form #{overt_form.to_s} doesn't match existing winner #{match.to_s}" 

        end 

      end 

      return match 

    end 

 

    def store_phonotactic_erc_size(num) 

      @num_phonotactic_ercs=num 

    end 

 

    def store_num_set_features(num) 

      @num_set_features +=num 

    end 
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    # Returns a string containing string representations of the hierarchy, lexicon, 

    # ERC list and structural commitment_pair_pairs and results list of this language hypothesis. 

    def to_s 

      out_str = "HIERARCHY" + "\n" 

      out_str += @grammar.hierarchy.to_s + "\n" 

            out_str += "LEXICON"+ "\n" 

      out_str += @grammar.lexicon.to_s + "\n" 

            out_str += "ERC LIST"+ "\n" 

      out_str += @erc_list.join("\n") 

            out_str += "\n"+ "COMMITMENT PAIRS"+ "\n" 

      out_str += @commitments.to_s 

            out_str += "\n"+"WINNER LIST"+ "\n" 

      out_str += @winner_list.join("\n") 

            out_str += "\n"+"RESULTS LIST"+ "\n" 

      out_str += @results_list.join("\n") 

      out_str 

    end 

 

  end # class Language_Hypothesis 

 

end # module Overt_OTLearn 
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B‐16 COMMITMENT_LIST.RB	

 

# Author: Crystal Akers 

# 

 

require 'hypothesis' 

require 'otlearn' 

require 'overt_otlearn/data_manip' 

require 'sf/sf_output' 

 

module Overt_OTLearn 

 

# Commitments are arrays containing pairs of overt form and committed output, 

# each pair a size 2 array with the first element an overt form and the second 

# element a structural interpretation of the overt form. 

 

  class Commitment_List < Array 

 

    # Returns an empty Commitment list 

    def initialize 

    end 
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# Returns true if the string representation of _form_ matches that of either 

    # member of the commitment (overt form or structural interpretation); 

    # it returns false otherwise. 

    def forms_match?(form, commit_pair) 

      return true if commit_pair.any? {|committed_form| committed_form.to_s == form.to_s} 

      return false 

    end 

 

    # Returns the commitment pair whose overt form or committed output interpretation 

    # matches _form_; it returns nil if there's no such pair. 

    def existing_commitment_pair(form) 

      self.each { |commit_pair| return commit_pair if self.forms_match?(form, commit_pair) } 

      return nil 

    end 
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    # Adds to a new commitment pair with the structural interpretation provided 

    # by _output_. Returns the new pair. 

    def add_commitment_pair(output) 

      # _output_ must not match an existing commitment pair 

      raise "Existing commitment for output: #{output.overt.to_s}, #{output.to_s}" if 

        self.existing_commitment_pair(output) 

      # The overt form of _output_ must not match an existing commitment pair 

      overt = output.overt 

      raise "Existing commitment for overt form: #{output.overt.to_s}, #{output.to_s}" if 

        self.existing_commitment_pair(overt) 

      commitment_pair = [overt, output.dup] 

      self << commitment_pair 

      return commitment_pair 

    end 

 

    #Returns a copy of the commitment pair 

    def dup 

      super 

    end 
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   def to_s 

      out_str = "" 

      self.each do |commit_pair| 

        out_str << "[" 

        out_str << commit_pair[0].join 

        out_str << ", " 

        out_str << commit_pair[1].join 

        out_str << "]" 

        out_str << "\n" 

      end 

      return out_str 

    end 

 

  end # class Commitment 

end # module Overt_OTLearn 
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